3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_COST_SCALING_H
20 #define LEMON_COST_SCALING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
30 #include <lemon/core.h>
31 #include <lemon/maps.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/circulation.h>
35 #include <lemon/bellman_ford.h>
39 /// \brief Default traits class of CostScaling algorithm.
41 /// Default traits class of CostScaling algorithm.
42 /// \tparam GR Digraph type.
43 /// \tparam V The number type used for flow amounts, capacity bounds
44 /// and supply values. By default it is \c int.
45 /// \tparam C The number type used for costs and potentials.
46 /// By default it is the same as \c V.
48 template <typename GR, typename V = int, typename C = V>
50 template < typename GR, typename V = int, typename C = V,
51 bool integer = std::numeric_limits<C>::is_integer >
53 struct CostScalingDefaultTraits
55 /// The type of the digraph
57 /// The type of the flow amounts, capacity bounds and supply values
59 /// The type of the arc costs
62 /// \brief The large cost type used for internal computations
64 /// The large cost type used for internal computations.
65 /// It is \c long \c long if the \c Cost type is integer,
66 /// otherwise it is \c double.
67 /// \c Cost must be convertible to \c LargeCost.
68 typedef double LargeCost;
71 // Default traits class for integer cost types
72 template <typename GR, typename V, typename C>
73 struct CostScalingDefaultTraits<GR, V, C, true>
78 #ifdef LEMON_HAVE_LONG_LONG
79 typedef long long LargeCost;
81 typedef long LargeCost;
86 /// \addtogroup min_cost_flow_algs
89 /// \brief Implementation of the Cost Scaling algorithm for
90 /// finding a \ref min_cost_flow "minimum cost flow".
92 /// \ref CostScaling implements a cost scaling algorithm that performs
93 /// push/augment and relabel operations for finding a \ref min_cost_flow
94 /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 /// It is a highly efficient primal-dual solution method, which
97 /// can be viewed as the generalization of the \ref Preflow
98 /// "preflow push-relabel" algorithm for the maximum flow problem.
100 /// Most of the parameters of the problem (except for the digraph)
101 /// can be given using separate functions, and the algorithm can be
102 /// executed using the \ref run() function. If some parameters are not
103 /// specified, then default values will be used.
105 /// \tparam GR The digraph type the algorithm runs on.
106 /// \tparam V The number type used for flow amounts, capacity bounds
107 /// and supply values in the algorithm. By default, it is \c int.
108 /// \tparam C The number type used for costs and potentials in the
109 /// algorithm. By default, it is the same as \c V.
110 /// \tparam TR The traits class that defines various types used by the
111 /// algorithm. By default, it is \ref CostScalingDefaultTraits
112 /// "CostScalingDefaultTraits<GR, V, C>".
113 /// In most cases, this parameter should not be set directly,
114 /// consider to use the named template parameters instead.
116 /// \warning Both number types must be signed and all input data must
118 /// \warning This algorithm does not support negative costs for such
119 /// arcs that have infinite upper bound.
121 /// \note %CostScaling provides three different internal methods,
122 /// from which the most efficient one is used by default.
123 /// For more information, see \ref Method.
125 template <typename GR, typename V, typename C, typename TR>
127 template < typename GR, typename V = int, typename C = V,
128 typename TR = CostScalingDefaultTraits<GR, V, C> >
134 /// The type of the digraph
135 typedef typename TR::Digraph Digraph;
136 /// The type of the flow amounts, capacity bounds and supply values
137 typedef typename TR::Value Value;
138 /// The type of the arc costs
139 typedef typename TR::Cost Cost;
141 /// \brief The large cost type
143 /// The large cost type used for internal computations.
144 /// By default, it is \c long \c long if the \c Cost type is integer,
145 /// otherwise it is \c double.
146 typedef typename TR::LargeCost LargeCost;
148 /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
153 /// \brief Problem type constants for the \c run() function.
155 /// Enum type containing the problem type constants that can be
156 /// returned by the \ref run() function of the algorithm.
158 /// The problem has no feasible solution (flow).
160 /// The problem has optimal solution (i.e. it is feasible and
161 /// bounded), and the algorithm has found optimal flow and node
162 /// potentials (primal and dual solutions).
164 /// The digraph contains an arc of negative cost and infinite
165 /// upper bound. It means that the objective function is unbounded
166 /// on that arc, however, note that it could actually be bounded
167 /// over the feasible flows, but this algroithm cannot handle
172 /// \brief Constants for selecting the internal method.
174 /// Enum type containing constants for selecting the internal method
175 /// for the \ref run() function.
177 /// \ref CostScaling provides three internal methods that differ mainly
178 /// in their base operations, which are used in conjunction with the
179 /// relabel operation.
180 /// By default, the so called \ref PARTIAL_AUGMENT
181 /// "Partial Augment-Relabel" method is used, which proved to be
182 /// the most efficient and the most robust on various test inputs.
183 /// However, the other methods can be selected using the \ref run()
184 /// function with the proper parameter.
186 /// Local push operations are used, i.e. flow is moved only on one
187 /// admissible arc at once.
189 /// Augment operations are used, i.e. flow is moved on admissible
190 /// paths from a node with excess to a node with deficit.
192 /// Partial augment operations are used, i.e. flow is moved on
193 /// admissible paths started from a node with excess, but the
194 /// lengths of these paths are limited. This method can be viewed
195 /// as a combined version of the previous two operations.
201 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
203 typedef std::vector<int> IntVector;
204 typedef std::vector<Value> ValueVector;
205 typedef std::vector<Cost> CostVector;
206 typedef std::vector<LargeCost> LargeCostVector;
207 typedef std::vector<char> BoolVector;
208 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
212 template <typename KT, typename VT>
213 class StaticVectorMap {
218 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
220 const Value& operator[](const Key& key) const {
221 return _v[StaticDigraph::id(key)];
224 Value& operator[](const Key& key) {
225 return _v[StaticDigraph::id(key)];
228 void set(const Key& key, const Value& val) {
229 _v[StaticDigraph::id(key)] = val;
233 std::vector<Value>& _v;
236 typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
237 typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
241 // Data related to the underlying digraph
249 // Parameters of the problem
254 // Data structures for storing the digraph
258 IntVector _first_out;
270 ValueVector _res_cap;
271 LargeCostVector _cost;
275 std::deque<int> _active_nodes;
282 IntVector _bucket_next;
283 IntVector _bucket_prev;
287 // Data for a StaticDigraph structure
288 typedef std::pair<int, int> IntPair;
290 std::vector<IntPair> _arc_vec;
291 std::vector<LargeCost> _cost_vec;
292 LargeCostArcMap _cost_map;
293 LargeCostNodeMap _pi_map;
297 /// \brief Constant for infinite upper bounds (capacities).
299 /// Constant for infinite upper bounds (capacities).
300 /// It is \c std::numeric_limits<Value>::infinity() if available,
301 /// \c std::numeric_limits<Value>::max() otherwise.
306 /// \name Named Template Parameters
309 template <typename T>
310 struct SetLargeCostTraits : public Traits {
314 /// \brief \ref named-templ-param "Named parameter" for setting
315 /// \c LargeCost type.
317 /// \ref named-templ-param "Named parameter" for setting \c LargeCost
318 /// type, which is used for internal computations in the algorithm.
319 /// \c Cost must be convertible to \c LargeCost.
320 template <typename T>
322 : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
323 typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
330 /// \brief Constructor.
332 /// The constructor of the class.
334 /// \param graph The digraph the algorithm runs on.
335 CostScaling(const GR& graph) :
336 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
337 _cost_map(_cost_vec), _pi_map(_pi),
338 INF(std::numeric_limits<Value>::has_infinity ?
339 std::numeric_limits<Value>::infinity() :
340 std::numeric_limits<Value>::max())
342 // Check the number types
343 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
344 "The flow type of CostScaling must be signed");
345 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
346 "The cost type of CostScaling must be signed");
348 // Reset data structures
353 /// The parameters of the algorithm can be specified using these
358 /// \brief Set the lower bounds on the arcs.
360 /// This function sets the lower bounds on the arcs.
361 /// If it is not used before calling \ref run(), the lower bounds
362 /// will be set to zero on all arcs.
364 /// \param map An arc map storing the lower bounds.
365 /// Its \c Value type must be convertible to the \c Value type
366 /// of the algorithm.
368 /// \return <tt>(*this)</tt>
369 template <typename LowerMap>
370 CostScaling& lowerMap(const LowerMap& map) {
372 for (ArcIt a(_graph); a != INVALID; ++a) {
373 _lower[_arc_idf[a]] = map[a];
374 _lower[_arc_idb[a]] = map[a];
379 /// \brief Set the upper bounds (capacities) on the arcs.
381 /// This function sets the upper bounds (capacities) on the arcs.
382 /// If it is not used before calling \ref run(), the upper bounds
383 /// will be set to \ref INF on all arcs (i.e. the flow value will be
384 /// unbounded from above).
386 /// \param map An arc map storing the upper bounds.
387 /// Its \c Value type must be convertible to the \c Value type
388 /// of the algorithm.
390 /// \return <tt>(*this)</tt>
391 template<typename UpperMap>
392 CostScaling& upperMap(const UpperMap& map) {
393 for (ArcIt a(_graph); a != INVALID; ++a) {
394 _upper[_arc_idf[a]] = map[a];
399 /// \brief Set the costs of the arcs.
401 /// This function sets the costs of the arcs.
402 /// If it is not used before calling \ref run(), the costs
403 /// will be set to \c 1 on all arcs.
405 /// \param map An arc map storing the costs.
406 /// Its \c Value type must be convertible to the \c Cost type
407 /// of the algorithm.
409 /// \return <tt>(*this)</tt>
410 template<typename CostMap>
411 CostScaling& costMap(const CostMap& map) {
412 for (ArcIt a(_graph); a != INVALID; ++a) {
413 _scost[_arc_idf[a]] = map[a];
414 _scost[_arc_idb[a]] = -map[a];
419 /// \brief Set the supply values of the nodes.
421 /// This function sets the supply values of the nodes.
422 /// If neither this function nor \ref stSupply() is used before
423 /// calling \ref run(), the supply of each node will be set to zero.
425 /// \param map A node map storing the supply values.
426 /// Its \c Value type must be convertible to the \c Value type
427 /// of the algorithm.
429 /// \return <tt>(*this)</tt>
430 template<typename SupplyMap>
431 CostScaling& supplyMap(const SupplyMap& map) {
432 for (NodeIt n(_graph); n != INVALID; ++n) {
433 _supply[_node_id[n]] = map[n];
438 /// \brief Set single source and target nodes and a supply value.
440 /// This function sets a single source node and a single target node
441 /// and the required flow value.
442 /// If neither this function nor \ref supplyMap() is used before
443 /// calling \ref run(), the supply of each node will be set to zero.
445 /// Using this function has the same effect as using \ref supplyMap()
446 /// with such a map in which \c k is assigned to \c s, \c -k is
447 /// assigned to \c t and all other nodes have zero supply value.
449 /// \param s The source node.
450 /// \param t The target node.
451 /// \param k The required amount of flow from node \c s to node \c t
452 /// (i.e. the supply of \c s and the demand of \c t).
454 /// \return <tt>(*this)</tt>
455 CostScaling& stSupply(const Node& s, const Node& t, Value k) {
456 for (int i = 0; i != _res_node_num; ++i) {
459 _supply[_node_id[s]] = k;
460 _supply[_node_id[t]] = -k;
466 /// \name Execution control
467 /// The algorithm can be executed using \ref run().
471 /// \brief Run the algorithm.
473 /// This function runs the algorithm.
474 /// The paramters can be specified using functions \ref lowerMap(),
475 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
478 /// CostScaling<ListDigraph> cs(graph);
479 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
480 /// .supplyMap(sup).run();
483 /// This function can be called more than once. All the given parameters
484 /// are kept for the next call, unless \ref resetParams() or \ref reset()
485 /// is used, thus only the modified parameters have to be set again.
486 /// If the underlying digraph was also modified after the construction
487 /// of the class (or the last \ref reset() call), then the \ref reset()
488 /// function must be called.
490 /// \param method The internal method that will be used in the
491 /// algorithm. For more information, see \ref Method.
492 /// \param factor The cost scaling factor. It must be larger than one.
494 /// \return \c INFEASIBLE if no feasible flow exists,
495 /// \n \c OPTIMAL if the problem has optimal solution
496 /// (i.e. it is feasible and bounded), and the algorithm has found
497 /// optimal flow and node potentials (primal and dual solutions),
498 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
499 /// and infinite upper bound. It means that the objective function
500 /// is unbounded on that arc, however, note that it could actually be
501 /// bounded over the feasible flows, but this algroithm cannot handle
504 /// \see ProblemType, Method
505 /// \see resetParams(), reset()
506 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
508 ProblemType pt = init();
509 if (pt != OPTIMAL) return pt;
514 /// \brief Reset all the parameters that have been given before.
516 /// This function resets all the paramaters that have been given
517 /// before using functions \ref lowerMap(), \ref upperMap(),
518 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
520 /// It is useful for multiple \ref run() calls. Basically, all the given
521 /// parameters are kept for the next \ref run() call, unless
522 /// \ref resetParams() or \ref reset() is used.
523 /// If the underlying digraph was also modified after the construction
524 /// of the class or the last \ref reset() call, then the \ref reset()
525 /// function must be used, otherwise \ref resetParams() is sufficient.
529 /// CostScaling<ListDigraph> cs(graph);
532 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
533 /// .supplyMap(sup).run();
535 /// // Run again with modified cost map (resetParams() is not called,
536 /// // so only the cost map have to be set again)
538 /// cs.costMap(cost).run();
540 /// // Run again from scratch using resetParams()
541 /// // (the lower bounds will be set to zero on all arcs)
542 /// cs.resetParams();
543 /// cs.upperMap(capacity).costMap(cost)
544 /// .supplyMap(sup).run();
547 /// \return <tt>(*this)</tt>
549 /// \see reset(), run()
550 CostScaling& resetParams() {
551 for (int i = 0; i != _res_node_num; ++i) {
554 int limit = _first_out[_root];
555 for (int j = 0; j != limit; ++j) {
558 _scost[j] = _forward[j] ? 1 : -1;
560 for (int j = limit; j != _res_arc_num; ++j) {
564 _scost[_reverse[j]] = 0;
570 /// \brief Reset all the parameters that have been given before.
572 /// This function resets all the paramaters that have been given
573 /// before using functions \ref lowerMap(), \ref upperMap(),
574 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
576 /// It is useful for multiple run() calls. If this function is not
577 /// used, all the parameters given before are kept for the next
579 /// However, the underlying digraph must not be modified after this
580 /// class have been constructed, since it copies and extends the graph.
581 /// \return <tt>(*this)</tt>
582 CostScaling& reset() {
584 _node_num = countNodes(_graph);
585 _arc_num = countArcs(_graph);
586 _res_node_num = _node_num + 1;
587 _res_arc_num = 2 * (_arc_num + _node_num);
590 _first_out.resize(_res_node_num + 1);
591 _forward.resize(_res_arc_num);
592 _source.resize(_res_arc_num);
593 _target.resize(_res_arc_num);
594 _reverse.resize(_res_arc_num);
596 _lower.resize(_res_arc_num);
597 _upper.resize(_res_arc_num);
598 _scost.resize(_res_arc_num);
599 _supply.resize(_res_node_num);
601 _res_cap.resize(_res_arc_num);
602 _cost.resize(_res_arc_num);
603 _pi.resize(_res_node_num);
604 _excess.resize(_res_node_num);
605 _next_out.resize(_res_node_num);
607 _arc_vec.reserve(_res_arc_num);
608 _cost_vec.reserve(_res_arc_num);
611 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
612 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
616 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
618 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
622 _target[j] = _node_id[_graph.runningNode(a)];
624 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
628 _target[j] = _node_id[_graph.runningNode(a)];
641 _first_out[_res_node_num] = k;
642 for (ArcIt a(_graph); a != INVALID; ++a) {
643 int fi = _arc_idf[a];
644 int bi = _arc_idb[a];
656 /// \name Query Functions
657 /// The results of the algorithm can be obtained using these
659 /// The \ref run() function must be called before using them.
663 /// \brief Return the total cost of the found flow.
665 /// This function returns the total cost of the found flow.
666 /// Its complexity is O(e).
668 /// \note The return type of the function can be specified as a
669 /// template parameter. For example,
671 /// cs.totalCost<double>();
673 /// It is useful if the total cost cannot be stored in the \c Cost
674 /// type of the algorithm, which is the default return type of the
677 /// \pre \ref run() must be called before using this function.
678 template <typename Number>
679 Number totalCost() const {
681 for (ArcIt a(_graph); a != INVALID; ++a) {
683 c += static_cast<Number>(_res_cap[i]) *
684 (-static_cast<Number>(_scost[i]));
690 Cost totalCost() const {
691 return totalCost<Cost>();
695 /// \brief Return the flow on the given arc.
697 /// This function returns the flow on the given arc.
699 /// \pre \ref run() must be called before using this function.
700 Value flow(const Arc& a) const {
701 return _res_cap[_arc_idb[a]];
704 /// \brief Return the flow map (the primal solution).
706 /// This function copies the flow value on each arc into the given
707 /// map. The \c Value type of the algorithm must be convertible to
708 /// the \c Value type of the map.
710 /// \pre \ref run() must be called before using this function.
711 template <typename FlowMap>
712 void flowMap(FlowMap &map) const {
713 for (ArcIt a(_graph); a != INVALID; ++a) {
714 map.set(a, _res_cap[_arc_idb[a]]);
718 /// \brief Return the potential (dual value) of the given node.
720 /// This function returns the potential (dual value) of the
723 /// \pre \ref run() must be called before using this function.
724 Cost potential(const Node& n) const {
725 return static_cast<Cost>(_pi[_node_id[n]]);
728 /// \brief Return the potential map (the dual solution).
730 /// This function copies the potential (dual value) of each node
731 /// into the given map.
732 /// The \c Cost type of the algorithm must be convertible to the
733 /// \c Value type of the map.
735 /// \pre \ref run() must be called before using this function.
736 template <typename PotentialMap>
737 void potentialMap(PotentialMap &map) const {
738 for (NodeIt n(_graph); n != INVALID; ++n) {
739 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
747 // Initialize the algorithm
749 if (_res_node_num <= 1) return INFEASIBLE;
751 // Check the sum of supply values
753 for (int i = 0; i != _root; ++i) {
754 _sum_supply += _supply[i];
756 if (_sum_supply > 0) return INFEASIBLE;
759 // Initialize vectors
760 for (int i = 0; i != _res_node_num; ++i) {
762 _excess[i] = _supply[i];
765 // Remove infinite upper bounds and check negative arcs
766 const Value MAX = std::numeric_limits<Value>::max();
769 for (int i = 0; i != _root; ++i) {
770 last_out = _first_out[i+1];
771 for (int j = _first_out[i]; j != last_out; ++j) {
773 Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
774 if (c >= MAX) return UNBOUNDED;
776 _excess[_target[j]] += c;
781 for (int i = 0; i != _root; ++i) {
782 last_out = _first_out[i+1];
783 for (int j = _first_out[i]; j != last_out; ++j) {
784 if (_forward[j] && _scost[j] < 0) {
786 if (c >= MAX) return UNBOUNDED;
788 _excess[_target[j]] += c;
793 Value ex, max_cap = 0;
794 for (int i = 0; i != _res_node_num; ++i) {
797 if (ex < 0) max_cap -= ex;
799 for (int j = 0; j != _res_arc_num; ++j) {
800 if (_upper[j] >= MAX) _upper[j] = max_cap;
803 // Initialize the large cost vector and the epsilon parameter
806 for (int i = 0; i != _root; ++i) {
807 last_out = _first_out[i+1];
808 for (int j = _first_out[i]; j != last_out; ++j) {
809 lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
811 if (lc > _epsilon) _epsilon = lc;
816 // Initialize maps for Circulation and remove non-zero lower bounds
817 ConstMap<Arc, Value> low(0);
818 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
819 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
820 ValueArcMap cap(_graph), flow(_graph);
821 ValueNodeMap sup(_graph);
822 for (NodeIt n(_graph); n != INVALID; ++n) {
823 sup[n] = _supply[_node_id[n]];
826 for (ArcIt a(_graph); a != INVALID; ++a) {
829 cap[a] = _upper[j] - c;
830 sup[_graph.source(a)] -= c;
831 sup[_graph.target(a)] += c;
834 for (ArcIt a(_graph); a != INVALID; ++a) {
835 cap[a] = _upper[_arc_idf[a]];
840 for (NodeIt n(_graph); n != INVALID; ++n) {
841 if (sup[n] > 0) ++_sup_node_num;
844 // Find a feasible flow using Circulation
845 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
846 circ(_graph, low, cap, sup);
847 if (!circ.flowMap(flow).run()) return INFEASIBLE;
849 // Set residual capacities and handle GEQ supply type
850 if (_sum_supply < 0) {
851 for (ArcIt a(_graph); a != INVALID; ++a) {
853 _res_cap[_arc_idf[a]] = cap[a] - fa;
854 _res_cap[_arc_idb[a]] = fa;
855 sup[_graph.source(a)] -= fa;
856 sup[_graph.target(a)] += fa;
858 for (NodeIt n(_graph); n != INVALID; ++n) {
859 _excess[_node_id[n]] = sup[n];
861 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
863 int ra = _reverse[a];
864 _res_cap[a] = -_sum_supply + 1;
865 _res_cap[ra] = -_excess[u];
871 for (ArcIt a(_graph); a != INVALID; ++a) {
873 _res_cap[_arc_idf[a]] = cap[a] - fa;
874 _res_cap[_arc_idb[a]] = fa;
876 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
877 int ra = _reverse[a];
888 // Execute the algorithm and transform the results
889 void start(Method method) {
890 // Maximum path length for partial augment
891 const int MAX_PATH_LENGTH = 4;
893 // Initialize data structures for buckets
894 _max_rank = _alpha * _res_node_num;
895 _buckets.resize(_max_rank);
896 _bucket_next.resize(_res_node_num + 1);
897 _bucket_prev.resize(_res_node_num + 1);
898 _rank.resize(_res_node_num + 1);
900 // Execute the algorithm
908 case PARTIAL_AUGMENT:
909 startAugment(MAX_PATH_LENGTH);
913 // Compute node potentials for the original costs
916 for (int j = 0; j != _res_arc_num; ++j) {
917 if (_res_cap[j] > 0) {
918 _arc_vec.push_back(IntPair(_source[j], _target[j]));
919 _cost_vec.push_back(_scost[j]);
922 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
924 typename BellmanFord<StaticDigraph, LargeCostArcMap>
925 ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
930 // Handle non-zero lower bounds
932 int limit = _first_out[_root];
933 for (int j = 0; j != limit; ++j) {
934 if (!_forward[j]) _res_cap[j] += _lower[j];
939 // Initialize a cost scaling phase
941 // Saturate arcs not satisfying the optimality condition
942 for (int u = 0; u != _res_node_num; ++u) {
943 int last_out = _first_out[u+1];
944 LargeCost pi_u = _pi[u];
945 for (int a = _first_out[u]; a != last_out; ++a) {
947 if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
948 Value delta = _res_cap[a];
952 _res_cap[_reverse[a]] += delta;
957 // Find active nodes (i.e. nodes with positive excess)
958 for (int u = 0; u != _res_node_num; ++u) {
959 if (_excess[u] > 0) _active_nodes.push_back(u);
962 // Initialize the next arcs
963 for (int u = 0; u != _res_node_num; ++u) {
964 _next_out[u] = _first_out[u];
968 // Early termination heuristic
969 bool earlyTermination() {
970 const double EARLY_TERM_FACTOR = 3.0;
972 // Build a static residual graph
975 for (int j = 0; j != _res_arc_num; ++j) {
976 if (_res_cap[j] > 0) {
977 _arc_vec.push_back(IntPair(_source[j], _target[j]));
978 _cost_vec.push_back(_cost[j] + 1);
981 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
983 // Run Bellman-Ford algorithm to check if the current flow is optimal
984 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
987 int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
988 for (int i = 0; i < K && !done; ++i) {
989 done = bf.processNextWeakRound();
994 // Global potential update heuristic
995 void globalUpdate() {
996 int bucket_end = _root + 1;
998 // Initialize buckets
999 for (int r = 0; r != _max_rank; ++r) {
1000 _buckets[r] = bucket_end;
1002 Value total_excess = 0;
1003 for (int i = 0; i != _res_node_num; ++i) {
1004 if (_excess[i] < 0) {
1006 _bucket_next[i] = _buckets[0];
1007 _bucket_prev[_buckets[0]] = i;
1010 total_excess += _excess[i];
1011 _rank[i] = _max_rank;
1014 if (total_excess == 0) return;
1016 // Search the buckets
1018 for ( ; r != _max_rank; ++r) {
1019 while (_buckets[r] != bucket_end) {
1020 // Remove the first node from the current bucket
1021 int u = _buckets[r];
1022 _buckets[r] = _bucket_next[u];
1024 // Search the incomming arcs of u
1025 LargeCost pi_u = _pi[u];
1026 int last_out = _first_out[u+1];
1027 for (int a = _first_out[u]; a != last_out; ++a) {
1028 int ra = _reverse[a];
1029 if (_res_cap[ra] > 0) {
1030 int v = _source[ra];
1031 int old_rank_v = _rank[v];
1032 if (r < old_rank_v) {
1033 // Compute the new rank of v
1034 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1035 int new_rank_v = old_rank_v;
1036 if (nrc < LargeCost(_max_rank))
1037 new_rank_v = r + 1 + int(nrc);
1039 // Change the rank of v
1040 if (new_rank_v < old_rank_v) {
1041 _rank[v] = new_rank_v;
1042 _next_out[v] = _first_out[v];
1044 // Remove v from its old bucket
1045 if (old_rank_v < _max_rank) {
1046 if (_buckets[old_rank_v] == v) {
1047 _buckets[old_rank_v] = _bucket_next[v];
1049 _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1050 _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1054 // Insert v to its new bucket
1055 _bucket_next[v] = _buckets[new_rank_v];
1056 _bucket_prev[_buckets[new_rank_v]] = v;
1057 _buckets[new_rank_v] = v;
1063 // Finish search if there are no more active nodes
1064 if (_excess[u] > 0) {
1065 total_excess -= _excess[u];
1066 if (total_excess <= 0) break;
1069 if (total_excess <= 0) break;
1073 for (int u = 0; u != _res_node_num; ++u) {
1074 int k = std::min(_rank[u], r);
1076 _pi[u] -= _epsilon * k;
1077 _next_out[u] = _first_out[u];
1082 /// Execute the algorithm performing augment and relabel operations
1083 void startAugment(int max_length = std::numeric_limits<int>::max()) {
1084 // Paramters for heuristics
1085 const int EARLY_TERM_EPSILON_LIMIT = 1000;
1086 const double GLOBAL_UPDATE_FACTOR = 3.0;
1088 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1089 (_res_node_num + _sup_node_num * _sup_node_num));
1090 int next_update_limit = global_update_freq;
1092 int relabel_cnt = 0;
1094 // Perform cost scaling phases
1095 std::vector<int> path;
1096 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1097 1 : _epsilon / _alpha )
1099 // Early termination heuristic
1100 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1101 if (earlyTermination()) break;
1104 // Initialize current phase
1107 // Perform partial augment and relabel operations
1109 // Select an active node (FIFO selection)
1110 while (_active_nodes.size() > 0 &&
1111 _excess[_active_nodes.front()] <= 0) {
1112 _active_nodes.pop_front();
1114 if (_active_nodes.size() == 0) break;
1115 int start = _active_nodes.front();
1117 // Find an augmenting path from the start node
1120 while (_excess[tip] >= 0 && int(path.size()) < max_length) {
1122 LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1123 int last_out = _first_out[tip+1];
1124 for (int a = _next_out[tip]; a != last_out; ++a) {
1126 if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1135 min_red_cost = std::numeric_limits<LargeCost>::max();
1137 int ra = _reverse[path.back()];
1138 min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1140 for (int a = _first_out[tip]; a != last_out; ++a) {
1141 rc = _cost[a] + pi_tip - _pi[_target[a]];
1142 if (_res_cap[a] > 0 && rc < min_red_cost) {
1146 _pi[tip] -= min_red_cost + _epsilon;
1147 _next_out[tip] = _first_out[tip];
1152 tip = _source[path.back()];
1159 // Augment along the found path (as much flow as possible)
1161 int pa, u, v = start;
1162 for (int i = 0; i != int(path.size()); ++i) {
1166 delta = std::min(_res_cap[pa], _excess[u]);
1167 _res_cap[pa] -= delta;
1168 _res_cap[_reverse[pa]] += delta;
1169 _excess[u] -= delta;
1170 _excess[v] += delta;
1171 if (_excess[v] > 0 && _excess[v] <= delta)
1172 _active_nodes.push_back(v);
1175 // Global update heuristic
1176 if (relabel_cnt >= next_update_limit) {
1178 next_update_limit += global_update_freq;
1184 /// Execute the algorithm performing push and relabel operations
1186 // Paramters for heuristics
1187 const int EARLY_TERM_EPSILON_LIMIT = 1000;
1188 const double GLOBAL_UPDATE_FACTOR = 2.0;
1190 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1191 (_res_node_num + _sup_node_num * _sup_node_num));
1192 int next_update_limit = global_update_freq;
1194 int relabel_cnt = 0;
1196 // Perform cost scaling phases
1197 BoolVector hyper(_res_node_num, false);
1198 LargeCostVector hyper_cost(_res_node_num);
1199 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1200 1 : _epsilon / _alpha )
1202 // Early termination heuristic
1203 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1204 if (earlyTermination()) break;
1207 // Initialize current phase
1210 // Perform push and relabel operations
1211 while (_active_nodes.size() > 0) {
1212 LargeCost min_red_cost, rc, pi_n;
1214 int n, t, a, last_out = _res_arc_num;
1217 // Select an active node (FIFO selection)
1218 n = _active_nodes.front();
1219 last_out = _first_out[n+1];
1222 // Perform push operations if there are admissible arcs
1223 if (_excess[n] > 0) {
1224 for (a = _next_out[n]; a != last_out; ++a) {
1225 if (_res_cap[a] > 0 &&
1226 _cost[a] + pi_n - _pi[_target[a]] < 0) {
1227 delta = std::min(_res_cap[a], _excess[n]);
1230 // Push-look-ahead heuristic
1231 Value ahead = -_excess[t];
1232 int last_out_t = _first_out[t+1];
1233 LargeCost pi_t = _pi[t];
1234 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1235 if (_res_cap[ta] > 0 &&
1236 _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1237 ahead += _res_cap[ta];
1238 if (ahead >= delta) break;
1240 if (ahead < 0) ahead = 0;
1242 // Push flow along the arc
1243 if (ahead < delta && !hyper[t]) {
1244 _res_cap[a] -= ahead;
1245 _res_cap[_reverse[a]] += ahead;
1246 _excess[n] -= ahead;
1247 _excess[t] += ahead;
1248 _active_nodes.push_front(t);
1250 hyper_cost[t] = _cost[a] + pi_n - pi_t;
1254 _res_cap[a] -= delta;
1255 _res_cap[_reverse[a]] += delta;
1256 _excess[n] -= delta;
1257 _excess[t] += delta;
1258 if (_excess[t] > 0 && _excess[t] <= delta)
1259 _active_nodes.push_back(t);
1262 if (_excess[n] == 0) {
1271 // Relabel the node if it is still active (or hyper)
1272 if (_excess[n] > 0 || hyper[n]) {
1273 min_red_cost = hyper[n] ? -hyper_cost[n] :
1274 std::numeric_limits<LargeCost>::max();
1275 for (int a = _first_out[n]; a != last_out; ++a) {
1276 rc = _cost[a] + pi_n - _pi[_target[a]];
1277 if (_res_cap[a] > 0 && rc < min_red_cost) {
1281 _pi[n] -= min_red_cost + _epsilon;
1282 _next_out[n] = _first_out[n];
1287 // Remove nodes that are not active nor hyper
1289 while ( _active_nodes.size() > 0 &&
1290 _excess[_active_nodes.front()] <= 0 &&
1291 !hyper[_active_nodes.front()] ) {
1292 _active_nodes.pop_front();
1295 // Global update heuristic
1296 if (relabel_cnt >= next_update_limit) {
1298 for (int u = 0; u != _res_node_num; ++u)
1300 next_update_limit += global_update_freq;
1306 }; //class CostScaling
1312 #endif //LEMON_COST_SCALING_H