lemon/binom_heap.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 09 Jul 2009 02:39:47 +0200
changeset 702 bdc7dfc8c054
child 703 bb3392fe91f2
permissions -rw-r--r--
Bug fix in PairingHeap::pop() (#301)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BINOM_HEAP_H
    20 #define LEMON_BINOM_HEAP_H
    21 
    22 ///\file
    23 ///\ingroup auxdat
    24 ///\brief Binomial Heap implementation.
    25 
    26 #include <vector>
    27 #include <functional>
    28 #include <lemon/math.h>
    29 #include <lemon/counter.h>
    30 
    31 namespace lemon {
    32 
    33   /// \ingroup auxdat
    34   ///
    35   ///\brief Binomial Heap.
    36   ///
    37   ///This class implements the \e Binomial \e heap data structure. A \e heap
    38   ///is a data structure for storing items with specified values called \e
    39   ///priorities in such a way that finding the item with minimum priority is
    40   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    41   ///one can change the priority of an item, add or erase an item, etc.
    42   ///
    43   ///The methods \ref increase and \ref erase are not efficient in a Binomial
    44   ///heap. In case of many calls to these operations, it is better to use a
    45   ///\ref BinHeap "binary heap".
    46   ///
    47   ///\param _Prio Type of the priority of the items.
    48   ///\param _ItemIntMap A read and writable Item int map, used internally
    49   ///to handle the cross references.
    50   ///\param _Compare A class for the ordering of the priorities. The
    51   ///default is \c std::less<_Prio>.
    52   ///
    53   ///\sa BinHeap
    54   ///\sa Dijkstra
    55   ///\author Dorian Batha
    56 
    57 #ifdef DOXYGEN
    58   template <typename _Prio,
    59             typename _ItemIntMap,
    60             typename _Compare>
    61 #else
    62   template <typename _Prio,
    63             typename _ItemIntMap,
    64             typename _Compare = std::less<_Prio> >
    65 #endif
    66   class BinomHeap {
    67   public:
    68     typedef _ItemIntMap ItemIntMap;
    69     typedef _Prio Prio;
    70     typedef typename ItemIntMap::Key Item;
    71     typedef std::pair<Item,Prio> Pair;
    72     typedef _Compare Compare;
    73 
    74   private:
    75     class store;
    76 
    77     std::vector<store> container;
    78     int minimum, head;
    79     ItemIntMap &iimap;
    80     Compare comp;
    81     int num_items;
    82 
    83   public:
    84     ///Status of the nodes
    85     enum State {
    86       ///The node is in the heap
    87       IN_HEAP = 0,
    88       ///The node has never been in the heap
    89       PRE_HEAP = -1,
    90       ///The node was in the heap but it got out of it
    91       POST_HEAP = -2
    92     };
    93 
    94     /// \brief The constructor
    95     ///
    96     /// \c _iimap should be given to the constructor, since it is
    97     ///   used internally to handle the cross references.
    98     explicit BinomHeap(ItemIntMap &_iimap)
    99       : minimum(0), head(-1), iimap(_iimap), num_items() {}
   100 
   101     /// \brief The constructor
   102     ///
   103     /// \c _iimap should be given to the constructor, since it is used
   104     /// internally to handle the cross references. \c _comp is an
   105     /// object for ordering of the priorities.
   106     BinomHeap(ItemIntMap &_iimap, const Compare &_comp)
   107       : minimum(0), head(-1), iimap(_iimap), comp(_comp), num_items() {}
   108 
   109     /// \brief The number of items stored in the heap.
   110     ///
   111     /// Returns the number of items stored in the heap.
   112     int size() const { return num_items; }
   113 
   114     /// \brief Checks if the heap stores no items.
   115     ///
   116     ///   Returns \c true if and only if the heap stores no items.
   117     bool empty() const { return num_items==0; }
   118 
   119     /// \brief Make empty this heap.
   120     ///
   121     /// Make empty this heap. It does not change the cross reference
   122     /// map.  If you want to reuse a heap what is not surely empty you
   123     /// should first clear the heap and after that you should set the
   124     /// cross reference map for each item to \c PRE_HEAP.
   125     void clear() {
   126       container.clear(); minimum=0; num_items=0; head=-1;
   127     }
   128 
   129     /// \brief \c item gets to the heap with priority \c value independently
   130     /// if \c item was already there.
   131     ///
   132     /// This method calls \ref push(\c item, \c value) if \c item is not
   133     /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   134     /// \ref increase(\c item, \c value) otherwise.
   135     void set (const Item& item, const Prio& value) {
   136       int i=iimap[item];
   137       if ( i >= 0 && container[i].in ) {
   138         if ( comp(value, container[i].prio) ) decrease(item, value);
   139         if ( comp(container[i].prio, value) ) increase(item, value);
   140       } else push(item, value);
   141     }
   142 
   143     /// \brief Adds \c item to the heap with priority \c value.
   144     ///
   145     /// Adds \c item to the heap with priority \c value.
   146     /// \pre \c item must not be stored in the heap.
   147     void push (const Item& item, const Prio& value) {
   148       int i=iimap[item];
   149       if ( i<0 ) {
   150         int s=container.size();
   151         iimap.set( item,s );
   152         store st;
   153         st.name=item;
   154         container.push_back(st);
   155         i=s;
   156       }
   157       else {
   158         container[i].parent=container[i].right_neighbor=container[i].child=-1;
   159         container[i].degree=0;
   160         container[i].in=true;
   161       }
   162       container[i].prio=value;
   163 
   164       if( 0==num_items ) { head=i; minimum=i; }
   165       else { merge(i); }
   166 
   167       minimum = find_min();
   168 
   169       ++num_items;
   170     }
   171 
   172     /// \brief Returns the item with minimum priority relative to \c Compare.
   173     ///
   174     /// This method returns the item with minimum priority relative to \c
   175     /// Compare.
   176     /// \pre The heap must be nonempty.
   177     Item top() const { return container[minimum].name; }
   178 
   179     /// \brief Returns the minimum priority relative to \c Compare.
   180     ///
   181     /// It returns the minimum priority relative to \c Compare.
   182     /// \pre The heap must be nonempty.
   183     const Prio& prio() const { return container[minimum].prio; }
   184 
   185     /// \brief Returns the priority of \c item.
   186     ///
   187     /// It returns the priority of \c item.
   188     /// \pre \c item must be in the heap.
   189     const Prio& operator[](const Item& item) const {
   190       return container[iimap[item]].prio;
   191     }
   192 
   193     /// \brief Deletes the item with minimum priority relative to \c Compare.
   194     ///
   195     /// This method deletes the item with minimum priority relative to \c
   196     /// Compare from the heap.
   197     /// \pre The heap must be non-empty.
   198     void pop() {
   199       container[minimum].in=false;
   200 
   201       int head_child=-1;
   202       if ( container[minimum].child!=-1 ) {
   203         int child=container[minimum].child;
   204         int neighb;
   205         int prev=-1;
   206         while( child!=-1 ) {
   207           neighb=container[child].right_neighbor;
   208           container[child].parent=-1;
   209           container[child].right_neighbor=prev;
   210           head_child=child;
   211           prev=child;
   212           child=neighb;
   213         }
   214       }
   215 
   216       // The first case is that there are only one root.
   217       if ( -1==container[head].right_neighbor ) {
   218         head=head_child;
   219       }
   220       // The case where there are more roots.
   221       else {
   222         if( head!=minimum )  { unlace(minimum); }
   223         else { head=container[head].right_neighbor; }
   224 
   225         merge(head_child);
   226       }
   227       minimum=find_min();
   228       --num_items;
   229     }
   230 
   231     /// \brief Deletes \c item from the heap.
   232     ///
   233     /// This method deletes \c item from the heap, if \c item was already
   234     /// stored in the heap. It is quite inefficient in Binomial heaps.
   235     void erase (const Item& item) {
   236       int i=iimap[item];
   237       if ( i >= 0 && container[i].in ) {
   238         decrease( item, container[minimum].prio-1 );
   239         pop();
   240       }
   241     }
   242 
   243     /// \brief Decreases the priority of \c item to \c value.
   244     ///
   245     /// This method decreases the priority of \c item to \c value.
   246     /// \pre \c item must be stored in the heap with priority at least \c
   247     ///   value relative to \c Compare.
   248     void decrease (Item item, const Prio& value) {
   249       int i=iimap[item];
   250 
   251       if( comp( value,container[i].prio ) ) {
   252         container[i].prio=value;
   253 
   254         int p_loc=container[i].parent, loc=i;
   255         int parent, child, neighb;
   256 
   257         while( -1!=p_loc && comp(container[loc].prio,container[p_loc].prio) ) {
   258 
   259           // parent set for other loc_child
   260           child=container[loc].child;
   261           while( -1!=child ) {
   262             container[child].parent=p_loc;
   263             child=container[child].right_neighbor;
   264           }
   265 
   266           // parent set for other p_loc_child
   267           child=container[p_loc].child;
   268           while( -1!=child ) {
   269             container[child].parent=loc;
   270             child=container[child].right_neighbor;
   271           }
   272 
   273           child=container[p_loc].child;
   274           container[p_loc].child=container[loc].child;
   275           if( child==loc )
   276             child=p_loc;
   277           container[loc].child=child;
   278 
   279           // left_neighb set for p_loc
   280           if( container[loc].child!=p_loc ) {
   281             while( container[child].right_neighbor!=loc )
   282               child=container[child].right_neighbor;
   283             container[child].right_neighbor=p_loc;
   284           }
   285 
   286           // left_neighb set for loc
   287           parent=container[p_loc].parent;
   288           if( -1!=parent ) child=container[parent].child;
   289           else child=head;
   290 
   291           if( child!=p_loc ) {
   292             while( container[child].right_neighbor!=p_loc )
   293               child=container[child].right_neighbor;
   294             container[child].right_neighbor=loc;
   295           }
   296 
   297           neighb=container[p_loc].right_neighbor;
   298           container[p_loc].right_neighbor=container[loc].right_neighbor;
   299           container[loc].right_neighbor=neighb;
   300 
   301           container[p_loc].parent=loc;
   302           container[loc].parent=parent;
   303 
   304           if( -1!=parent && container[parent].child==p_loc )
   305             container[parent].child=loc;
   306 
   307           /*if new parent will be the first root*/
   308           if( head==p_loc )
   309             head=loc;
   310 
   311           p_loc=container[loc].parent;
   312         }
   313       }
   314       if( comp(value,container[minimum].prio) ) {
   315         minimum=i;
   316       }
   317     }
   318 
   319     /// \brief Increases the priority of \c item to \c value.
   320     ///
   321     /// This method sets the priority of \c item to \c value. Though
   322     /// there is no precondition on the priority of \c item, this
   323     /// method should be used only if it is indeed necessary to increase
   324     /// (relative to \c Compare) the priority of \c item, because this
   325     /// method is inefficient.
   326     void increase (Item item, const Prio& value) {
   327       erase(item);
   328       push(item, value);
   329     }
   330 
   331 
   332     /// \brief Returns if \c item is in, has already been in, or has never
   333     /// been in the heap.
   334     ///
   335     /// This method returns PRE_HEAP if \c item has never been in the
   336     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   337     /// otherwise. In the latter case it is possible that \c item will
   338     /// get back to the heap again.
   339     State state(const Item &item) const {
   340       int i=iimap[item];
   341       if( i>=0 ) {
   342         if ( container[i].in ) i=0;
   343         else i=-2;
   344       }
   345       return State(i);
   346     }
   347 
   348     /// \brief Sets the state of the \c item in the heap.
   349     ///
   350     /// Sets the state of the \c item in the heap. It can be used to
   351     /// manually clear the heap when it is important to achive the
   352     /// better time complexity.
   353     /// \param i The item.
   354     /// \param st The state. It should not be \c IN_HEAP.
   355     void state(const Item& i, State st) {
   356       switch (st) {
   357       case POST_HEAP:
   358       case PRE_HEAP:
   359         if (state(i) == IN_HEAP) {
   360           erase(i);
   361         }
   362         iimap[i] = st;
   363         break;
   364       case IN_HEAP:
   365         break;
   366       }
   367     }
   368 
   369   private:
   370     int find_min() {
   371       int min_loc=-1, min_val;
   372       int x=head;
   373       if( x!=-1 ) {
   374         min_val=container[x].prio;
   375         min_loc=x;
   376         x=container[x].right_neighbor;
   377 
   378         while( x!=-1 ) {
   379           if( comp( container[x].prio,min_val ) ) {
   380             min_val=container[x].prio;
   381             min_loc=x;
   382           }
   383           x=container[x].right_neighbor;
   384         }
   385       }
   386       return min_loc;
   387     }
   388 
   389     void merge(int a) {
   390       interleave(a);
   391 
   392       int x=head;
   393       if( -1!=x ) {
   394         int x_prev=-1, x_next=container[x].right_neighbor;
   395         while( -1!=x_next ) {
   396           if( container[x].degree!=container[x_next].degree || ( -1!=container[x_next].right_neighbor && container[container[x_next].right_neighbor].degree==container[x].degree ) ) {
   397             x_prev=x;
   398             x=x_next;
   399           }
   400           else {
   401             if( comp(container[x].prio,container[x_next].prio) ) {
   402               container[x].right_neighbor=container[x_next].right_neighbor;
   403               fuse(x_next,x);
   404             }
   405             else {
   406               if( -1==x_prev ) { head=x_next; }
   407               else {
   408                 container[x_prev].right_neighbor=x_next;
   409               }
   410               fuse(x,x_next);
   411               x=x_next;
   412             }
   413           }
   414           x_next=container[x].right_neighbor;
   415         }
   416       }
   417     }
   418 
   419     void interleave(int a) {
   420       int other=-1, head_other=-1;
   421 
   422       while( -1!=a || -1!=head ) {
   423         if( -1==a ) {
   424           if( -1==head_other ) {
   425             head_other=head;
   426           }
   427           else {
   428             container[other].right_neighbor=head;
   429           }
   430           head=-1;
   431         }
   432         else if( -1==head ) {
   433           if( -1==head_other ) {
   434             head_other=a;
   435           }
   436           else {
   437             container[other].right_neighbor=a;
   438           }
   439           a=-1;
   440         }
   441         else {
   442           if( container[a].degree<container[head].degree ) {
   443             if( -1==head_other ) {
   444               head_other=a;
   445             }
   446             else {
   447               container[other].right_neighbor=a;
   448             }
   449             other=a;
   450             a=container[a].right_neighbor;
   451           }
   452           else {
   453             if( -1==head_other ) {
   454               head_other=head;
   455             }
   456             else {
   457               container[other].right_neighbor=head;
   458             }
   459             other=head;
   460             head=container[head].right_neighbor;
   461           }
   462         }
   463       }
   464       head=head_other;
   465     }
   466 
   467     // Lacing a under b
   468     void fuse(int a, int b) {
   469       container[a].parent=b;
   470       container[a].right_neighbor=container[b].child;
   471       container[b].child=a;
   472 
   473       ++container[b].degree;
   474     }
   475 
   476     // It is invoked only if a has siblings.
   477     void unlace(int a) {
   478       int neighb=container[a].right_neighbor;
   479       int other=head;
   480 
   481       while( container[other].right_neighbor!=a )
   482         other=container[other].right_neighbor;
   483       container[other].right_neighbor=neighb;
   484     }
   485 
   486   private:
   487 
   488     class store {
   489       friend class BinomHeap;
   490 
   491       Item name;
   492       int parent;
   493       int right_neighbor;
   494       int child;
   495       int degree;
   496       bool in;
   497       Prio prio;
   498 
   499       store() : parent(-1), right_neighbor(-1), child(-1), degree(0), in(true) {}
   500     };
   501   };
   502 
   503 } //namespace lemon
   504 
   505 #endif //LEMON_BINOM_HEAP_H
   506