lemon/cost_scaling.h
author Alpar Juttner <alpar@cs.elte.hu>
Thu, 08 Oct 2015 10:03:29 +0200
branch1.3
changeset 1155 a7d841273c68
parent 1093 fb1c7da561ce
parent 1110 c0c2f5c87aa6
permissions -rw-r--r--
Merge bugfix #600 to branch 1.3
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \cite amo93networkflows,
    95   /// \cite goldberg90approximation,
    96   /// \cite goldberg97efficient, \cite bunnagel98efficient.
    97   /// It is a highly efficient primal-dual solution method, which
    98   /// can be viewed as the generalization of the \ref Preflow
    99   /// "preflow push-relabel" algorithm for the maximum flow problem.
   100   /// It is a polynomial algorithm, its running time complexity is
   101   /// \f$O(n^2m\log(nK))\f$, where <i>K</i> denotes the maximum arc cost.
   102   ///
   103   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   104   /// implementations available in LEMON for solving this problem.
   105   /// (For more information, see \ref min_cost_flow_algs "the module page".)
   106   ///
   107   /// Most of the parameters of the problem (except for the digraph)
   108   /// can be given using separate functions, and the algorithm can be
   109   /// executed using the \ref run() function. If some parameters are not
   110   /// specified, then default values will be used.
   111   ///
   112   /// \tparam GR The digraph type the algorithm runs on.
   113   /// \tparam V The number type used for flow amounts, capacity bounds
   114   /// and supply values in the algorithm. By default, it is \c int.
   115   /// \tparam C The number type used for costs and potentials in the
   116   /// algorithm. By default, it is the same as \c V.
   117   /// \tparam TR The traits class that defines various types used by the
   118   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   119   /// "CostScalingDefaultTraits<GR, V, C>".
   120   /// In most cases, this parameter should not be set directly,
   121   /// consider to use the named template parameters instead.
   122   ///
   123   /// \warning Both \c V and \c C must be signed number types.
   124   /// \warning All input data (capacities, supply values, and costs) must
   125   /// be integer.
   126   /// \warning This algorithm does not support negative costs for
   127   /// arcs having infinite upper bound.
   128   ///
   129   /// \note %CostScaling provides three different internal methods,
   130   /// from which the most efficient one is used by default.
   131   /// For more information, see \ref Method.
   132 #ifdef DOXYGEN
   133   template <typename GR, typename V, typename C, typename TR>
   134 #else
   135   template < typename GR, typename V = int, typename C = V,
   136              typename TR = CostScalingDefaultTraits<GR, V, C> >
   137 #endif
   138   class CostScaling
   139   {
   140   public:
   141 
   142     /// The type of the digraph
   143     typedef typename TR::Digraph Digraph;
   144     /// The type of the flow amounts, capacity bounds and supply values
   145     typedef typename TR::Value Value;
   146     /// The type of the arc costs
   147     typedef typename TR::Cost Cost;
   148 
   149     /// \brief The large cost type
   150     ///
   151     /// The large cost type used for internal computations.
   152     /// By default, it is \c long \c long if the \c Cost type is integer,
   153     /// otherwise it is \c double.
   154     typedef typename TR::LargeCost LargeCost;
   155 
   156     /// \brief The \ref lemon::CostScalingDefaultTraits "traits class"
   157     /// of the algorithm
   158     typedef TR Traits;
   159 
   160   public:
   161 
   162     /// \brief Problem type constants for the \c run() function.
   163     ///
   164     /// Enum type containing the problem type constants that can be
   165     /// returned by the \ref run() function of the algorithm.
   166     enum ProblemType {
   167       /// The problem has no feasible solution (flow).
   168       INFEASIBLE,
   169       /// The problem has optimal solution (i.e. it is feasible and
   170       /// bounded), and the algorithm has found optimal flow and node
   171       /// potentials (primal and dual solutions).
   172       OPTIMAL,
   173       /// The digraph contains an arc of negative cost and infinite
   174       /// upper bound. It means that the objective function is unbounded
   175       /// on that arc, however, note that it could actually be bounded
   176       /// over the feasible flows, but this algroithm cannot handle
   177       /// these cases.
   178       UNBOUNDED
   179     };
   180 
   181     /// \brief Constants for selecting the internal method.
   182     ///
   183     /// Enum type containing constants for selecting the internal method
   184     /// for the \ref run() function.
   185     ///
   186     /// \ref CostScaling provides three internal methods that differ mainly
   187     /// in their base operations, which are used in conjunction with the
   188     /// relabel operation.
   189     /// By default, the so called \ref PARTIAL_AUGMENT
   190     /// "Partial Augment-Relabel" method is used, which turned out to be
   191     /// the most efficient and the most robust on various test inputs.
   192     /// However, the other methods can be selected using the \ref run()
   193     /// function with the proper parameter.
   194     enum Method {
   195       /// Local push operations are used, i.e. flow is moved only on one
   196       /// admissible arc at once.
   197       PUSH,
   198       /// Augment operations are used, i.e. flow is moved on admissible
   199       /// paths from a node with excess to a node with deficit.
   200       AUGMENT,
   201       /// Partial augment operations are used, i.e. flow is moved on
   202       /// admissible paths started from a node with excess, but the
   203       /// lengths of these paths are limited. This method can be viewed
   204       /// as a combined version of the previous two operations.
   205       PARTIAL_AUGMENT
   206     };
   207 
   208   private:
   209 
   210     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   211 
   212     typedef std::vector<int> IntVector;
   213     typedef std::vector<Value> ValueVector;
   214     typedef std::vector<Cost> CostVector;
   215     typedef std::vector<LargeCost> LargeCostVector;
   216     typedef std::vector<char> BoolVector;
   217     // Note: vector<char> is used instead of vector<bool>
   218     // for efficiency reasons
   219 
   220   private:
   221 
   222     template <typename KT, typename VT>
   223     class StaticVectorMap {
   224     public:
   225       typedef KT Key;
   226       typedef VT Value;
   227 
   228       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   229 
   230       const Value& operator[](const Key& key) const {
   231         return _v[StaticDigraph::id(key)];
   232       }
   233 
   234       Value& operator[](const Key& key) {
   235         return _v[StaticDigraph::id(key)];
   236       }
   237 
   238       void set(const Key& key, const Value& val) {
   239         _v[StaticDigraph::id(key)] = val;
   240       }
   241 
   242     private:
   243       std::vector<Value>& _v;
   244     };
   245 
   246     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   247 
   248   private:
   249 
   250     // Data related to the underlying digraph
   251     const GR &_graph;
   252     int _node_num;
   253     int _arc_num;
   254     int _res_node_num;
   255     int _res_arc_num;
   256     int _root;
   257 
   258     // Parameters of the problem
   259     bool _has_lower;
   260     Value _sum_supply;
   261     int _sup_node_num;
   262 
   263     // Data structures for storing the digraph
   264     IntNodeMap _node_id;
   265     IntArcMap _arc_idf;
   266     IntArcMap _arc_idb;
   267     IntVector _first_out;
   268     BoolVector _forward;
   269     IntVector _source;
   270     IntVector _target;
   271     IntVector _reverse;
   272 
   273     // Node and arc data
   274     ValueVector _lower;
   275     ValueVector _upper;
   276     CostVector _scost;
   277     ValueVector _supply;
   278 
   279     ValueVector _res_cap;
   280     LargeCostVector _cost;
   281     LargeCostVector _pi;
   282     ValueVector _excess;
   283     IntVector _next_out;
   284     std::deque<int> _active_nodes;
   285 
   286     // Data for scaling
   287     LargeCost _epsilon;
   288     int _alpha;
   289 
   290     IntVector _buckets;
   291     IntVector _bucket_next;
   292     IntVector _bucket_prev;
   293     IntVector _rank;
   294     int _max_rank;
   295 
   296   public:
   297 
   298     /// \brief Constant for infinite upper bounds (capacities).
   299     ///
   300     /// Constant for infinite upper bounds (capacities).
   301     /// It is \c std::numeric_limits<Value>::infinity() if available,
   302     /// \c std::numeric_limits<Value>::max() otherwise.
   303     const Value INF;
   304 
   305   public:
   306 
   307     /// \name Named Template Parameters
   308     /// @{
   309 
   310     template <typename T>
   311     struct SetLargeCostTraits : public Traits {
   312       typedef T LargeCost;
   313     };
   314 
   315     /// \brief \ref named-templ-param "Named parameter" for setting
   316     /// \c LargeCost type.
   317     ///
   318     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   319     /// type, which is used for internal computations in the algorithm.
   320     /// \c Cost must be convertible to \c LargeCost.
   321     template <typename T>
   322     struct SetLargeCost
   323       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   324       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   325     };
   326 
   327     /// @}
   328 
   329   protected:
   330 
   331     CostScaling() {}
   332 
   333   public:
   334 
   335     /// \brief Constructor.
   336     ///
   337     /// The constructor of the class.
   338     ///
   339     /// \param graph The digraph the algorithm runs on.
   340     CostScaling(const GR& graph) :
   341       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   342       INF(std::numeric_limits<Value>::has_infinity ?
   343           std::numeric_limits<Value>::infinity() :
   344           std::numeric_limits<Value>::max())
   345     {
   346       // Check the number types
   347       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   348         "The flow type of CostScaling must be signed");
   349       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   350         "The cost type of CostScaling must be signed");
   351 
   352       // Reset data structures
   353       reset();
   354     }
   355 
   356     /// \name Parameters
   357     /// The parameters of the algorithm can be specified using these
   358     /// functions.
   359 
   360     /// @{
   361 
   362     /// \brief Set the lower bounds on the arcs.
   363     ///
   364     /// This function sets the lower bounds on the arcs.
   365     /// If it is not used before calling \ref run(), the lower bounds
   366     /// will be set to zero on all arcs.
   367     ///
   368     /// \param map An arc map storing the lower bounds.
   369     /// Its \c Value type must be convertible to the \c Value type
   370     /// of the algorithm.
   371     ///
   372     /// \return <tt>(*this)</tt>
   373     template <typename LowerMap>
   374     CostScaling& lowerMap(const LowerMap& map) {
   375       _has_lower = true;
   376       for (ArcIt a(_graph); a != INVALID; ++a) {
   377         _lower[_arc_idf[a]] = map[a];
   378       }
   379       return *this;
   380     }
   381 
   382     /// \brief Set the upper bounds (capacities) on the arcs.
   383     ///
   384     /// This function sets the upper bounds (capacities) on the arcs.
   385     /// If it is not used before calling \ref run(), the upper bounds
   386     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   387     /// unbounded from above).
   388     ///
   389     /// \param map An arc map storing the upper bounds.
   390     /// Its \c Value type must be convertible to the \c Value type
   391     /// of the algorithm.
   392     ///
   393     /// \return <tt>(*this)</tt>
   394     template<typename UpperMap>
   395     CostScaling& upperMap(const UpperMap& map) {
   396       for (ArcIt a(_graph); a != INVALID; ++a) {
   397         _upper[_arc_idf[a]] = map[a];
   398       }
   399       return *this;
   400     }
   401 
   402     /// \brief Set the costs of the arcs.
   403     ///
   404     /// This function sets the costs of the arcs.
   405     /// If it is not used before calling \ref run(), the costs
   406     /// will be set to \c 1 on all arcs.
   407     ///
   408     /// \param map An arc map storing the costs.
   409     /// Its \c Value type must be convertible to the \c Cost type
   410     /// of the algorithm.
   411     ///
   412     /// \return <tt>(*this)</tt>
   413     template<typename CostMap>
   414     CostScaling& costMap(const CostMap& map) {
   415       for (ArcIt a(_graph); a != INVALID; ++a) {
   416         _scost[_arc_idf[a]] =  map[a];
   417         _scost[_arc_idb[a]] = -map[a];
   418       }
   419       return *this;
   420     }
   421 
   422     /// \brief Set the supply values of the nodes.
   423     ///
   424     /// This function sets the supply values of the nodes.
   425     /// If neither this function nor \ref stSupply() is used before
   426     /// calling \ref run(), the supply of each node will be set to zero.
   427     ///
   428     /// \param map A node map storing the supply values.
   429     /// Its \c Value type must be convertible to the \c Value type
   430     /// of the algorithm.
   431     ///
   432     /// \return <tt>(*this)</tt>
   433     template<typename SupplyMap>
   434     CostScaling& supplyMap(const SupplyMap& map) {
   435       for (NodeIt n(_graph); n != INVALID; ++n) {
   436         _supply[_node_id[n]] = map[n];
   437       }
   438       return *this;
   439     }
   440 
   441     /// \brief Set single source and target nodes and a supply value.
   442     ///
   443     /// This function sets a single source node and a single target node
   444     /// and the required flow value.
   445     /// If neither this function nor \ref supplyMap() is used before
   446     /// calling \ref run(), the supply of each node will be set to zero.
   447     ///
   448     /// Using this function has the same effect as using \ref supplyMap()
   449     /// with a map in which \c k is assigned to \c s, \c -k is
   450     /// assigned to \c t and all other nodes have zero supply value.
   451     ///
   452     /// \param s The source node.
   453     /// \param t The target node.
   454     /// \param k The required amount of flow from node \c s to node \c t
   455     /// (i.e. the supply of \c s and the demand of \c t).
   456     ///
   457     /// \return <tt>(*this)</tt>
   458     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   459       for (int i = 0; i != _res_node_num; ++i) {
   460         _supply[i] = 0;
   461       }
   462       _supply[_node_id[s]] =  k;
   463       _supply[_node_id[t]] = -k;
   464       return *this;
   465     }
   466 
   467     /// @}
   468 
   469     /// \name Execution control
   470     /// The algorithm can be executed using \ref run().
   471 
   472     /// @{
   473 
   474     /// \brief Run the algorithm.
   475     ///
   476     /// This function runs the algorithm.
   477     /// The paramters can be specified using functions \ref lowerMap(),
   478     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   479     /// For example,
   480     /// \code
   481     ///   CostScaling<ListDigraph> cs(graph);
   482     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   483     ///     .supplyMap(sup).run();
   484     /// \endcode
   485     ///
   486     /// This function can be called more than once. All the given parameters
   487     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   488     /// is used, thus only the modified parameters have to be set again.
   489     /// If the underlying digraph was also modified after the construction
   490     /// of the class (or the last \ref reset() call), then the \ref reset()
   491     /// function must be called.
   492     ///
   493     /// \param method The internal method that will be used in the
   494     /// algorithm. For more information, see \ref Method.
   495     /// \param factor The cost scaling factor. It must be at least two.
   496     ///
   497     /// \return \c INFEASIBLE if no feasible flow exists,
   498     /// \n \c OPTIMAL if the problem has optimal solution
   499     /// (i.e. it is feasible and bounded), and the algorithm has found
   500     /// optimal flow and node potentials (primal and dual solutions),
   501     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   502     /// and infinite upper bound. It means that the objective function
   503     /// is unbounded on that arc, however, note that it could actually be
   504     /// bounded over the feasible flows, but this algroithm cannot handle
   505     /// these cases.
   506     ///
   507     /// \see ProblemType, Method
   508     /// \see resetParams(), reset()
   509     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
   510       LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
   511       _alpha = factor;
   512       ProblemType pt = init();
   513       if (pt != OPTIMAL) return pt;
   514       start(method);
   515       return OPTIMAL;
   516     }
   517 
   518     /// \brief Reset all the parameters that have been given before.
   519     ///
   520     /// This function resets all the paramaters that have been given
   521     /// before using functions \ref lowerMap(), \ref upperMap(),
   522     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   523     ///
   524     /// It is useful for multiple \ref run() calls. Basically, all the given
   525     /// parameters are kept for the next \ref run() call, unless
   526     /// \ref resetParams() or \ref reset() is used.
   527     /// If the underlying digraph was also modified after the construction
   528     /// of the class or the last \ref reset() call, then the \ref reset()
   529     /// function must be used, otherwise \ref resetParams() is sufficient.
   530     ///
   531     /// For example,
   532     /// \code
   533     ///   CostScaling<ListDigraph> cs(graph);
   534     ///
   535     ///   // First run
   536     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   537     ///     .supplyMap(sup).run();
   538     ///
   539     ///   // Run again with modified cost map (resetParams() is not called,
   540     ///   // so only the cost map have to be set again)
   541     ///   cost[e] += 100;
   542     ///   cs.costMap(cost).run();
   543     ///
   544     ///   // Run again from scratch using resetParams()
   545     ///   // (the lower bounds will be set to zero on all arcs)
   546     ///   cs.resetParams();
   547     ///   cs.upperMap(capacity).costMap(cost)
   548     ///     .supplyMap(sup).run();
   549     /// \endcode
   550     ///
   551     /// \return <tt>(*this)</tt>
   552     ///
   553     /// \see reset(), run()
   554     CostScaling& resetParams() {
   555       for (int i = 0; i != _res_node_num; ++i) {
   556         _supply[i] = 0;
   557       }
   558       int limit = _first_out[_root];
   559       for (int j = 0; j != limit; ++j) {
   560         _lower[j] = 0;
   561         _upper[j] = INF;
   562         _scost[j] = _forward[j] ? 1 : -1;
   563       }
   564       for (int j = limit; j != _res_arc_num; ++j) {
   565         _lower[j] = 0;
   566         _upper[j] = INF;
   567         _scost[j] = 0;
   568         _scost[_reverse[j]] = 0;
   569       }
   570       _has_lower = false;
   571       return *this;
   572     }
   573 
   574     /// \brief Reset the internal data structures and all the parameters
   575     /// that have been given before.
   576     ///
   577     /// This function resets the internal data structures and all the
   578     /// paramaters that have been given before using functions \ref lowerMap(),
   579     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   580     ///
   581     /// It is useful for multiple \ref run() calls. By default, all the given
   582     /// parameters are kept for the next \ref run() call, unless
   583     /// \ref resetParams() or \ref reset() is used.
   584     /// If the underlying digraph was also modified after the construction
   585     /// of the class or the last \ref reset() call, then the \ref reset()
   586     /// function must be used, otherwise \ref resetParams() is sufficient.
   587     ///
   588     /// See \ref resetParams() for examples.
   589     ///
   590     /// \return <tt>(*this)</tt>
   591     ///
   592     /// \see resetParams(), run()
   593     CostScaling& reset() {
   594       // Resize vectors
   595       _node_num = countNodes(_graph);
   596       _arc_num = countArcs(_graph);
   597       _res_node_num = _node_num + 1;
   598       _res_arc_num = 2 * (_arc_num + _node_num);
   599       _root = _node_num;
   600 
   601       _first_out.resize(_res_node_num + 1);
   602       _forward.resize(_res_arc_num);
   603       _source.resize(_res_arc_num);
   604       _target.resize(_res_arc_num);
   605       _reverse.resize(_res_arc_num);
   606 
   607       _lower.resize(_res_arc_num);
   608       _upper.resize(_res_arc_num);
   609       _scost.resize(_res_arc_num);
   610       _supply.resize(_res_node_num);
   611 
   612       _res_cap.resize(_res_arc_num);
   613       _cost.resize(_res_arc_num);
   614       _pi.resize(_res_node_num);
   615       _excess.resize(_res_node_num);
   616       _next_out.resize(_res_node_num);
   617 
   618       // Copy the graph
   619       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   620       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   621         _node_id[n] = i;
   622       }
   623       i = 0;
   624       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   625         _first_out[i] = j;
   626         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   627           _arc_idf[a] = j;
   628           _forward[j] = true;
   629           _source[j] = i;
   630           _target[j] = _node_id[_graph.runningNode(a)];
   631         }
   632         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   633           _arc_idb[a] = j;
   634           _forward[j] = false;
   635           _source[j] = i;
   636           _target[j] = _node_id[_graph.runningNode(a)];
   637         }
   638         _forward[j] = false;
   639         _source[j] = i;
   640         _target[j] = _root;
   641         _reverse[j] = k;
   642         _forward[k] = true;
   643         _source[k] = _root;
   644         _target[k] = i;
   645         _reverse[k] = j;
   646         ++j; ++k;
   647       }
   648       _first_out[i] = j;
   649       _first_out[_res_node_num] = k;
   650       for (ArcIt a(_graph); a != INVALID; ++a) {
   651         int fi = _arc_idf[a];
   652         int bi = _arc_idb[a];
   653         _reverse[fi] = bi;
   654         _reverse[bi] = fi;
   655       }
   656 
   657       // Reset parameters
   658       resetParams();
   659       return *this;
   660     }
   661 
   662     /// @}
   663 
   664     /// \name Query Functions
   665     /// The results of the algorithm can be obtained using these
   666     /// functions.\n
   667     /// The \ref run() function must be called before using them.
   668 
   669     /// @{
   670 
   671     /// \brief Return the total cost of the found flow.
   672     ///
   673     /// This function returns the total cost of the found flow.
   674     /// Its complexity is O(m).
   675     ///
   676     /// \note The return type of the function can be specified as a
   677     /// template parameter. For example,
   678     /// \code
   679     ///   cs.totalCost<double>();
   680     /// \endcode
   681     /// It is useful if the total cost cannot be stored in the \c Cost
   682     /// type of the algorithm, which is the default return type of the
   683     /// function.
   684     ///
   685     /// \pre \ref run() must be called before using this function.
   686     template <typename Number>
   687     Number totalCost() const {
   688       Number c = 0;
   689       for (ArcIt a(_graph); a != INVALID; ++a) {
   690         int i = _arc_idb[a];
   691         c += static_cast<Number>(_res_cap[i]) *
   692              (-static_cast<Number>(_scost[i]));
   693       }
   694       return c;
   695     }
   696 
   697 #ifndef DOXYGEN
   698     Cost totalCost() const {
   699       return totalCost<Cost>();
   700     }
   701 #endif
   702 
   703     /// \brief Return the flow on the given arc.
   704     ///
   705     /// This function returns the flow on the given arc.
   706     ///
   707     /// \pre \ref run() must be called before using this function.
   708     Value flow(const Arc& a) const {
   709       return _res_cap[_arc_idb[a]];
   710     }
   711 
   712     /// \brief Copy the flow values (the primal solution) into the
   713     /// given map.
   714     ///
   715     /// This function copies the flow value on each arc into the given
   716     /// map. The \c Value type of the algorithm must be convertible to
   717     /// the \c Value type of the map.
   718     ///
   719     /// \pre \ref run() must be called before using this function.
   720     template <typename FlowMap>
   721     void flowMap(FlowMap &map) const {
   722       for (ArcIt a(_graph); a != INVALID; ++a) {
   723         map.set(a, _res_cap[_arc_idb[a]]);
   724       }
   725     }
   726 
   727     /// \brief Return the potential (dual value) of the given node.
   728     ///
   729     /// This function returns the potential (dual value) of the
   730     /// given node.
   731     ///
   732     /// \pre \ref run() must be called before using this function.
   733     Cost potential(const Node& n) const {
   734       return static_cast<Cost>(_pi[_node_id[n]]);
   735     }
   736 
   737     /// \brief Copy the potential values (the dual solution) into the
   738     /// given map.
   739     ///
   740     /// This function copies the potential (dual value) of each node
   741     /// into the given map.
   742     /// The \c Cost type of the algorithm must be convertible to the
   743     /// \c Value type of the map.
   744     ///
   745     /// \pre \ref run() must be called before using this function.
   746     template <typename PotentialMap>
   747     void potentialMap(PotentialMap &map) const {
   748       for (NodeIt n(_graph); n != INVALID; ++n) {
   749         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   750       }
   751     }
   752 
   753     /// @}
   754 
   755   private:
   756 
   757     // Initialize the algorithm
   758     ProblemType init() {
   759       if (_res_node_num <= 1) return INFEASIBLE;
   760 
   761       // Check the sum of supply values
   762       _sum_supply = 0;
   763       for (int i = 0; i != _root; ++i) {
   764         _sum_supply += _supply[i];
   765       }
   766       if (_sum_supply > 0) return INFEASIBLE;
   767 
   768       // Check lower and upper bounds
   769       LEMON_DEBUG(checkBoundMaps(),
   770           "Upper bounds must be greater or equal to the lower bounds");
   771 
   772 
   773       // Initialize vectors
   774       for (int i = 0; i != _res_node_num; ++i) {
   775         _pi[i] = 0;
   776         _excess[i] = _supply[i];
   777       }
   778 
   779       // Remove infinite upper bounds and check negative arcs
   780       const Value MAX = std::numeric_limits<Value>::max();
   781       int last_out;
   782       if (_has_lower) {
   783         for (int i = 0; i != _root; ++i) {
   784           last_out = _first_out[i+1];
   785           for (int j = _first_out[i]; j != last_out; ++j) {
   786             if (_forward[j]) {
   787               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   788               if (c >= MAX) return UNBOUNDED;
   789               _excess[i] -= c;
   790               _excess[_target[j]] += c;
   791             }
   792           }
   793         }
   794       } else {
   795         for (int i = 0; i != _root; ++i) {
   796           last_out = _first_out[i+1];
   797           for (int j = _first_out[i]; j != last_out; ++j) {
   798             if (_forward[j] && _scost[j] < 0) {
   799               Value c = _upper[j];
   800               if (c >= MAX) return UNBOUNDED;
   801               _excess[i] -= c;
   802               _excess[_target[j]] += c;
   803             }
   804           }
   805         }
   806       }
   807       Value ex, max_cap = 0;
   808       for (int i = 0; i != _res_node_num; ++i) {
   809         ex = _excess[i];
   810         _excess[i] = 0;
   811         if (ex < 0) max_cap -= ex;
   812       }
   813       for (int j = 0; j != _res_arc_num; ++j) {
   814         if (_upper[j] >= MAX) _upper[j] = max_cap;
   815       }
   816 
   817       // Initialize the large cost vector and the epsilon parameter
   818       _epsilon = 0;
   819       LargeCost lc;
   820       for (int i = 0; i != _root; ++i) {
   821         last_out = _first_out[i+1];
   822         for (int j = _first_out[i]; j != last_out; ++j) {
   823           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   824           _cost[j] = lc;
   825           if (lc > _epsilon) _epsilon = lc;
   826         }
   827       }
   828       _epsilon /= _alpha;
   829 
   830       // Initialize maps for Circulation and remove non-zero lower bounds
   831       ConstMap<Arc, Value> low(0);
   832       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   833       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   834       ValueArcMap cap(_graph), flow(_graph);
   835       ValueNodeMap sup(_graph);
   836       for (NodeIt n(_graph); n != INVALID; ++n) {
   837         sup[n] = _supply[_node_id[n]];
   838       }
   839       if (_has_lower) {
   840         for (ArcIt a(_graph); a != INVALID; ++a) {
   841           int j = _arc_idf[a];
   842           Value c = _lower[j];
   843           cap[a] = _upper[j] - c;
   844           sup[_graph.source(a)] -= c;
   845           sup[_graph.target(a)] += c;
   846         }
   847       } else {
   848         for (ArcIt a(_graph); a != INVALID; ++a) {
   849           cap[a] = _upper[_arc_idf[a]];
   850         }
   851       }
   852 
   853       _sup_node_num = 0;
   854       for (NodeIt n(_graph); n != INVALID; ++n) {
   855         if (sup[n] > 0) ++_sup_node_num;
   856       }
   857 
   858       // Find a feasible flow using Circulation
   859       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   860         circ(_graph, low, cap, sup);
   861       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   862 
   863       // Set residual capacities and handle GEQ supply type
   864       if (_sum_supply < 0) {
   865         for (ArcIt a(_graph); a != INVALID; ++a) {
   866           Value fa = flow[a];
   867           _res_cap[_arc_idf[a]] = cap[a] - fa;
   868           _res_cap[_arc_idb[a]] = fa;
   869           sup[_graph.source(a)] -= fa;
   870           sup[_graph.target(a)] += fa;
   871         }
   872         for (NodeIt n(_graph); n != INVALID; ++n) {
   873           _excess[_node_id[n]] = sup[n];
   874         }
   875         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   876           int u = _target[a];
   877           int ra = _reverse[a];
   878           _res_cap[a] = -_sum_supply + 1;
   879           _res_cap[ra] = -_excess[u];
   880           _cost[a] = 0;
   881           _cost[ra] = 0;
   882           _excess[u] = 0;
   883         }
   884       } else {
   885         for (ArcIt a(_graph); a != INVALID; ++a) {
   886           Value fa = flow[a];
   887           _res_cap[_arc_idf[a]] = cap[a] - fa;
   888           _res_cap[_arc_idb[a]] = fa;
   889         }
   890         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   891           int ra = _reverse[a];
   892           _res_cap[a] = 0;
   893           _res_cap[ra] = 0;
   894           _cost[a] = 0;
   895           _cost[ra] = 0;
   896         }
   897       }
   898 
   899       // Initialize data structures for buckets
   900       _max_rank = _alpha * _res_node_num;
   901       _buckets.resize(_max_rank);
   902       _bucket_next.resize(_res_node_num + 1);
   903       _bucket_prev.resize(_res_node_num + 1);
   904       _rank.resize(_res_node_num + 1);
   905 
   906       return OPTIMAL;
   907     }
   908 
   909     // Check if the upper bound is greater than or equal to the lower bound
   910     // on each forward arc.
   911     bool checkBoundMaps() {
   912       for (int j = 0; j != _res_arc_num; ++j) {
   913         if (_forward[j] && _upper[j] < _lower[j]) return false;
   914       }
   915       return true;
   916     }
   917 
   918     // Execute the algorithm and transform the results
   919     void start(Method method) {
   920       const int MAX_PARTIAL_PATH_LENGTH = 4;
   921 
   922       switch (method) {
   923         case PUSH:
   924           startPush();
   925           break;
   926         case AUGMENT:
   927           startAugment(_res_node_num - 1);
   928           break;
   929         case PARTIAL_AUGMENT:
   930           startAugment(MAX_PARTIAL_PATH_LENGTH);
   931           break;
   932       }
   933 
   934       // Compute node potentials (dual solution)
   935       for (int i = 0; i != _res_node_num; ++i) {
   936         _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
   937       }
   938       bool optimal = true;
   939       for (int i = 0; optimal && i != _res_node_num; ++i) {
   940         LargeCost pi_i = _pi[i];
   941         int last_out = _first_out[i+1];
   942         for (int j = _first_out[i]; j != last_out; ++j) {
   943           if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
   944             optimal = false;
   945             break;
   946           }
   947         }
   948       }
   949 
   950       if (!optimal) {
   951         // Compute node potentials for the original costs with BellmanFord
   952         // (if it is necessary)
   953         typedef std::pair<int, int> IntPair;
   954         StaticDigraph sgr;
   955         std::vector<IntPair> arc_vec;
   956         std::vector<LargeCost> cost_vec;
   957         LargeCostArcMap cost_map(cost_vec);
   958 
   959         arc_vec.clear();
   960         cost_vec.clear();
   961         for (int j = 0; j != _res_arc_num; ++j) {
   962           if (_res_cap[j] > 0) {
   963             int u = _source[j], v = _target[j];
   964             arc_vec.push_back(IntPair(u, v));
   965             cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
   966           }
   967         }
   968         sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
   969 
   970         typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
   971           bf(sgr, cost_map);
   972         bf.init(0);
   973         bf.start();
   974 
   975         for (int i = 0; i != _res_node_num; ++i) {
   976           _pi[i] += bf.dist(sgr.node(i));
   977         }
   978       }
   979 
   980       // Shift potentials to meet the requirements of the GEQ type
   981       // optimality conditions
   982       LargeCost max_pot = _pi[_root];
   983       for (int i = 0; i != _res_node_num; ++i) {
   984         if (_pi[i] > max_pot) max_pot = _pi[i];
   985       }
   986       if (max_pot != 0) {
   987         for (int i = 0; i != _res_node_num; ++i) {
   988           _pi[i] -= max_pot;
   989         }
   990       }
   991 
   992       // Handle non-zero lower bounds
   993       if (_has_lower) {
   994         int limit = _first_out[_root];
   995         for (int j = 0; j != limit; ++j) {
   996           if (_forward[j]) _res_cap[_reverse[j]] += _lower[j];
   997         }
   998       }
   999     }
  1000 
  1001     // Initialize a cost scaling phase
  1002     void initPhase() {
  1003       // Saturate arcs not satisfying the optimality condition
  1004       for (int u = 0; u != _res_node_num; ++u) {
  1005         int last_out = _first_out[u+1];
  1006         LargeCost pi_u = _pi[u];
  1007         for (int a = _first_out[u]; a != last_out; ++a) {
  1008           Value delta = _res_cap[a];
  1009           if (delta > 0) {
  1010             int v = _target[a];
  1011             if (_cost[a] + pi_u - _pi[v] < 0) {
  1012               _excess[u] -= delta;
  1013               _excess[v] += delta;
  1014               _res_cap[a] = 0;
  1015               _res_cap[_reverse[a]] += delta;
  1016             }
  1017           }
  1018         }
  1019       }
  1020 
  1021       // Find active nodes (i.e. nodes with positive excess)
  1022       for (int u = 0; u != _res_node_num; ++u) {
  1023         if (_excess[u] > 0) _active_nodes.push_back(u);
  1024       }
  1025 
  1026       // Initialize the next arcs
  1027       for (int u = 0; u != _res_node_num; ++u) {
  1028         _next_out[u] = _first_out[u];
  1029       }
  1030     }
  1031 
  1032     // Price (potential) refinement heuristic
  1033     bool priceRefinement() {
  1034 
  1035       // Stack for stroing the topological order
  1036       IntVector stack(_res_node_num);
  1037       int stack_top;
  1038 
  1039       // Perform phases
  1040       while (topologicalSort(stack, stack_top)) {
  1041 
  1042         // Compute node ranks in the acyclic admissible network and
  1043         // store the nodes in buckets
  1044         for (int i = 0; i != _res_node_num; ++i) {
  1045           _rank[i] = 0;
  1046         }
  1047         const int bucket_end = _root + 1;
  1048         for (int r = 0; r != _max_rank; ++r) {
  1049           _buckets[r] = bucket_end;
  1050         }
  1051         int top_rank = 0;
  1052         for ( ; stack_top >= 0; --stack_top) {
  1053           int u = stack[stack_top], v;
  1054           int rank_u = _rank[u];
  1055 
  1056           LargeCost rc, pi_u = _pi[u];
  1057           int last_out = _first_out[u+1];
  1058           for (int a = _first_out[u]; a != last_out; ++a) {
  1059             if (_res_cap[a] > 0) {
  1060               v = _target[a];
  1061               rc = _cost[a] + pi_u - _pi[v];
  1062               if (rc < 0) {
  1063                 LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
  1064                 if (nrc < LargeCost(_max_rank)) {
  1065                   int new_rank_v = rank_u + static_cast<int>(nrc);
  1066                   if (new_rank_v > _rank[v]) {
  1067                     _rank[v] = new_rank_v;
  1068                   }
  1069                 }
  1070               }
  1071             }
  1072           }
  1073 
  1074           if (rank_u > 0) {
  1075             top_rank = std::max(top_rank, rank_u);
  1076             int bfirst = _buckets[rank_u];
  1077             _bucket_next[u] = bfirst;
  1078             _bucket_prev[bfirst] = u;
  1079             _buckets[rank_u] = u;
  1080           }
  1081         }
  1082 
  1083         // Check if the current flow is epsilon-optimal
  1084         if (top_rank == 0) {
  1085           return true;
  1086         }
  1087 
  1088         // Process buckets in top-down order
  1089         for (int rank = top_rank; rank > 0; --rank) {
  1090           while (_buckets[rank] != bucket_end) {
  1091             // Remove the first node from the current bucket
  1092             int u = _buckets[rank];
  1093             _buckets[rank] = _bucket_next[u];
  1094 
  1095             // Search the outgoing arcs of u
  1096             LargeCost rc, pi_u = _pi[u];
  1097             int last_out = _first_out[u+1];
  1098             int v, old_rank_v, new_rank_v;
  1099             for (int a = _first_out[u]; a != last_out; ++a) {
  1100               if (_res_cap[a] > 0) {
  1101                 v = _target[a];
  1102                 old_rank_v = _rank[v];
  1103 
  1104                 if (old_rank_v < rank) {
  1105 
  1106                   // Compute the new rank of node v
  1107                   rc = _cost[a] + pi_u - _pi[v];
  1108                   if (rc < 0) {
  1109                     new_rank_v = rank;
  1110                   } else {
  1111                     LargeCost nrc = rc / _epsilon;
  1112                     new_rank_v = 0;
  1113                     if (nrc < LargeCost(_max_rank)) {
  1114                       new_rank_v = rank - 1 - static_cast<int>(nrc);
  1115                     }
  1116                   }
  1117 
  1118                   // Change the rank of node v
  1119                   if (new_rank_v > old_rank_v) {
  1120                     _rank[v] = new_rank_v;
  1121 
  1122                     // Remove v from its old bucket
  1123                     if (old_rank_v > 0) {
  1124                       if (_buckets[old_rank_v] == v) {
  1125                         _buckets[old_rank_v] = _bucket_next[v];
  1126                       } else {
  1127                         int pv = _bucket_prev[v], nv = _bucket_next[v];
  1128                         _bucket_next[pv] = nv;
  1129                         _bucket_prev[nv] = pv;
  1130                       }
  1131                     }
  1132 
  1133                     // Insert v into its new bucket
  1134                     int nv = _buckets[new_rank_v];
  1135                     _bucket_next[v] = nv;
  1136                     _bucket_prev[nv] = v;
  1137                     _buckets[new_rank_v] = v;
  1138                   }
  1139                 }
  1140               }
  1141             }
  1142 
  1143             // Refine potential of node u
  1144             _pi[u] -= rank * _epsilon;
  1145           }
  1146         }
  1147 
  1148       }
  1149 
  1150       return false;
  1151     }
  1152 
  1153     // Find and cancel cycles in the admissible network and
  1154     // determine topological order using DFS
  1155     bool topologicalSort(IntVector &stack, int &stack_top) {
  1156       const int MAX_CYCLE_CANCEL = 1;
  1157 
  1158       BoolVector reached(_res_node_num, false);
  1159       BoolVector processed(_res_node_num, false);
  1160       IntVector pred(_res_node_num);
  1161       for (int i = 0; i != _res_node_num; ++i) {
  1162         _next_out[i] = _first_out[i];
  1163       }
  1164       stack_top = -1;
  1165 
  1166       int cycle_cnt = 0;
  1167       for (int start = 0; start != _res_node_num; ++start) {
  1168         if (reached[start]) continue;
  1169 
  1170         // Start DFS search from this start node
  1171         pred[start] = -1;
  1172         int tip = start, v;
  1173         while (true) {
  1174           // Check the outgoing arcs of the current tip node
  1175           reached[tip] = true;
  1176           LargeCost pi_tip = _pi[tip];
  1177           int a, last_out = _first_out[tip+1];
  1178           for (a = _next_out[tip]; a != last_out; ++a) {
  1179             if (_res_cap[a] > 0) {
  1180               v = _target[a];
  1181               if (_cost[a] + pi_tip - _pi[v] < 0) {
  1182                 if (!reached[v]) {
  1183                   // A new node is reached
  1184                   reached[v] = true;
  1185                   pred[v] = tip;
  1186                   _next_out[tip] = a;
  1187                   tip = v;
  1188                   a = _next_out[tip];
  1189                   last_out = _first_out[tip+1];
  1190                   break;
  1191                 }
  1192                 else if (!processed[v]) {
  1193                   // A cycle is found
  1194                   ++cycle_cnt;
  1195                   _next_out[tip] = a;
  1196 
  1197                   // Find the minimum residual capacity along the cycle
  1198                   Value d, delta = _res_cap[a];
  1199                   int u, delta_node = tip;
  1200                   for (u = tip; u != v; ) {
  1201                     u = pred[u];
  1202                     d = _res_cap[_next_out[u]];
  1203                     if (d <= delta) {
  1204                       delta = d;
  1205                       delta_node = u;
  1206                     }
  1207                   }
  1208 
  1209                   // Augment along the cycle
  1210                   _res_cap[a] -= delta;
  1211                   _res_cap[_reverse[a]] += delta;
  1212                   for (u = tip; u != v; ) {
  1213                     u = pred[u];
  1214                     int ca = _next_out[u];
  1215                     _res_cap[ca] -= delta;
  1216                     _res_cap[_reverse[ca]] += delta;
  1217                   }
  1218 
  1219                   // Check the maximum number of cycle canceling
  1220                   if (cycle_cnt >= MAX_CYCLE_CANCEL) {
  1221                     return false;
  1222                   }
  1223 
  1224                   // Roll back search to delta_node
  1225                   if (delta_node != tip) {
  1226                     for (u = tip; u != delta_node; u = pred[u]) {
  1227                       reached[u] = false;
  1228                     }
  1229                     tip = delta_node;
  1230                     a = _next_out[tip] + 1;
  1231                     last_out = _first_out[tip+1];
  1232                     break;
  1233                   }
  1234                 }
  1235               }
  1236             }
  1237           }
  1238 
  1239           // Step back to the previous node
  1240           if (a == last_out) {
  1241             processed[tip] = true;
  1242             stack[++stack_top] = tip;
  1243             tip = pred[tip];
  1244             if (tip < 0) {
  1245               // Finish DFS from the current start node
  1246               break;
  1247             }
  1248             ++_next_out[tip];
  1249           }
  1250         }
  1251 
  1252       }
  1253 
  1254       return (cycle_cnt == 0);
  1255     }
  1256 
  1257     // Global potential update heuristic
  1258     void globalUpdate() {
  1259       const int bucket_end = _root + 1;
  1260 
  1261       // Initialize buckets
  1262       for (int r = 0; r != _max_rank; ++r) {
  1263         _buckets[r] = bucket_end;
  1264       }
  1265       Value total_excess = 0;
  1266       int b0 = bucket_end;
  1267       for (int i = 0; i != _res_node_num; ++i) {
  1268         if (_excess[i] < 0) {
  1269           _rank[i] = 0;
  1270           _bucket_next[i] = b0;
  1271           _bucket_prev[b0] = i;
  1272           b0 = i;
  1273         } else {
  1274           total_excess += _excess[i];
  1275           _rank[i] = _max_rank;
  1276         }
  1277       }
  1278       if (total_excess == 0) return;
  1279       _buckets[0] = b0;
  1280 
  1281       // Search the buckets
  1282       int r = 0;
  1283       for ( ; r != _max_rank; ++r) {
  1284         while (_buckets[r] != bucket_end) {
  1285           // Remove the first node from the current bucket
  1286           int u = _buckets[r];
  1287           _buckets[r] = _bucket_next[u];
  1288 
  1289           // Search the incoming arcs of u
  1290           LargeCost pi_u = _pi[u];
  1291           int last_out = _first_out[u+1];
  1292           for (int a = _first_out[u]; a != last_out; ++a) {
  1293             int ra = _reverse[a];
  1294             if (_res_cap[ra] > 0) {
  1295               int v = _source[ra];
  1296               int old_rank_v = _rank[v];
  1297               if (r < old_rank_v) {
  1298                 // Compute the new rank of v
  1299                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1300                 int new_rank_v = old_rank_v;
  1301                 if (nrc < LargeCost(_max_rank)) {
  1302                   new_rank_v = r + 1 + static_cast<int>(nrc);
  1303                 }
  1304 
  1305                 // Change the rank of v
  1306                 if (new_rank_v < old_rank_v) {
  1307                   _rank[v] = new_rank_v;
  1308                   _next_out[v] = _first_out[v];
  1309 
  1310                   // Remove v from its old bucket
  1311                   if (old_rank_v < _max_rank) {
  1312                     if (_buckets[old_rank_v] == v) {
  1313                       _buckets[old_rank_v] = _bucket_next[v];
  1314                     } else {
  1315                       int pv = _bucket_prev[v], nv = _bucket_next[v];
  1316                       _bucket_next[pv] = nv;
  1317                       _bucket_prev[nv] = pv;
  1318                     }
  1319                   }
  1320 
  1321                   // Insert v into its new bucket
  1322                   int nv = _buckets[new_rank_v];
  1323                   _bucket_next[v] = nv;
  1324                   _bucket_prev[nv] = v;
  1325                   _buckets[new_rank_v] = v;
  1326                 }
  1327               }
  1328             }
  1329           }
  1330 
  1331           // Finish search if there are no more active nodes
  1332           if (_excess[u] > 0) {
  1333             total_excess -= _excess[u];
  1334             if (total_excess <= 0) break;
  1335           }
  1336         }
  1337         if (total_excess <= 0) break;
  1338       }
  1339 
  1340       // Relabel nodes
  1341       for (int u = 0; u != _res_node_num; ++u) {
  1342         int k = std::min(_rank[u], r);
  1343         if (k > 0) {
  1344           _pi[u] -= _epsilon * k;
  1345           _next_out[u] = _first_out[u];
  1346         }
  1347       }
  1348     }
  1349 
  1350     /// Execute the algorithm performing augment and relabel operations
  1351     void startAugment(int max_length) {
  1352       // Paramters for heuristics
  1353       const int PRICE_REFINEMENT_LIMIT = 2;
  1354       const double GLOBAL_UPDATE_FACTOR = 1.0;
  1355       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1356         (_res_node_num + _sup_node_num * _sup_node_num));
  1357       int next_global_update_limit = global_update_skip;
  1358 
  1359       // Perform cost scaling phases
  1360       IntVector path;
  1361       BoolVector path_arc(_res_arc_num, false);
  1362       int relabel_cnt = 0;
  1363       int eps_phase_cnt = 0;
  1364       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1365                                         1 : _epsilon / _alpha )
  1366       {
  1367         ++eps_phase_cnt;
  1368 
  1369         // Price refinement heuristic
  1370         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1371           if (priceRefinement()) continue;
  1372         }
  1373 
  1374         // Initialize current phase
  1375         initPhase();
  1376 
  1377         // Perform partial augment and relabel operations
  1378         while (true) {
  1379           // Select an active node (FIFO selection)
  1380           while (_active_nodes.size() > 0 &&
  1381                  _excess[_active_nodes.front()] <= 0) {
  1382             _active_nodes.pop_front();
  1383           }
  1384           if (_active_nodes.size() == 0) break;
  1385           int start = _active_nodes.front();
  1386 
  1387           // Find an augmenting path from the start node
  1388           int tip = start;
  1389           while (int(path.size()) < max_length && _excess[tip] >= 0) {
  1390             int u;
  1391             LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
  1392             LargeCost pi_tip = _pi[tip];
  1393             int last_out = _first_out[tip+1];
  1394             for (int a = _next_out[tip]; a != last_out; ++a) {
  1395               if (_res_cap[a] > 0) {
  1396                 u = _target[a];
  1397                 rc = _cost[a] + pi_tip - _pi[u];
  1398                 if (rc < 0) {
  1399                   path.push_back(a);
  1400                   _next_out[tip] = a;
  1401                   if (path_arc[a]) {
  1402                     goto augment;   // a cycle is found, stop path search
  1403                   }
  1404                   tip = u;
  1405                   path_arc[a] = true;
  1406                   goto next_step;
  1407                 }
  1408                 else if (rc < min_red_cost) {
  1409                   min_red_cost = rc;
  1410                 }
  1411               }
  1412             }
  1413 
  1414             // Relabel tip node
  1415             if (tip != start) {
  1416               int ra = _reverse[path.back()];
  1417               min_red_cost =
  1418                 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
  1419             }
  1420             last_out = _next_out[tip];
  1421             for (int a = _first_out[tip]; a != last_out; ++a) {
  1422               if (_res_cap[a] > 0) {
  1423                 rc = _cost[a] + pi_tip - _pi[_target[a]];
  1424                 if (rc < min_red_cost) {
  1425                   min_red_cost = rc;
  1426                 }
  1427               }
  1428             }
  1429             _pi[tip] -= min_red_cost + _epsilon;
  1430             _next_out[tip] = _first_out[tip];
  1431             ++relabel_cnt;
  1432 
  1433             // Step back
  1434             if (tip != start) {
  1435               int pa = path.back();
  1436               path_arc[pa] = false;
  1437               tip = _source[pa];
  1438               path.pop_back();
  1439             }
  1440 
  1441           next_step: ;
  1442           }
  1443 
  1444           // Augment along the found path (as much flow as possible)
  1445         augment:
  1446           Value delta;
  1447           int pa, u, v = start;
  1448           for (int i = 0; i != int(path.size()); ++i) {
  1449             pa = path[i];
  1450             u = v;
  1451             v = _target[pa];
  1452             path_arc[pa] = false;
  1453             delta = std::min(_res_cap[pa], _excess[u]);
  1454             _res_cap[pa] -= delta;
  1455             _res_cap[_reverse[pa]] += delta;
  1456             _excess[u] -= delta;
  1457             _excess[v] += delta;
  1458             if (_excess[v] > 0 && _excess[v] <= delta) {
  1459               _active_nodes.push_back(v);
  1460             }
  1461           }
  1462           path.clear();
  1463 
  1464           // Global update heuristic
  1465           if (relabel_cnt >= next_global_update_limit) {
  1466             globalUpdate();
  1467             next_global_update_limit += global_update_skip;
  1468           }
  1469         }
  1470 
  1471       }
  1472 
  1473     }
  1474 
  1475     /// Execute the algorithm performing push and relabel operations
  1476     void startPush() {
  1477       // Paramters for heuristics
  1478       const int PRICE_REFINEMENT_LIMIT = 2;
  1479       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1480 
  1481       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1482         (_res_node_num + _sup_node_num * _sup_node_num));
  1483       int next_global_update_limit = global_update_skip;
  1484 
  1485       // Perform cost scaling phases
  1486       BoolVector hyper(_res_node_num, false);
  1487       LargeCostVector hyper_cost(_res_node_num);
  1488       int relabel_cnt = 0;
  1489       int eps_phase_cnt = 0;
  1490       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1491                                         1 : _epsilon / _alpha )
  1492       {
  1493         ++eps_phase_cnt;
  1494 
  1495         // Price refinement heuristic
  1496         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1497           if (priceRefinement()) continue;
  1498         }
  1499 
  1500         // Initialize current phase
  1501         initPhase();
  1502 
  1503         // Perform push and relabel operations
  1504         while (_active_nodes.size() > 0) {
  1505           LargeCost min_red_cost, rc, pi_n;
  1506           Value delta;
  1507           int n, t, a, last_out = _res_arc_num;
  1508 
  1509         next_node:
  1510           // Select an active node (FIFO selection)
  1511           n = _active_nodes.front();
  1512           last_out = _first_out[n+1];
  1513           pi_n = _pi[n];
  1514 
  1515           // Perform push operations if there are admissible arcs
  1516           if (_excess[n] > 0) {
  1517             for (a = _next_out[n]; a != last_out; ++a) {
  1518               if (_res_cap[a] > 0 &&
  1519                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1520                 delta = std::min(_res_cap[a], _excess[n]);
  1521                 t = _target[a];
  1522 
  1523                 // Push-look-ahead heuristic
  1524                 Value ahead = -_excess[t];
  1525                 int last_out_t = _first_out[t+1];
  1526                 LargeCost pi_t = _pi[t];
  1527                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1528                   if (_res_cap[ta] > 0 &&
  1529                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1530                     ahead += _res_cap[ta];
  1531                   if (ahead >= delta) break;
  1532                 }
  1533                 if (ahead < 0) ahead = 0;
  1534 
  1535                 // Push flow along the arc
  1536                 if (ahead < delta && !hyper[t]) {
  1537                   _res_cap[a] -= ahead;
  1538                   _res_cap[_reverse[a]] += ahead;
  1539                   _excess[n] -= ahead;
  1540                   _excess[t] += ahead;
  1541                   _active_nodes.push_front(t);
  1542                   hyper[t] = true;
  1543                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1544                   _next_out[n] = a;
  1545                   goto next_node;
  1546                 } else {
  1547                   _res_cap[a] -= delta;
  1548                   _res_cap[_reverse[a]] += delta;
  1549                   _excess[n] -= delta;
  1550                   _excess[t] += delta;
  1551                   if (_excess[t] > 0 && _excess[t] <= delta)
  1552                     _active_nodes.push_back(t);
  1553                 }
  1554 
  1555                 if (_excess[n] == 0) {
  1556                   _next_out[n] = a;
  1557                   goto remove_nodes;
  1558                 }
  1559               }
  1560             }
  1561             _next_out[n] = a;
  1562           }
  1563 
  1564           // Relabel the node if it is still active (or hyper)
  1565           if (_excess[n] > 0 || hyper[n]) {
  1566              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1567                std::numeric_limits<LargeCost>::max();
  1568             for (int a = _first_out[n]; a != last_out; ++a) {
  1569               if (_res_cap[a] > 0) {
  1570                 rc = _cost[a] + pi_n - _pi[_target[a]];
  1571                 if (rc < min_red_cost) {
  1572                   min_red_cost = rc;
  1573                 }
  1574               }
  1575             }
  1576             _pi[n] -= min_red_cost + _epsilon;
  1577             _next_out[n] = _first_out[n];
  1578             hyper[n] = false;
  1579             ++relabel_cnt;
  1580           }
  1581 
  1582           // Remove nodes that are not active nor hyper
  1583         remove_nodes:
  1584           while ( _active_nodes.size() > 0 &&
  1585                   _excess[_active_nodes.front()] <= 0 &&
  1586                   !hyper[_active_nodes.front()] ) {
  1587             _active_nodes.pop_front();
  1588           }
  1589 
  1590           // Global update heuristic
  1591           if (relabel_cnt >= next_global_update_limit) {
  1592             globalUpdate();
  1593             for (int u = 0; u != _res_node_num; ++u)
  1594               hyper[u] = false;
  1595             next_global_update_limit += global_update_skip;
  1596           }
  1597         }
  1598       }
  1599     }
  1600 
  1601   }; //class CostScaling
  1602 
  1603   ///@}
  1604 
  1605 } //namespace lemon
  1606 
  1607 #endif //LEMON_COST_SCALING_H