lemon/core.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 15 Oct 2018 23:39:22 +0200
changeset 1172 d7e25df22e88
parent 1138 18c89646185e
permissions -rw-r--r--
Fix warnings emitted by g++ 7.3.1 (#614)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2013
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CORE_H
    20 #define LEMON_CORE_H
    21 
    22 ///\file
    23 ///\brief LEMON core utilities.
    24 ///
    25 ///This header file contains core utilities for LEMON.
    26 ///It is automatically included by all graph types, therefore it usually
    27 ///do not have to be included directly.
    28 
    29 // Disable the following warnings when compiling with MSVC:
    30 // C4250: 'class1' : inherits 'class2::member' via dominance
    31 // C4267: conversion from 'size_t' to 'type', possible loss of data
    32 // C4355: 'this' : used in base member initializer list
    33 // C4503: 'function' : decorated name length exceeded, name was truncated
    34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
    35 // C4996: 'function': was declared deprecated
    36 #ifdef _MSC_VER
    37 #pragma warning( disable : 4250 4267 4355 4503 4800 4996 )
    38 #endif
    39 
    40 #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
    41 // Needed by the [DI]GRAPH_TYPEDEFS marcos for gcc 4.8
    42 #pragma GCC diagnostic ignored "-Wunused-local-typedefs"
    43 #endif
    44 
    45 #include <vector>
    46 #include <algorithm>
    47 
    48 #include <lemon/config.h>
    49 #include <lemon/bits/enable_if.h>
    50 #include <lemon/bits/traits.h>
    51 #include <lemon/assert.h>
    52 
    53 
    54 
    55 namespace lemon {
    56 
    57   /// \brief Dummy type to make it easier to create invalid iterators.
    58   ///
    59   /// Dummy type to make it easier to create invalid iterators.
    60   /// See \ref INVALID for the usage.
    61   struct Invalid {
    62   public:
    63     bool operator==(Invalid) { return true;  }
    64     bool operator!=(Invalid) { return false; }
    65     bool operator< (Invalid) { return false; }
    66   };
    67 
    68   /// \brief Invalid iterators.
    69   ///
    70   /// \ref Invalid is a global type that converts to each iterator
    71   /// in such a way that the value of the target iterator will be invalid.
    72 #ifdef LEMON_ONLY_TEMPLATES
    73   const Invalid INVALID = Invalid();
    74 #else
    75   extern const Invalid INVALID;
    76 #endif
    77 
    78   /// \addtogroup gutils
    79   /// @{
    80 
    81   ///Create convenience typedefs for the digraph types and iterators
    82 
    83   ///This \c \#define creates convenient type definitions for the following
    84   ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
    85   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
    86   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
    87   ///
    88   ///\note If the graph type is a dependent type, ie. the graph type depend
    89   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
    90   ///macro.
    91 #define DIGRAPH_TYPEDEFS(Digraph)                                       \
    92   typedef Digraph::Node Node;                                           \
    93   typedef Digraph::NodeIt NodeIt;                                       \
    94   typedef Digraph::Arc Arc;                                             \
    95   typedef Digraph::ArcIt ArcIt;                                         \
    96   typedef Digraph::InArcIt InArcIt;                                     \
    97   typedef Digraph::OutArcIt OutArcIt;                                   \
    98   typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
    99   typedef Digraph::NodeMap<int> IntNodeMap;                             \
   100   typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
   101   typedef Digraph::ArcMap<bool> BoolArcMap;                             \
   102   typedef Digraph::ArcMap<int> IntArcMap;                               \
   103   typedef Digraph::ArcMap<double> DoubleArcMap
   104 
   105   ///Create convenience typedefs for the digraph types and iterators
   106 
   107   ///\see DIGRAPH_TYPEDEFS
   108   ///
   109   ///\note Use this macro, if the graph type is a dependent type,
   110   ///ie. the graph type depend on a template parameter.
   111 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
   112   typedef typename Digraph::Node Node;                                  \
   113   typedef typename Digraph::NodeIt NodeIt;                              \
   114   typedef typename Digraph::Arc Arc;                                    \
   115   typedef typename Digraph::ArcIt ArcIt;                                \
   116   typedef typename Digraph::InArcIt InArcIt;                            \
   117   typedef typename Digraph::OutArcIt OutArcIt;                          \
   118   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
   119   typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
   120   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
   121   typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
   122   typedef typename Digraph::template ArcMap<int> IntArcMap;             \
   123   typedef typename Digraph::template ArcMap<double> DoubleArcMap
   124 
   125   ///Create convenience typedefs for the graph types and iterators
   126 
   127   ///This \c \#define creates the same convenient type definitions as defined
   128   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
   129   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
   130   ///\c DoubleEdgeMap.
   131   ///
   132   ///\note If the graph type is a dependent type, ie. the graph type depend
   133   ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
   134   ///macro.
   135 #define GRAPH_TYPEDEFS(Graph)                                           \
   136   DIGRAPH_TYPEDEFS(Graph);                                              \
   137   typedef Graph::Edge Edge;                                             \
   138   typedef Graph::EdgeIt EdgeIt;                                         \
   139   typedef Graph::IncEdgeIt IncEdgeIt;                                   \
   140   typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
   141   typedef Graph::EdgeMap<int> IntEdgeMap;                               \
   142   typedef Graph::EdgeMap<double> DoubleEdgeMap
   143 
   144   ///Create convenience typedefs for the graph types and iterators
   145 
   146   ///\see GRAPH_TYPEDEFS
   147   ///
   148   ///\note Use this macro, if the graph type is a dependent type,
   149   ///ie. the graph type depend on a template parameter.
   150 #define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
   151   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
   152   typedef typename Graph::Edge Edge;                                    \
   153   typedef typename Graph::EdgeIt EdgeIt;                                \
   154   typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
   155   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
   156   typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
   157   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
   158 
   159   ///Create convenience typedefs for the bipartite graph types and iterators
   160 
   161   ///This \c \#define creates the same convenient type definitions as
   162   ///defined by \ref GRAPH_TYPEDEFS(BpGraph) and ten more, namely it
   163   ///creates \c RedNode, \c RedNodeIt, \c BoolRedNodeMap,
   164   ///\c IntRedNodeMap, \c DoubleRedNodeMap, \c BlueNode, \c BlueNodeIt,
   165   ///\c BoolBlueNodeMap, \c IntBlueNodeMap, \c DoubleBlueNodeMap.
   166   ///
   167   ///\note If the graph type is a dependent type, ie. the graph type depend
   168   ///on a template parameter, then use \c TEMPLATE_BPGRAPH_TYPEDEFS()
   169   ///macro.
   170 #define BPGRAPH_TYPEDEFS(BpGraph)                                       \
   171   GRAPH_TYPEDEFS(BpGraph);                                              \
   172   typedef BpGraph::RedNode RedNode;                                     \
   173   typedef BpGraph::RedNodeIt RedNodeIt;                                 \
   174   typedef BpGraph::RedNodeMap<bool> BoolRedNodeMap;                     \
   175   typedef BpGraph::RedNodeMap<int> IntRedNodeMap;                       \
   176   typedef BpGraph::RedNodeMap<double> DoubleRedNodeMap;                 \
   177   typedef BpGraph::BlueNode BlueNode;                                   \
   178   typedef BpGraph::BlueNodeIt BlueNodeIt;                               \
   179   typedef BpGraph::BlueNodeMap<bool> BoolBlueNodeMap;                   \
   180   typedef BpGraph::BlueNodeMap<int> IntBlueNodeMap;                     \
   181   typedef BpGraph::BlueNodeMap<double> DoubleBlueNodeMap
   182 
   183   ///Create convenience typedefs for the bipartite graph types and iterators
   184 
   185   ///\see BPGRAPH_TYPEDEFS
   186   ///
   187   ///\note Use this macro, if the graph type is a dependent type,
   188   ///ie. the graph type depend on a template parameter.
   189 #define TEMPLATE_BPGRAPH_TYPEDEFS(BpGraph)                                  \
   190   TEMPLATE_GRAPH_TYPEDEFS(BpGraph);                                         \
   191   typedef typename BpGraph::RedNode RedNode;                                \
   192   typedef typename BpGraph::RedNodeIt RedNodeIt;                            \
   193   typedef typename BpGraph::template RedNodeMap<bool> BoolRedNodeMap;       \
   194   typedef typename BpGraph::template RedNodeMap<int> IntRedNodeMap;         \
   195   typedef typename BpGraph::template RedNodeMap<double> DoubleRedNodeMap;   \
   196   typedef typename BpGraph::BlueNode BlueNode;                              \
   197   typedef typename BpGraph::BlueNodeIt BlueNodeIt;                          \
   198   typedef typename BpGraph::template BlueNodeMap<bool> BoolBlueNodeMap;     \
   199   typedef typename BpGraph::template BlueNodeMap<int> IntBlueNodeMap;       \
   200   typedef typename BpGraph::template BlueNodeMap<double> DoubleBlueNodeMap
   201 
   202   /// \brief Function to count the items in a graph.
   203   ///
   204   /// This function counts the items (nodes, arcs etc.) in a graph.
   205   /// The complexity of the function is linear because
   206   /// it iterates on all of the items.
   207   template <typename Graph, typename Item>
   208   inline int countItems(const Graph& g) {
   209     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   210     int num = 0;
   211     for (ItemIt it(g); it != INVALID; ++it) {
   212       ++num;
   213     }
   214     return num;
   215   }
   216 
   217   // Node counting:
   218 
   219   namespace _core_bits {
   220 
   221     template <typename Graph, typename Enable = void>
   222     struct CountNodesSelector {
   223       static int count(const Graph &g) {
   224         return countItems<Graph, typename Graph::Node>(g);
   225       }
   226     };
   227 
   228     template <typename Graph>
   229     struct CountNodesSelector<
   230       Graph, typename
   231       enable_if<typename Graph::NodeNumTag, void>::type>
   232     {
   233       static int count(const Graph &g) {
   234         return g.nodeNum();
   235       }
   236     };
   237   }
   238 
   239   /// \brief Function to count the nodes in the graph.
   240   ///
   241   /// This function counts the nodes in the graph.
   242   /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
   243   /// graph structures it is specialized to run in <em>O</em>(1).
   244   ///
   245   /// \note If the graph contains a \c nodeNum() member function and a
   246   /// \c NodeNumTag tag then this function calls directly the member
   247   /// function to query the cardinality of the node set.
   248   template <typename Graph>
   249   inline int countNodes(const Graph& g) {
   250     return _core_bits::CountNodesSelector<Graph>::count(g);
   251   }
   252 
   253   namespace _graph_utils_bits {
   254 
   255     template <typename Graph, typename Enable = void>
   256     struct CountRedNodesSelector {
   257       static int count(const Graph &g) {
   258         return countItems<Graph, typename Graph::RedNode>(g);
   259       }
   260     };
   261 
   262     template <typename Graph>
   263     struct CountRedNodesSelector<
   264       Graph, typename
   265       enable_if<typename Graph::NodeNumTag, void>::type>
   266     {
   267       static int count(const Graph &g) {
   268         return g.redNum();
   269       }
   270     };
   271   }
   272 
   273   /// \brief Function to count the red nodes in the graph.
   274   ///
   275   /// This function counts the red nodes in the graph.
   276   /// The complexity of the function is O(n) but for some
   277   /// graph structures it is specialized to run in O(1).
   278   ///
   279   /// If the graph contains a \e redNum() member function and a
   280   /// \e NodeNumTag tag then this function calls directly the member
   281   /// function to query the cardinality of the node set.
   282   template <typename Graph>
   283   inline int countRedNodes(const Graph& g) {
   284     return _graph_utils_bits::CountRedNodesSelector<Graph>::count(g);
   285   }
   286 
   287   namespace _graph_utils_bits {
   288 
   289     template <typename Graph, typename Enable = void>
   290     struct CountBlueNodesSelector {
   291       static int count(const Graph &g) {
   292         return countItems<Graph, typename Graph::BlueNode>(g);
   293       }
   294     };
   295 
   296     template <typename Graph>
   297     struct CountBlueNodesSelector<
   298       Graph, typename
   299       enable_if<typename Graph::NodeNumTag, void>::type>
   300     {
   301       static int count(const Graph &g) {
   302         return g.blueNum();
   303       }
   304     };
   305   }
   306 
   307   /// \brief Function to count the blue nodes in the graph.
   308   ///
   309   /// This function counts the blue nodes in the graph.
   310   /// The complexity of the function is O(n) but for some
   311   /// graph structures it is specialized to run in O(1).
   312   ///
   313   /// If the graph contains a \e blueNum() member function and a
   314   /// \e NodeNumTag tag then this function calls directly the member
   315   /// function to query the cardinality of the node set.
   316   template <typename Graph>
   317   inline int countBlueNodes(const Graph& g) {
   318     return _graph_utils_bits::CountBlueNodesSelector<Graph>::count(g);
   319   }
   320 
   321   // Arc counting:
   322 
   323   namespace _core_bits {
   324 
   325     template <typename Graph, typename Enable = void>
   326     struct CountArcsSelector {
   327       static int count(const Graph &g) {
   328         return countItems<Graph, typename Graph::Arc>(g);
   329       }
   330     };
   331 
   332     template <typename Graph>
   333     struct CountArcsSelector<
   334       Graph,
   335       typename enable_if<typename Graph::ArcNumTag, void>::type>
   336     {
   337       static int count(const Graph &g) {
   338         return g.arcNum();
   339       }
   340     };
   341   }
   342 
   343   /// \brief Function to count the arcs in the graph.
   344   ///
   345   /// This function counts the arcs in the graph.
   346   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   347   /// graph structures it is specialized to run in <em>O</em>(1).
   348   ///
   349   /// \note If the graph contains a \c arcNum() member function and a
   350   /// \c ArcNumTag tag then this function calls directly the member
   351   /// function to query the cardinality of the arc set.
   352   template <typename Graph>
   353   inline int countArcs(const Graph& g) {
   354     return _core_bits::CountArcsSelector<Graph>::count(g);
   355   }
   356 
   357   // Edge counting:
   358 
   359   namespace _core_bits {
   360 
   361     template <typename Graph, typename Enable = void>
   362     struct CountEdgesSelector {
   363       static int count(const Graph &g) {
   364         return countItems<Graph, typename Graph::Edge>(g);
   365       }
   366     };
   367 
   368     template <typename Graph>
   369     struct CountEdgesSelector<
   370       Graph,
   371       typename enable_if<typename Graph::EdgeNumTag, void>::type>
   372     {
   373       static int count(const Graph &g) {
   374         return g.edgeNum();
   375       }
   376     };
   377   }
   378 
   379   /// \brief Function to count the edges in the graph.
   380   ///
   381   /// This function counts the edges in the graph.
   382   /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
   383   /// graph structures it is specialized to run in <em>O</em>(1).
   384   ///
   385   /// \note If the graph contains a \c edgeNum() member function and a
   386   /// \c EdgeNumTag tag then this function calls directly the member
   387   /// function to query the cardinality of the edge set.
   388   template <typename Graph>
   389   inline int countEdges(const Graph& g) {
   390     return _core_bits::CountEdgesSelector<Graph>::count(g);
   391 
   392   }
   393 
   394 
   395   template <typename Graph, typename DegIt>
   396   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   397     int num = 0;
   398     for (DegIt it(_g, _n); it != INVALID; ++it) {
   399       ++num;
   400     }
   401     return num;
   402   }
   403 
   404   /// \brief Function to count the number of the out-arcs from node \c n.
   405   ///
   406   /// This function counts the number of the out-arcs from node \c n
   407   /// in the graph \c g.
   408   template <typename Graph>
   409   inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
   410     return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
   411   }
   412 
   413   /// \brief Function to count the number of the in-arcs to node \c n.
   414   ///
   415   /// This function counts the number of the in-arcs to node \c n
   416   /// in the graph \c g.
   417   template <typename Graph>
   418   inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
   419     return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
   420   }
   421 
   422   /// \brief Function to count the number of the inc-edges to node \c n.
   423   ///
   424   /// This function counts the number of the inc-edges to node \c n
   425   /// in the undirected graph \c g.
   426   template <typename Graph>
   427   inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
   428     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
   429   }
   430 
   431   namespace _core_bits {
   432 
   433     template <typename Digraph, typename Item, typename RefMap>
   434     class MapCopyBase {
   435     public:
   436       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
   437 
   438       virtual ~MapCopyBase() {}
   439     };
   440 
   441     template <typename Digraph, typename Item, typename RefMap,
   442               typename FromMap, typename ToMap>
   443     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
   444     public:
   445 
   446       MapCopy(const FromMap& map, ToMap& tmap)
   447         : _map(map), _tmap(tmap) {}
   448 
   449       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   450         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   451         for (ItemIt it(digraph); it != INVALID; ++it) {
   452           _tmap.set(refMap[it], _map[it]);
   453         }
   454       }
   455 
   456     private:
   457       const FromMap& _map;
   458       ToMap& _tmap;
   459     };
   460 
   461     template <typename Digraph, typename Item, typename RefMap, typename It>
   462     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
   463     public:
   464 
   465       ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
   466 
   467       virtual void copy(const Digraph&, const RefMap& refMap) {
   468         _it = refMap[_item];
   469       }
   470 
   471     private:
   472       Item _item;
   473       It& _it;
   474     };
   475 
   476     template <typename Digraph, typename Item, typename RefMap, typename Ref>
   477     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   478     public:
   479 
   480       RefCopy(Ref& map) : _map(map) {}
   481 
   482       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   483         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   484         for (ItemIt it(digraph); it != INVALID; ++it) {
   485           _map.set(it, refMap[it]);
   486         }
   487       }
   488 
   489     private:
   490       Ref& _map;
   491     };
   492 
   493     template <typename Digraph, typename Item, typename RefMap,
   494               typename CrossRef>
   495     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
   496     public:
   497 
   498       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   499 
   500       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
   501         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
   502         for (ItemIt it(digraph); it != INVALID; ++it) {
   503           _cmap.set(refMap[it], it);
   504         }
   505       }
   506 
   507     private:
   508       CrossRef& _cmap;
   509     };
   510 
   511     template <typename Digraph, typename Enable = void>
   512     struct DigraphCopySelector {
   513       template <typename From, typename NodeRefMap, typename ArcRefMap>
   514       static void copy(const From& from, Digraph &to,
   515                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   516         to.clear();
   517         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   518           nodeRefMap[it] = to.addNode();
   519         }
   520         for (typename From::ArcIt it(from); it != INVALID; ++it) {
   521           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
   522                                     nodeRefMap[from.target(it)]);
   523         }
   524       }
   525     };
   526 
   527     template <typename Digraph>
   528     struct DigraphCopySelector<
   529       Digraph,
   530       typename enable_if<typename Digraph::BuildTag, void>::type>
   531     {
   532       template <typename From, typename NodeRefMap, typename ArcRefMap>
   533       static void copy(const From& from, Digraph &to,
   534                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
   535         to.build(from, nodeRefMap, arcRefMap);
   536       }
   537     };
   538 
   539     template <typename Graph, typename Enable = void>
   540     struct GraphCopySelector {
   541       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   542       static void copy(const From& from, Graph &to,
   543                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
   544         to.clear();
   545         for (typename From::NodeIt it(from); it != INVALID; ++it) {
   546           nodeRefMap[it] = to.addNode();
   547         }
   548         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   549           edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
   550                                       nodeRefMap[from.v(it)]);
   551         }
   552       }
   553     };
   554 
   555     template <typename Graph>
   556     struct GraphCopySelector<
   557       Graph,
   558       typename enable_if<typename Graph::BuildTag, void>::type>
   559     {
   560       template <typename From, typename NodeRefMap, typename EdgeRefMap>
   561       static void copy(const From& from, Graph &to,
   562                        NodeRefMap& nodeRefMap,
   563                        EdgeRefMap& edgeRefMap) {
   564         to.build(from, nodeRefMap, edgeRefMap);
   565       }
   566     };
   567 
   568     template <typename BpGraph, typename Enable = void>
   569     struct BpGraphCopySelector {
   570       template <typename From, typename RedNodeRefMap,
   571                 typename BlueNodeRefMap, typename EdgeRefMap>
   572       static void copy(const From& from, BpGraph &to,
   573                        RedNodeRefMap& redNodeRefMap,
   574                        BlueNodeRefMap& blueNodeRefMap,
   575                        EdgeRefMap& edgeRefMap) {
   576         to.clear();
   577         for (typename From::RedNodeIt it(from); it != INVALID; ++it) {
   578           redNodeRefMap[it] = to.addRedNode();
   579         }
   580         for (typename From::BlueNodeIt it(from); it != INVALID; ++it) {
   581           blueNodeRefMap[it] = to.addBlueNode();
   582         }
   583         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
   584           edgeRefMap[it] = to.addEdge(redNodeRefMap[from.redNode(it)],
   585                                       blueNodeRefMap[from.blueNode(it)]);
   586         }
   587       }
   588     };
   589 
   590     template <typename BpGraph>
   591     struct BpGraphCopySelector<
   592       BpGraph,
   593       typename enable_if<typename BpGraph::BuildTag, void>::type>
   594     {
   595       template <typename From, typename RedNodeRefMap,
   596                 typename BlueNodeRefMap, typename EdgeRefMap>
   597       static void copy(const From& from, BpGraph &to,
   598                        RedNodeRefMap& redNodeRefMap,
   599                        BlueNodeRefMap& blueNodeRefMap,
   600                        EdgeRefMap& edgeRefMap) {
   601         to.build(from, redNodeRefMap, blueNodeRefMap, edgeRefMap);
   602       }
   603     };
   604 
   605   }
   606 
   607   /// \brief Check whether a graph is undirected.
   608   ///
   609   /// This function returns \c true if the given graph is undirected.
   610 #ifdef DOXYGEN
   611   template <typename GR>
   612   bool undirected(const GR& g) { return false; }
   613 #else
   614   template <typename GR>
   615   typename enable_if<UndirectedTagIndicator<GR>, bool>::type
   616   undirected(const GR&) {
   617     return true;
   618   }
   619   template <typename GR>
   620   typename disable_if<UndirectedTagIndicator<GR>, bool>::type
   621   undirected(const GR&) {
   622     return false;
   623   }
   624 #endif
   625 
   626   /// \brief Class to copy a digraph.
   627   ///
   628   /// Class to copy a digraph to another digraph (duplicate a digraph). The
   629   /// simplest way of using it is through the \c digraphCopy() function.
   630   ///
   631   /// This class not only make a copy of a digraph, but it can create
   632   /// references and cross references between the nodes and arcs of
   633   /// the two digraphs, and it can copy maps to use with the newly created
   634   /// digraph.
   635   ///
   636   /// To make a copy from a digraph, first an instance of DigraphCopy
   637   /// should be created, then the data belongs to the digraph should
   638   /// assigned to copy. In the end, the \c run() member should be
   639   /// called.
   640   ///
   641   /// The next code copies a digraph with several data:
   642   ///\code
   643   ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   644   ///  // Create references for the nodes
   645   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   646   ///  cg.nodeRef(nr);
   647   ///  // Create cross references (inverse) for the arcs
   648   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
   649   ///  cg.arcCrossRef(acr);
   650   ///  // Copy an arc map
   651   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
   652   ///  NewGraph::ArcMap<double> namap(new_graph);
   653   ///  cg.arcMap(oamap, namap);
   654   ///  // Copy a node
   655   ///  OrigGraph::Node on;
   656   ///  NewGraph::Node nn;
   657   ///  cg.node(on, nn);
   658   ///  // Execute copying
   659   ///  cg.run();
   660   ///\endcode
   661   template <typename From, typename To>
   662   class DigraphCopy {
   663   private:
   664 
   665     typedef typename From::Node Node;
   666     typedef typename From::NodeIt NodeIt;
   667     typedef typename From::Arc Arc;
   668     typedef typename From::ArcIt ArcIt;
   669 
   670     typedef typename To::Node TNode;
   671     typedef typename To::Arc TArc;
   672 
   673     typedef typename From::template NodeMap<TNode> NodeRefMap;
   674     typedef typename From::template ArcMap<TArc> ArcRefMap;
   675 
   676   public:
   677 
   678     /// \brief Constructor of DigraphCopy.
   679     ///
   680     /// Constructor of DigraphCopy for copying the content of the
   681     /// \c from digraph into the \c to digraph.
   682     DigraphCopy(const From& from, To& to)
   683       : _from(from), _to(to) {}
   684 
   685     /// \brief Destructor of DigraphCopy
   686     ///
   687     /// Destructor of DigraphCopy.
   688     ~DigraphCopy() {
   689       for (int i = 0; i < int(_node_maps.size()); ++i) {
   690         delete _node_maps[i];
   691       }
   692       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   693         delete _arc_maps[i];
   694       }
   695 
   696     }
   697 
   698     /// \brief Copy the node references into the given map.
   699     ///
   700     /// This function copies the node references into the given map.
   701     /// The parameter should be a map, whose key type is the Node type of
   702     /// the source digraph, while the value type is the Node type of the
   703     /// destination digraph.
   704     template <typename NodeRef>
   705     DigraphCopy& nodeRef(NodeRef& map) {
   706       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   707                            NodeRefMap, NodeRef>(map));
   708       return *this;
   709     }
   710 
   711     /// \brief Copy the node cross references into the given map.
   712     ///
   713     /// This function copies the node cross references (reverse references)
   714     /// into the given map. The parameter should be a map, whose key type
   715     /// is the Node type of the destination digraph, while the value type is
   716     /// the Node type of the source digraph.
   717     template <typename NodeCrossRef>
   718     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
   719       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   720                            NodeRefMap, NodeCrossRef>(map));
   721       return *this;
   722     }
   723 
   724     /// \brief Make a copy of the given node map.
   725     ///
   726     /// This function makes a copy of the given node map for the newly
   727     /// created digraph.
   728     /// The key type of the new map \c tmap should be the Node type of the
   729     /// destination digraph, and the key type of the original map \c map
   730     /// should be the Node type of the source digraph.
   731     template <typename FromMap, typename ToMap>
   732     DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   733       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   734                            NodeRefMap, FromMap, ToMap>(map, tmap));
   735       return *this;
   736     }
   737 
   738     /// \brief Make a copy of the given node.
   739     ///
   740     /// This function makes a copy of the given node.
   741     DigraphCopy& node(const Node& node, TNode& tnode) {
   742       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   743                            NodeRefMap, TNode>(node, tnode));
   744       return *this;
   745     }
   746 
   747     /// \brief Copy the arc references into the given map.
   748     ///
   749     /// This function copies the arc references into the given map.
   750     /// The parameter should be a map, whose key type is the Arc type of
   751     /// the source digraph, while the value type is the Arc type of the
   752     /// destination digraph.
   753     template <typename ArcRef>
   754     DigraphCopy& arcRef(ArcRef& map) {
   755       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
   756                           ArcRefMap, ArcRef>(map));
   757       return *this;
   758     }
   759 
   760     /// \brief Copy the arc cross references into the given map.
   761     ///
   762     /// This function copies the arc cross references (reverse references)
   763     /// into the given map. The parameter should be a map, whose key type
   764     /// is the Arc type of the destination digraph, while the value type is
   765     /// the Arc type of the source digraph.
   766     template <typename ArcCrossRef>
   767     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
   768       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
   769                           ArcRefMap, ArcCrossRef>(map));
   770       return *this;
   771     }
   772 
   773     /// \brief Make a copy of the given arc map.
   774     ///
   775     /// This function makes a copy of the given arc map for the newly
   776     /// created digraph.
   777     /// The key type of the new map \c tmap should be the Arc type of the
   778     /// destination digraph, and the key type of the original map \c map
   779     /// should be the Arc type of the source digraph.
   780     template <typename FromMap, typename ToMap>
   781     DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
   782       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
   783                           ArcRefMap, FromMap, ToMap>(map, tmap));
   784       return *this;
   785     }
   786 
   787     /// \brief Make a copy of the given arc.
   788     ///
   789     /// This function makes a copy of the given arc.
   790     DigraphCopy& arc(const Arc& arc, TArc& tarc) {
   791       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
   792                           ArcRefMap, TArc>(arc, tarc));
   793       return *this;
   794     }
   795 
   796     /// \brief Execute copying.
   797     ///
   798     /// This function executes the copying of the digraph along with the
   799     /// copying of the assigned data.
   800     void run() {
   801       NodeRefMap nodeRefMap(_from);
   802       ArcRefMap arcRefMap(_from);
   803       _core_bits::DigraphCopySelector<To>::
   804         copy(_from, _to, nodeRefMap, arcRefMap);
   805       for (int i = 0; i < int(_node_maps.size()); ++i) {
   806         _node_maps[i]->copy(_from, nodeRefMap);
   807       }
   808       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   809         _arc_maps[i]->copy(_from, arcRefMap);
   810       }
   811     }
   812 
   813   protected:
   814 
   815     const From& _from;
   816     To& _to;
   817 
   818     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
   819       _node_maps;
   820 
   821     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
   822       _arc_maps;
   823 
   824   };
   825 
   826   /// \brief Copy a digraph to another digraph.
   827   ///
   828   /// This function copies a digraph to another digraph.
   829   /// The complete usage of it is detailed in the DigraphCopy class, but
   830   /// a short example shows a basic work:
   831   ///\code
   832   /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
   833   ///\endcode
   834   ///
   835   /// After the copy the \c nr map will contain the mapping from the
   836   /// nodes of the \c from digraph to the nodes of the \c to digraph and
   837   /// \c acr will contain the mapping from the arcs of the \c to digraph
   838   /// to the arcs of the \c from digraph.
   839   ///
   840   /// \see DigraphCopy
   841   template <typename From, typename To>
   842   DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
   843     return DigraphCopy<From, To>(from, to);
   844   }
   845 
   846   /// \brief Class to copy a graph.
   847   ///
   848   /// Class to copy a graph to another graph (duplicate a graph). The
   849   /// simplest way of using it is through the \c graphCopy() function.
   850   ///
   851   /// This class not only make a copy of a graph, but it can create
   852   /// references and cross references between the nodes, edges and arcs of
   853   /// the two graphs, and it can copy maps for using with the newly created
   854   /// graph.
   855   ///
   856   /// To make a copy from a graph, first an instance of GraphCopy
   857   /// should be created, then the data belongs to the graph should
   858   /// assigned to copy. In the end, the \c run() member should be
   859   /// called.
   860   ///
   861   /// The next code copies a graph with several data:
   862   ///\code
   863   ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
   864   ///  // Create references for the nodes
   865   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
   866   ///  cg.nodeRef(nr);
   867   ///  // Create cross references (inverse) for the edges
   868   ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
   869   ///  cg.edgeCrossRef(ecr);
   870   ///  // Copy an edge map
   871   ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
   872   ///  NewGraph::EdgeMap<double> nemap(new_graph);
   873   ///  cg.edgeMap(oemap, nemap);
   874   ///  // Copy a node
   875   ///  OrigGraph::Node on;
   876   ///  NewGraph::Node nn;
   877   ///  cg.node(on, nn);
   878   ///  // Execute copying
   879   ///  cg.run();
   880   ///\endcode
   881   template <typename From, typename To>
   882   class GraphCopy {
   883   private:
   884 
   885     typedef typename From::Node Node;
   886     typedef typename From::NodeIt NodeIt;
   887     typedef typename From::Arc Arc;
   888     typedef typename From::ArcIt ArcIt;
   889     typedef typename From::Edge Edge;
   890     typedef typename From::EdgeIt EdgeIt;
   891 
   892     typedef typename To::Node TNode;
   893     typedef typename To::Arc TArc;
   894     typedef typename To::Edge TEdge;
   895 
   896     typedef typename From::template NodeMap<TNode> NodeRefMap;
   897     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
   898 
   899     struct ArcRefMap {
   900       ArcRefMap(const From& from, const To& to,
   901                 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
   902         : _from(from), _to(to),
   903           _edge_ref(edge_ref), _node_ref(node_ref) {}
   904 
   905       typedef typename From::Arc Key;
   906       typedef typename To::Arc Value;
   907 
   908       Value operator[](const Key& key) const {
   909         bool forward = _from.u(key) != _from.v(key) ?
   910           _node_ref[_from.source(key)] ==
   911           _to.source(_to.direct(_edge_ref[key], true)) :
   912           _from.direction(key);
   913         return _to.direct(_edge_ref[key], forward);
   914       }
   915 
   916       const From& _from;
   917       const To& _to;
   918       const EdgeRefMap& _edge_ref;
   919       const NodeRefMap& _node_ref;
   920     };
   921 
   922   public:
   923 
   924     /// \brief Constructor of GraphCopy.
   925     ///
   926     /// Constructor of GraphCopy for copying the content of the
   927     /// \c from graph into the \c to graph.
   928     GraphCopy(const From& from, To& to)
   929       : _from(from), _to(to) {}
   930 
   931     /// \brief Destructor of GraphCopy
   932     ///
   933     /// Destructor of GraphCopy.
   934     ~GraphCopy() {
   935       for (int i = 0; i < int(_node_maps.size()); ++i) {
   936         delete _node_maps[i];
   937       }
   938       for (int i = 0; i < int(_arc_maps.size()); ++i) {
   939         delete _arc_maps[i];
   940       }
   941       for (int i = 0; i < int(_edge_maps.size()); ++i) {
   942         delete _edge_maps[i];
   943       }
   944     }
   945 
   946     /// \brief Copy the node references into the given map.
   947     ///
   948     /// This function copies the node references into the given map.
   949     /// The parameter should be a map, whose key type is the Node type of
   950     /// the source graph, while the value type is the Node type of the
   951     /// destination graph.
   952     template <typename NodeRef>
   953     GraphCopy& nodeRef(NodeRef& map) {
   954       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
   955                            NodeRefMap, NodeRef>(map));
   956       return *this;
   957     }
   958 
   959     /// \brief Copy the node cross references into the given map.
   960     ///
   961     /// This function copies the node cross references (reverse references)
   962     /// into the given map. The parameter should be a map, whose key type
   963     /// is the Node type of the destination graph, while the value type is
   964     /// the Node type of the source graph.
   965     template <typename NodeCrossRef>
   966     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   967       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
   968                            NodeRefMap, NodeCrossRef>(map));
   969       return *this;
   970     }
   971 
   972     /// \brief Make a copy of the given node map.
   973     ///
   974     /// This function makes a copy of the given node map for the newly
   975     /// created graph.
   976     /// The key type of the new map \c tmap should be the Node type of the
   977     /// destination graph, and the key type of the original map \c map
   978     /// should be the Node type of the source graph.
   979     template <typename FromMap, typename ToMap>
   980     GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
   981       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
   982                            NodeRefMap, FromMap, ToMap>(map, tmap));
   983       return *this;
   984     }
   985 
   986     /// \brief Make a copy of the given node.
   987     ///
   988     /// This function makes a copy of the given node.
   989     GraphCopy& node(const Node& node, TNode& tnode) {
   990       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
   991                            NodeRefMap, TNode>(node, tnode));
   992       return *this;
   993     }
   994 
   995     /// \brief Copy the arc references into the given map.
   996     ///
   997     /// This function copies the arc references into the given map.
   998     /// The parameter should be a map, whose key type is the Arc type of
   999     /// the source graph, while the value type is the Arc type of the
  1000     /// destination graph.
  1001     template <typename ArcRef>
  1002     GraphCopy& arcRef(ArcRef& map) {
  1003       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
  1004                           ArcRefMap, ArcRef>(map));
  1005       return *this;
  1006     }
  1007 
  1008     /// \brief Copy the arc cross references into the given map.
  1009     ///
  1010     /// This function copies the arc cross references (reverse references)
  1011     /// into the given map. The parameter should be a map, whose key type
  1012     /// is the Arc type of the destination graph, while the value type is
  1013     /// the Arc type of the source graph.
  1014     template <typename ArcCrossRef>
  1015     GraphCopy& arcCrossRef(ArcCrossRef& map) {
  1016       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
  1017                           ArcRefMap, ArcCrossRef>(map));
  1018       return *this;
  1019     }
  1020 
  1021     /// \brief Make a copy of the given arc map.
  1022     ///
  1023     /// This function makes a copy of the given arc map for the newly
  1024     /// created graph.
  1025     /// The key type of the new map \c tmap should be the Arc type of the
  1026     /// destination graph, and the key type of the original map \c map
  1027     /// should be the Arc type of the source graph.
  1028     template <typename FromMap, typename ToMap>
  1029     GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
  1030       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
  1031                           ArcRefMap, FromMap, ToMap>(map, tmap));
  1032       return *this;
  1033     }
  1034 
  1035     /// \brief Make a copy of the given arc.
  1036     ///
  1037     /// This function makes a copy of the given arc.
  1038     GraphCopy& arc(const Arc& arc, TArc& tarc) {
  1039       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
  1040                           ArcRefMap, TArc>(arc, tarc));
  1041       return *this;
  1042     }
  1043 
  1044     /// \brief Copy the edge references into the given map.
  1045     ///
  1046     /// This function copies the edge references into the given map.
  1047     /// The parameter should be a map, whose key type is the Edge type of
  1048     /// the source graph, while the value type is the Edge type of the
  1049     /// destination graph.
  1050     template <typename EdgeRef>
  1051     GraphCopy& edgeRef(EdgeRef& map) {
  1052       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
  1053                            EdgeRefMap, EdgeRef>(map));
  1054       return *this;
  1055     }
  1056 
  1057     /// \brief Copy the edge cross references into the given map.
  1058     ///
  1059     /// This function copies the edge cross references (reverse references)
  1060     /// into the given map. The parameter should be a map, whose key type
  1061     /// is the Edge type of the destination graph, while the value type is
  1062     /// the Edge type of the source graph.
  1063     template <typename EdgeCrossRef>
  1064     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1065       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
  1066                            Edge, EdgeRefMap, EdgeCrossRef>(map));
  1067       return *this;
  1068     }
  1069 
  1070     /// \brief Make a copy of the given edge map.
  1071     ///
  1072     /// This function makes a copy of the given edge map for the newly
  1073     /// created graph.
  1074     /// The key type of the new map \c tmap should be the Edge type of the
  1075     /// destination graph, and the key type of the original map \c map
  1076     /// should be the Edge type of the source graph.
  1077     template <typename FromMap, typename ToMap>
  1078     GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
  1079       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
  1080                            EdgeRefMap, FromMap, ToMap>(map, tmap));
  1081       return *this;
  1082     }
  1083 
  1084     /// \brief Make a copy of the given edge.
  1085     ///
  1086     /// This function makes a copy of the given edge.
  1087     GraphCopy& edge(const Edge& edge, TEdge& tedge) {
  1088       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
  1089                            EdgeRefMap, TEdge>(edge, tedge));
  1090       return *this;
  1091     }
  1092 
  1093     /// \brief Execute copying.
  1094     ///
  1095     /// This function executes the copying of the graph along with the
  1096     /// copying of the assigned data.
  1097     void run() {
  1098       NodeRefMap nodeRefMap(_from);
  1099       EdgeRefMap edgeRefMap(_from);
  1100       ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
  1101       _core_bits::GraphCopySelector<To>::
  1102         copy(_from, _to, nodeRefMap, edgeRefMap);
  1103       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1104         _node_maps[i]->copy(_from, nodeRefMap);
  1105       }
  1106       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1107         _edge_maps[i]->copy(_from, edgeRefMap);
  1108       }
  1109       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1110         _arc_maps[i]->copy(_from, arcRefMap);
  1111       }
  1112     }
  1113 
  1114   private:
  1115 
  1116     const From& _from;
  1117     To& _to;
  1118 
  1119     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
  1120       _node_maps;
  1121 
  1122     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
  1123       _arc_maps;
  1124 
  1125     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
  1126       _edge_maps;
  1127 
  1128   };
  1129 
  1130   /// \brief Copy a graph to another graph.
  1131   ///
  1132   /// This function copies a graph to another graph.
  1133   /// The complete usage of it is detailed in the GraphCopy class,
  1134   /// but a short example shows a basic work:
  1135   ///\code
  1136   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
  1137   ///\endcode
  1138   ///
  1139   /// After the copy the \c nr map will contain the mapping from the
  1140   /// nodes of the \c from graph to the nodes of the \c to graph and
  1141   /// \c ecr will contain the mapping from the edges of the \c to graph
  1142   /// to the edges of the \c from graph.
  1143   ///
  1144   /// \see GraphCopy
  1145   template <typename From, typename To>
  1146   GraphCopy<From, To>
  1147   graphCopy(const From& from, To& to) {
  1148     return GraphCopy<From, To>(from, to);
  1149   }
  1150 
  1151   /// \brief Class to copy a bipartite graph.
  1152   ///
  1153   /// Class to copy a bipartite graph to another graph (duplicate a
  1154   /// graph). The simplest way of using it is through the
  1155   /// \c bpGraphCopy() function.
  1156   ///
  1157   /// This class not only make a copy of a bipartite graph, but it can
  1158   /// create references and cross references between the nodes, edges
  1159   /// and arcs of the two graphs, and it can copy maps for using with
  1160   /// the newly created graph.
  1161   ///
  1162   /// To make a copy from a graph, first an instance of BpGraphCopy
  1163   /// should be created, then the data belongs to the graph should
  1164   /// assigned to copy. In the end, the \c run() member should be
  1165   /// called.
  1166   ///
  1167   /// The next code copies a graph with several data:
  1168   ///\code
  1169   ///  BpGraphCopy<OrigBpGraph, NewBpGraph> cg(orig_graph, new_graph);
  1170   ///  // Create references for the nodes
  1171   ///  OrigBpGraph::NodeMap<NewBpGraph::Node> nr(orig_graph);
  1172   ///  cg.nodeRef(nr);
  1173   ///  // Create cross references (inverse) for the edges
  1174   ///  NewBpGraph::EdgeMap<OrigBpGraph::Edge> ecr(new_graph);
  1175   ///  cg.edgeCrossRef(ecr);
  1176   ///  // Copy a red node map
  1177   ///  OrigBpGraph::RedNodeMap<double> ormap(orig_graph);
  1178   ///  NewBpGraph::RedNodeMap<double> nrmap(new_graph);
  1179   ///  cg.redNodeMap(ormap, nrmap);
  1180   ///  // Copy a node
  1181   ///  OrigBpGraph::Node on;
  1182   ///  NewBpGraph::Node nn;
  1183   ///  cg.node(on, nn);
  1184   ///  // Execute copying
  1185   ///  cg.run();
  1186   ///\endcode
  1187   template <typename From, typename To>
  1188   class BpGraphCopy {
  1189   private:
  1190 
  1191     typedef typename From::Node Node;
  1192     typedef typename From::RedNode RedNode;
  1193     typedef typename From::BlueNode BlueNode;
  1194     typedef typename From::NodeIt NodeIt;
  1195     typedef typename From::Arc Arc;
  1196     typedef typename From::ArcIt ArcIt;
  1197     typedef typename From::Edge Edge;
  1198     typedef typename From::EdgeIt EdgeIt;
  1199 
  1200     typedef typename To::Node TNode;
  1201     typedef typename To::RedNode TRedNode;
  1202     typedef typename To::BlueNode TBlueNode;
  1203     typedef typename To::Arc TArc;
  1204     typedef typename To::Edge TEdge;
  1205 
  1206     typedef typename From::template RedNodeMap<TRedNode> RedNodeRefMap;
  1207     typedef typename From::template BlueNodeMap<TBlueNode> BlueNodeRefMap;
  1208     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
  1209 
  1210     struct NodeRefMap {
  1211       NodeRefMap(const From& from, const RedNodeRefMap& red_node_ref,
  1212                  const BlueNodeRefMap& blue_node_ref)
  1213         : _from(from), _red_node_ref(red_node_ref),
  1214           _blue_node_ref(blue_node_ref) {}
  1215 
  1216       typedef typename From::Node Key;
  1217       typedef typename To::Node Value;
  1218 
  1219       Value operator[](const Key& key) const {
  1220         if (_from.red(key)) {
  1221           return _red_node_ref[_from.asRedNodeUnsafe(key)];
  1222         } else {
  1223           return _blue_node_ref[_from.asBlueNodeUnsafe(key)];
  1224         }
  1225       }
  1226 
  1227       const From& _from;
  1228       const RedNodeRefMap& _red_node_ref;
  1229       const BlueNodeRefMap& _blue_node_ref;
  1230     };
  1231 
  1232     struct ArcRefMap {
  1233       ArcRefMap(const From& from, const To& to, const EdgeRefMap& edge_ref)
  1234         : _from(from), _to(to), _edge_ref(edge_ref) {}
  1235 
  1236       typedef typename From::Arc Key;
  1237       typedef typename To::Arc Value;
  1238 
  1239       Value operator[](const Key& key) const {
  1240         return _to.direct(_edge_ref[key], _from.direction(key));
  1241       }
  1242 
  1243       const From& _from;
  1244       const To& _to;
  1245       const EdgeRefMap& _edge_ref;
  1246     };
  1247 
  1248   public:
  1249 
  1250     /// \brief Constructor of BpGraphCopy.
  1251     ///
  1252     /// Constructor of BpGraphCopy for copying the content of the
  1253     /// \c from graph into the \c to graph.
  1254     BpGraphCopy(const From& from, To& to)
  1255       : _from(from), _to(to) {}
  1256 
  1257     /// \brief Destructor of BpGraphCopy
  1258     ///
  1259     /// Destructor of BpGraphCopy.
  1260     ~BpGraphCopy() {
  1261       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1262         delete _node_maps[i];
  1263       }
  1264       for (int i = 0; i < int(_red_maps.size()); ++i) {
  1265         delete _red_maps[i];
  1266       }
  1267       for (int i = 0; i < int(_blue_maps.size()); ++i) {
  1268         delete _blue_maps[i];
  1269       }
  1270       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1271         delete _arc_maps[i];
  1272       }
  1273       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1274         delete _edge_maps[i];
  1275       }
  1276     }
  1277 
  1278     /// \brief Copy the node references into the given map.
  1279     ///
  1280     /// This function copies the node references into the given map.
  1281     /// The parameter should be a map, whose key type is the Node type of
  1282     /// the source graph, while the value type is the Node type of the
  1283     /// destination graph.
  1284     template <typename NodeRef>
  1285     BpGraphCopy& nodeRef(NodeRef& map) {
  1286       _node_maps.push_back(new _core_bits::RefCopy<From, Node,
  1287                            NodeRefMap, NodeRef>(map));
  1288       return *this;
  1289     }
  1290 
  1291     /// \brief Copy the node cross references into the given map.
  1292     ///
  1293     /// This function copies the node cross references (reverse references)
  1294     /// into the given map. The parameter should be a map, whose key type
  1295     /// is the Node type of the destination graph, while the value type is
  1296     /// the Node type of the source graph.
  1297     template <typename NodeCrossRef>
  1298     BpGraphCopy& nodeCrossRef(NodeCrossRef& map) {
  1299       _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
  1300                            NodeRefMap, NodeCrossRef>(map));
  1301       return *this;
  1302     }
  1303 
  1304     /// \brief Make a copy of the given node map.
  1305     ///
  1306     /// This function makes a copy of the given node map for the newly
  1307     /// created graph.
  1308     /// The key type of the new map \c tmap should be the Node type of the
  1309     /// destination graph, and the key type of the original map \c map
  1310     /// should be the Node type of the source graph.
  1311     template <typename FromMap, typename ToMap>
  1312     BpGraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
  1313       _node_maps.push_back(new _core_bits::MapCopy<From, Node,
  1314                            NodeRefMap, FromMap, ToMap>(map, tmap));
  1315       return *this;
  1316     }
  1317 
  1318     /// \brief Make a copy of the given node.
  1319     ///
  1320     /// This function makes a copy of the given node.
  1321     BpGraphCopy& node(const Node& node, TNode& tnode) {
  1322       _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
  1323                            NodeRefMap, TNode>(node, tnode));
  1324       return *this;
  1325     }
  1326 
  1327     /// \brief Copy the red node references into the given map.
  1328     ///
  1329     /// This function copies the red node references into the given
  1330     /// map.  The parameter should be a map, whose key type is the
  1331     /// Node type of the source graph with the red item set, while the
  1332     /// value type is the Node type of the destination graph.
  1333     template <typename RedRef>
  1334     BpGraphCopy& redRef(RedRef& map) {
  1335       _red_maps.push_back(new _core_bits::RefCopy<From, RedNode,
  1336                           RedNodeRefMap, RedRef>(map));
  1337       return *this;
  1338     }
  1339 
  1340     /// \brief Copy the red node cross references into the given map.
  1341     ///
  1342     /// This function copies the red node cross references (reverse
  1343     /// references) into the given map. The parameter should be a map,
  1344     /// whose key type is the Node type of the destination graph with
  1345     /// the red item set, while the value type is the Node type of the
  1346     /// source graph.
  1347     template <typename RedCrossRef>
  1348     BpGraphCopy& redCrossRef(RedCrossRef& map) {
  1349       _red_maps.push_back(new _core_bits::CrossRefCopy<From, RedNode,
  1350                           RedNodeRefMap, RedCrossRef>(map));
  1351       return *this;
  1352     }
  1353 
  1354     /// \brief Make a copy of the given red node map.
  1355     ///
  1356     /// This function makes a copy of the given red node map for the newly
  1357     /// created graph.
  1358     /// The key type of the new map \c tmap should be the Node type of
  1359     /// the destination graph with the red items, and the key type of
  1360     /// the original map \c map should be the Node type of the source
  1361     /// graph.
  1362     template <typename FromMap, typename ToMap>
  1363     BpGraphCopy& redNodeMap(const FromMap& map, ToMap& tmap) {
  1364       _red_maps.push_back(new _core_bits::MapCopy<From, RedNode,
  1365                           RedNodeRefMap, FromMap, ToMap>(map, tmap));
  1366       return *this;
  1367     }
  1368 
  1369     /// \brief Make a copy of the given red node.
  1370     ///
  1371     /// This function makes a copy of the given red node.
  1372     BpGraphCopy& redNode(const RedNode& node, TRedNode& tnode) {
  1373       _red_maps.push_back(new _core_bits::ItemCopy<From, RedNode,
  1374                           RedNodeRefMap, TRedNode>(node, tnode));
  1375       return *this;
  1376     }
  1377 
  1378     /// \brief Copy the blue node references into the given map.
  1379     ///
  1380     /// This function copies the blue node references into the given
  1381     /// map.  The parameter should be a map, whose key type is the
  1382     /// Node type of the source graph with the blue item set, while the
  1383     /// value type is the Node type of the destination graph.
  1384     template <typename BlueRef>
  1385     BpGraphCopy& blueRef(BlueRef& map) {
  1386       _blue_maps.push_back(new _core_bits::RefCopy<From, BlueNode,
  1387                            BlueNodeRefMap, BlueRef>(map));
  1388       return *this;
  1389     }
  1390 
  1391     /// \brief Copy the blue node cross references into the given map.
  1392     ///
  1393     /// This function copies the blue node cross references (reverse
  1394     /// references) into the given map. The parameter should be a map,
  1395     /// whose key type is the Node type of the destination graph with
  1396     /// the blue item set, while the value type is the Node type of the
  1397     /// source graph.
  1398     template <typename BlueCrossRef>
  1399     BpGraphCopy& blueCrossRef(BlueCrossRef& map) {
  1400       _blue_maps.push_back(new _core_bits::CrossRefCopy<From, BlueNode,
  1401                            BlueNodeRefMap, BlueCrossRef>(map));
  1402       return *this;
  1403     }
  1404 
  1405     /// \brief Make a copy of the given blue node map.
  1406     ///
  1407     /// This function makes a copy of the given blue node map for the newly
  1408     /// created graph.
  1409     /// The key type of the new map \c tmap should be the Node type of
  1410     /// the destination graph with the blue items, and the key type of
  1411     /// the original map \c map should be the Node type of the source
  1412     /// graph.
  1413     template <typename FromMap, typename ToMap>
  1414     BpGraphCopy& blueNodeMap(const FromMap& map, ToMap& tmap) {
  1415       _blue_maps.push_back(new _core_bits::MapCopy<From, BlueNode,
  1416                            BlueNodeRefMap, FromMap, ToMap>(map, tmap));
  1417       return *this;
  1418     }
  1419 
  1420     /// \brief Make a copy of the given blue node.
  1421     ///
  1422     /// This function makes a copy of the given blue node.
  1423     BpGraphCopy& blueNode(const BlueNode& node, TBlueNode& tnode) {
  1424       _blue_maps.push_back(new _core_bits::ItemCopy<From, BlueNode,
  1425                            BlueNodeRefMap, TBlueNode>(node, tnode));
  1426       return *this;
  1427     }
  1428 
  1429     /// \brief Copy the arc references into the given map.
  1430     ///
  1431     /// This function copies the arc references into the given map.
  1432     /// The parameter should be a map, whose key type is the Arc type of
  1433     /// the source graph, while the value type is the Arc type of the
  1434     /// destination graph.
  1435     template <typename ArcRef>
  1436     BpGraphCopy& arcRef(ArcRef& map) {
  1437       _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
  1438                           ArcRefMap, ArcRef>(map));
  1439       return *this;
  1440     }
  1441 
  1442     /// \brief Copy the arc cross references into the given map.
  1443     ///
  1444     /// This function copies the arc cross references (reverse references)
  1445     /// into the given map. The parameter should be a map, whose key type
  1446     /// is the Arc type of the destination graph, while the value type is
  1447     /// the Arc type of the source graph.
  1448     template <typename ArcCrossRef>
  1449     BpGraphCopy& arcCrossRef(ArcCrossRef& map) {
  1450       _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
  1451                           ArcRefMap, ArcCrossRef>(map));
  1452       return *this;
  1453     }
  1454 
  1455     /// \brief Make a copy of the given arc map.
  1456     ///
  1457     /// This function makes a copy of the given arc map for the newly
  1458     /// created graph.
  1459     /// The key type of the new map \c tmap should be the Arc type of the
  1460     /// destination graph, and the key type of the original map \c map
  1461     /// should be the Arc type of the source graph.
  1462     template <typename FromMap, typename ToMap>
  1463     BpGraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
  1464       _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
  1465                           ArcRefMap, FromMap, ToMap>(map, tmap));
  1466       return *this;
  1467     }
  1468 
  1469     /// \brief Make a copy of the given arc.
  1470     ///
  1471     /// This function makes a copy of the given arc.
  1472     BpGraphCopy& arc(const Arc& arc, TArc& tarc) {
  1473       _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
  1474                           ArcRefMap, TArc>(arc, tarc));
  1475       return *this;
  1476     }
  1477 
  1478     /// \brief Copy the edge references into the given map.
  1479     ///
  1480     /// This function copies the edge references into the given map.
  1481     /// The parameter should be a map, whose key type is the Edge type of
  1482     /// the source graph, while the value type is the Edge type of the
  1483     /// destination graph.
  1484     template <typename EdgeRef>
  1485     BpGraphCopy& edgeRef(EdgeRef& map) {
  1486       _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
  1487                            EdgeRefMap, EdgeRef>(map));
  1488       return *this;
  1489     }
  1490 
  1491     /// \brief Copy the edge cross references into the given map.
  1492     ///
  1493     /// This function copies the edge cross references (reverse references)
  1494     /// into the given map. The parameter should be a map, whose key type
  1495     /// is the Edge type of the destination graph, while the value type is
  1496     /// the Edge type of the source graph.
  1497     template <typename EdgeCrossRef>
  1498     BpGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
  1499       _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
  1500                            Edge, EdgeRefMap, EdgeCrossRef>(map));
  1501       return *this;
  1502     }
  1503 
  1504     /// \brief Make a copy of the given edge map.
  1505     ///
  1506     /// This function makes a copy of the given edge map for the newly
  1507     /// created graph.
  1508     /// The key type of the new map \c tmap should be the Edge type of the
  1509     /// destination graph, and the key type of the original map \c map
  1510     /// should be the Edge type of the source graph.
  1511     template <typename FromMap, typename ToMap>
  1512     BpGraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
  1513       _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
  1514                            EdgeRefMap, FromMap, ToMap>(map, tmap));
  1515       return *this;
  1516     }
  1517 
  1518     /// \brief Make a copy of the given edge.
  1519     ///
  1520     /// This function makes a copy of the given edge.
  1521     BpGraphCopy& edge(const Edge& edge, TEdge& tedge) {
  1522       _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
  1523                            EdgeRefMap, TEdge>(edge, tedge));
  1524       return *this;
  1525     }
  1526 
  1527     /// \brief Execute copying.
  1528     ///
  1529     /// This function executes the copying of the graph along with the
  1530     /// copying of the assigned data.
  1531     void run() {
  1532       RedNodeRefMap redNodeRefMap(_from);
  1533       BlueNodeRefMap blueNodeRefMap(_from);
  1534       NodeRefMap nodeRefMap(_from, redNodeRefMap, blueNodeRefMap);
  1535       EdgeRefMap edgeRefMap(_from);
  1536       ArcRefMap arcRefMap(_from, _to, edgeRefMap);
  1537       _core_bits::BpGraphCopySelector<To>::
  1538         copy(_from, _to, redNodeRefMap, blueNodeRefMap, edgeRefMap);
  1539       for (int i = 0; i < int(_node_maps.size()); ++i) {
  1540         _node_maps[i]->copy(_from, nodeRefMap);
  1541       }
  1542       for (int i = 0; i < int(_red_maps.size()); ++i) {
  1543         _red_maps[i]->copy(_from, redNodeRefMap);
  1544       }
  1545       for (int i = 0; i < int(_blue_maps.size()); ++i) {
  1546         _blue_maps[i]->copy(_from, blueNodeRefMap);
  1547       }
  1548       for (int i = 0; i < int(_edge_maps.size()); ++i) {
  1549         _edge_maps[i]->copy(_from, edgeRefMap);
  1550       }
  1551       for (int i = 0; i < int(_arc_maps.size()); ++i) {
  1552         _arc_maps[i]->copy(_from, arcRefMap);
  1553       }
  1554     }
  1555 
  1556   private:
  1557 
  1558     const From& _from;
  1559     To& _to;
  1560 
  1561     std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
  1562       _node_maps;
  1563 
  1564     std::vector<_core_bits::MapCopyBase<From, RedNode, RedNodeRefMap>* >
  1565       _red_maps;
  1566 
  1567     std::vector<_core_bits::MapCopyBase<From, BlueNode, BlueNodeRefMap>* >
  1568       _blue_maps;
  1569 
  1570     std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
  1571       _arc_maps;
  1572 
  1573     std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
  1574       _edge_maps;
  1575 
  1576   };
  1577 
  1578   /// \brief Copy a graph to another graph.
  1579   ///
  1580   /// This function copies a graph to another graph.
  1581   /// The complete usage of it is detailed in the BpGraphCopy class,
  1582   /// but a short example shows a basic work:
  1583   ///\code
  1584   /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
  1585   ///\endcode
  1586   ///
  1587   /// After the copy the \c nr map will contain the mapping from the
  1588   /// nodes of the \c from graph to the nodes of the \c to graph and
  1589   /// \c ecr will contain the mapping from the edges of the \c to graph
  1590   /// to the edges of the \c from graph.
  1591   ///
  1592   /// \see BpGraphCopy
  1593   template <typename From, typename To>
  1594   BpGraphCopy<From, To>
  1595   bpGraphCopy(const From& from, To& to) {
  1596     return BpGraphCopy<From, To>(from, to);
  1597   }
  1598 
  1599   namespace _core_bits {
  1600 
  1601     template <typename Graph, typename Enable = void>
  1602     struct FindArcSelector {
  1603       typedef typename Graph::Node Node;
  1604       typedef typename Graph::Arc Arc;
  1605       static Arc find(const Graph &g, Node u, Node v, Arc e) {
  1606         if (e == INVALID) {
  1607           g.firstOut(e, u);
  1608         } else {
  1609           g.nextOut(e);
  1610         }
  1611         while (e != INVALID && g.target(e) != v) {
  1612           g.nextOut(e);
  1613         }
  1614         return e;
  1615       }
  1616     };
  1617 
  1618     template <typename Graph>
  1619     struct FindArcSelector<
  1620       Graph,
  1621       typename enable_if<typename Graph::FindArcTag, void>::type>
  1622     {
  1623       typedef typename Graph::Node Node;
  1624       typedef typename Graph::Arc Arc;
  1625       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
  1626         return g.findArc(u, v, prev);
  1627       }
  1628     };
  1629   }
  1630 
  1631   /// \brief Find an arc between two nodes of a digraph.
  1632   ///
  1633   /// This function finds an arc from node \c u to node \c v in the
  1634   /// digraph \c g.
  1635   ///
  1636   /// If \c prev is \ref INVALID (this is the default value), then
  1637   /// it finds the first arc from \c u to \c v. Otherwise it looks for
  1638   /// the next arc from \c u to \c v after \c prev.
  1639   /// \return The found arc or \ref INVALID if there is no such an arc.
  1640   ///
  1641   /// Thus you can iterate through each arc from \c u to \c v as it follows.
  1642   ///\code
  1643   /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
  1644   ///   ...
  1645   /// }
  1646   ///\endcode
  1647   ///
  1648   /// \note \ref ConArcIt provides iterator interface for the same
  1649   /// functionality.
  1650   ///
  1651   ///\sa ConArcIt
  1652   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1653   template <typename Graph>
  1654   inline typename Graph::Arc
  1655   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1656           typename Graph::Arc prev = INVALID) {
  1657     return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
  1658   }
  1659 
  1660   /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
  1661   ///
  1662   /// Iterator for iterating on parallel arcs connecting the same nodes. It is
  1663   /// a higher level interface for the \ref findArc() function. You can
  1664   /// use it the following way:
  1665   ///\code
  1666   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
  1667   ///   ...
  1668   /// }
  1669   ///\endcode
  1670   ///
  1671   ///\sa findArc()
  1672   ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
  1673   template <typename GR>
  1674   class ConArcIt : public GR::Arc {
  1675     typedef typename GR::Arc Parent;
  1676 
  1677   public:
  1678 
  1679     typedef typename GR::Arc Arc;
  1680     typedef typename GR::Node Node;
  1681 
  1682     /// \brief Constructor.
  1683     ///
  1684     /// Construct a new ConArcIt iterating on the arcs that
  1685     /// connects nodes \c u and \c v.
  1686     ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
  1687       Parent::operator=(findArc(_graph, u, v));
  1688     }
  1689 
  1690     /// \brief Constructor.
  1691     ///
  1692     /// Construct a new ConArcIt that continues the iterating from arc \c a.
  1693     ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
  1694 
  1695     /// \brief Increment operator.
  1696     ///
  1697     /// It increments the iterator and gives back the next arc.
  1698     ConArcIt& operator++() {
  1699       Parent::operator=(findArc(_graph, _graph.source(*this),
  1700                                 _graph.target(*this), *this));
  1701       return *this;
  1702     }
  1703   private:
  1704     const GR& _graph;
  1705   };
  1706 
  1707   namespace _core_bits {
  1708 
  1709     template <typename Graph, typename Enable = void>
  1710     struct FindEdgeSelector {
  1711       typedef typename Graph::Node Node;
  1712       typedef typename Graph::Edge Edge;
  1713       static Edge find(const Graph &g, Node u, Node v, Edge e) {
  1714         bool b;
  1715         if (u != v) {
  1716           if (e == INVALID) {
  1717             g.firstInc(e, b, u);
  1718           } else {
  1719             b = g.u(e) == u;
  1720             g.nextInc(e, b);
  1721           }
  1722           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
  1723             g.nextInc(e, b);
  1724           }
  1725         } else {
  1726           if (e == INVALID) {
  1727             g.firstInc(e, b, u);
  1728           } else {
  1729             b = true;
  1730             g.nextInc(e, b);
  1731           }
  1732           while (e != INVALID && (!b || g.v(e) != v)) {
  1733             g.nextInc(e, b);
  1734           }
  1735         }
  1736         return e;
  1737       }
  1738     };
  1739 
  1740     template <typename Graph>
  1741     struct FindEdgeSelector<
  1742       Graph,
  1743       typename enable_if<typename Graph::FindEdgeTag, void>::type>
  1744     {
  1745       typedef typename Graph::Node Node;
  1746       typedef typename Graph::Edge Edge;
  1747       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
  1748         return g.findEdge(u, v, prev);
  1749       }
  1750     };
  1751   }
  1752 
  1753   /// \brief Find an edge between two nodes of a graph.
  1754   ///
  1755   /// This function finds an edge from node \c u to node \c v in graph \c g.
  1756   /// If node \c u and node \c v is equal then each loop edge
  1757   /// will be enumerated once.
  1758   ///
  1759   /// If \c prev is \ref INVALID (this is the default value), then
  1760   /// it finds the first edge from \c u to \c v. Otherwise it looks for
  1761   /// the next edge from \c u to \c v after \c prev.
  1762   /// \return The found edge or \ref INVALID if there is no such an edge.
  1763   ///
  1764   /// Thus you can iterate through each edge between \c u and \c v
  1765   /// as it follows.
  1766   ///\code
  1767   /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
  1768   ///   ...
  1769   /// }
  1770   ///\endcode
  1771   ///
  1772   /// \note \ref ConEdgeIt provides iterator interface for the same
  1773   /// functionality.
  1774   ///
  1775   ///\sa ConEdgeIt
  1776   template <typename Graph>
  1777   inline typename Graph::Edge
  1778   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
  1779             typename Graph::Edge p = INVALID) {
  1780     return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
  1781   }
  1782 
  1783   /// \brief Iterator for iterating on parallel edges connecting the same nodes.
  1784   ///
  1785   /// Iterator for iterating on parallel edges connecting the same nodes.
  1786   /// It is a higher level interface for the findEdge() function. You can
  1787   /// use it the following way:
  1788   ///\code
  1789   /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
  1790   ///   ...
  1791   /// }
  1792   ///\endcode
  1793   ///
  1794   ///\sa findEdge()
  1795   template <typename GR>
  1796   class ConEdgeIt : public GR::Edge {
  1797     typedef typename GR::Edge Parent;
  1798 
  1799   public:
  1800 
  1801     typedef typename GR::Edge Edge;
  1802     typedef typename GR::Node Node;
  1803 
  1804     /// \brief Constructor.
  1805     ///
  1806     /// Construct a new ConEdgeIt iterating on the edges that
  1807     /// connects nodes \c u and \c v.
  1808     ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
  1809       Parent::operator=(findEdge(_graph, _u, _v));
  1810     }
  1811 
  1812     /// \brief Constructor.
  1813     ///
  1814     /// Construct a new ConEdgeIt that continues iterating from edge \c e.
  1815     ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
  1816 
  1817     /// \brief Increment operator.
  1818     ///
  1819     /// It increments the iterator and gives back the next edge.
  1820     ConEdgeIt& operator++() {
  1821       Parent::operator=(findEdge(_graph, _u, _v, *this));
  1822       return *this;
  1823     }
  1824   private:
  1825     const GR& _graph;
  1826     Node _u, _v;
  1827   };
  1828 
  1829 
  1830   ///Dynamic arc look-up between given endpoints.
  1831 
  1832   ///Using this class, you can find an arc in a digraph from a given
  1833   ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
  1834   ///where <em>d</em> is the out-degree of the source node.
  1835   ///
  1836   ///It is possible to find \e all parallel arcs between two nodes with
  1837   ///the \c operator() member.
  1838   ///
  1839   ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
  1840   ///\ref AllArcLookUp if your digraph is not changed so frequently.
  1841   ///
  1842   ///This class uses a self-adjusting binary search tree, the Splay tree
  1843   ///of Sleator and Tarjan to guarantee the logarithmic amortized
  1844   ///time bound for arc look-ups. This class also guarantees the
  1845   ///optimal time bound in a constant factor for any distribution of
  1846   ///queries.
  1847   ///
  1848   ///\tparam GR The type of the underlying digraph.
  1849   ///
  1850   ///\sa ArcLookUp
  1851   ///\sa AllArcLookUp
  1852   template <typename GR>
  1853   class DynArcLookUp
  1854     : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
  1855   {
  1856     typedef typename ItemSetTraits<GR, typename GR::Arc>
  1857     ::ItemNotifier::ObserverBase Parent;
  1858 
  1859     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  1860 
  1861   public:
  1862 
  1863     /// The Digraph type
  1864     typedef GR Digraph;
  1865 
  1866   protected:
  1867 
  1868     class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
  1869     {
  1870       typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
  1871 
  1872     public:
  1873 
  1874       AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
  1875 
  1876       virtual void add(const Node& node) {
  1877         Parent::add(node);
  1878         Parent::set(node, INVALID);
  1879       }
  1880 
  1881       virtual void add(const std::vector<Node>& nodes) {
  1882         Parent::add(nodes);
  1883         for (int i = 0; i < int(nodes.size()); ++i) {
  1884           Parent::set(nodes[i], INVALID);
  1885         }
  1886       }
  1887 
  1888       virtual void build() {
  1889         Parent::build();
  1890         Node it;
  1891         typename Parent::Notifier* nf = Parent::notifier();
  1892         for (nf->first(it); it != INVALID; nf->next(it)) {
  1893           Parent::set(it, INVALID);
  1894         }
  1895       }
  1896     };
  1897 
  1898     class ArcLess {
  1899       const Digraph &g;
  1900     public:
  1901       ArcLess(const Digraph &_g) : g(_g) {}
  1902       bool operator()(Arc a,Arc b) const
  1903       {
  1904         return g.target(a)<g.target(b);
  1905       }
  1906     };
  1907 
  1908   protected:
  1909 
  1910     const Digraph &_g;
  1911     AutoNodeMap _head;
  1912     typename Digraph::template ArcMap<Arc> _parent;
  1913     typename Digraph::template ArcMap<Arc> _left;
  1914     typename Digraph::template ArcMap<Arc> _right;
  1915 
  1916   public:
  1917 
  1918     ///Constructor
  1919 
  1920     ///Constructor.
  1921     ///
  1922     ///It builds up the search database.
  1923     DynArcLookUp(const Digraph &g)
  1924       : _g(g),_head(g),_parent(g),_left(g),_right(g)
  1925     {
  1926       Parent::attach(_g.notifier(typename Digraph::Arc()));
  1927       refresh();
  1928     }
  1929 
  1930   protected:
  1931 
  1932     virtual void add(const Arc& arc) {
  1933       insert(arc);
  1934     }
  1935 
  1936     virtual void add(const std::vector<Arc>& arcs) {
  1937       for (int i = 0; i < int(arcs.size()); ++i) {
  1938         insert(arcs[i]);
  1939       }
  1940     }
  1941 
  1942     virtual void erase(const Arc& arc) {
  1943       remove(arc);
  1944     }
  1945 
  1946     virtual void erase(const std::vector<Arc>& arcs) {
  1947       for (int i = 0; i < int(arcs.size()); ++i) {
  1948         remove(arcs[i]);
  1949       }
  1950     }
  1951 
  1952     virtual void build() {
  1953       refresh();
  1954     }
  1955 
  1956     virtual void clear() {
  1957       for(NodeIt n(_g);n!=INVALID;++n) {
  1958         _head[n] = INVALID;
  1959       }
  1960     }
  1961 
  1962     void insert(Arc arc) {
  1963       Node s = _g.source(arc);
  1964       Node t = _g.target(arc);
  1965       _left[arc] = INVALID;
  1966       _right[arc] = INVALID;
  1967 
  1968       Arc e = _head[s];
  1969       if (e == INVALID) {
  1970         _head[s] = arc;
  1971         _parent[arc] = INVALID;
  1972         return;
  1973       }
  1974       while (true) {
  1975         if (t < _g.target(e)) {
  1976           if (_left[e] == INVALID) {
  1977             _left[e] = arc;
  1978             _parent[arc] = e;
  1979             splay(arc);
  1980             return;
  1981           } else {
  1982             e = _left[e];
  1983           }
  1984         } else {
  1985           if (_right[e] == INVALID) {
  1986             _right[e] = arc;
  1987             _parent[arc] = e;
  1988             splay(arc);
  1989             return;
  1990           } else {
  1991             e = _right[e];
  1992           }
  1993         }
  1994       }
  1995     }
  1996 
  1997     void remove(Arc arc) {
  1998       if (_left[arc] == INVALID) {
  1999         if (_right[arc] != INVALID) {
  2000           _parent[_right[arc]] = _parent[arc];
  2001         }
  2002         if (_parent[arc] != INVALID) {
  2003           if (_left[_parent[arc]] == arc) {
  2004             _left[_parent[arc]] = _right[arc];
  2005           } else {
  2006             _right[_parent[arc]] = _right[arc];
  2007           }
  2008         } else {
  2009           _head[_g.source(arc)] = _right[arc];
  2010         }
  2011       } else if (_right[arc] == INVALID) {
  2012         _parent[_left[arc]] = _parent[arc];
  2013         if (_parent[arc] != INVALID) {
  2014           if (_left[_parent[arc]] == arc) {
  2015             _left[_parent[arc]] = _left[arc];
  2016           } else {
  2017             _right[_parent[arc]] = _left[arc];
  2018           }
  2019         } else {
  2020           _head[_g.source(arc)] = _left[arc];
  2021         }
  2022       } else {
  2023         Arc e = _left[arc];
  2024         if (_right[e] != INVALID) {
  2025           e = _right[e];
  2026           while (_right[e] != INVALID) {
  2027             e = _right[e];
  2028           }
  2029           Arc s = _parent[e];
  2030           _right[_parent[e]] = _left[e];
  2031           if (_left[e] != INVALID) {
  2032             _parent[_left[e]] = _parent[e];
  2033           }
  2034 
  2035           _left[e] = _left[arc];
  2036           _parent[_left[arc]] = e;
  2037           _right[e] = _right[arc];
  2038           _parent[_right[arc]] = e;
  2039 
  2040           _parent[e] = _parent[arc];
  2041           if (_parent[arc] != INVALID) {
  2042             if (_left[_parent[arc]] == arc) {
  2043               _left[_parent[arc]] = e;
  2044             } else {
  2045               _right[_parent[arc]] = e;
  2046             }
  2047           }
  2048           splay(s);
  2049         } else {
  2050           _right[e] = _right[arc];
  2051           _parent[_right[arc]] = e;
  2052           _parent[e] = _parent[arc];
  2053 
  2054           if (_parent[arc] != INVALID) {
  2055             if (_left[_parent[arc]] == arc) {
  2056               _left[_parent[arc]] = e;
  2057             } else {
  2058               _right[_parent[arc]] = e;
  2059             }
  2060           } else {
  2061             _head[_g.source(arc)] = e;
  2062           }
  2063         }
  2064       }
  2065     }
  2066 
  2067     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  2068     {
  2069       int m=(a+b)/2;
  2070       Arc me=v[m];
  2071       if (a < m) {
  2072         Arc left = refreshRec(v,a,m-1);
  2073         _left[me] = left;
  2074         _parent[left] = me;
  2075       } else {
  2076         _left[me] = INVALID;
  2077       }
  2078       if (m < b) {
  2079         Arc right = refreshRec(v,m+1,b);
  2080         _right[me] = right;
  2081         _parent[right] = me;
  2082       } else {
  2083         _right[me] = INVALID;
  2084       }
  2085       return me;
  2086     }
  2087 
  2088     void refresh() {
  2089       for(NodeIt n(_g);n!=INVALID;++n) {
  2090         std::vector<Arc> v;
  2091         for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
  2092         if (!v.empty()) {
  2093           std::sort(v.begin(),v.end(),ArcLess(_g));
  2094           Arc head = refreshRec(v,0,v.size()-1);
  2095           _head[n] = head;
  2096           _parent[head] = INVALID;
  2097         }
  2098         else _head[n] = INVALID;
  2099       }
  2100     }
  2101 
  2102     void zig(Arc v) {
  2103       Arc w = _parent[v];
  2104       _parent[v] = _parent[w];
  2105       _parent[w] = v;
  2106       _left[w] = _right[v];
  2107       _right[v] = w;
  2108       if (_parent[v] != INVALID) {
  2109         if (_right[_parent[v]] == w) {
  2110           _right[_parent[v]] = v;
  2111         } else {
  2112           _left[_parent[v]] = v;
  2113         }
  2114       }
  2115       if (_left[w] != INVALID){
  2116         _parent[_left[w]] = w;
  2117       }
  2118     }
  2119 
  2120     void zag(Arc v) {
  2121       Arc w = _parent[v];
  2122       _parent[v] = _parent[w];
  2123       _parent[w] = v;
  2124       _right[w] = _left[v];
  2125       _left[v] = w;
  2126       if (_parent[v] != INVALID){
  2127         if (_left[_parent[v]] == w) {
  2128           _left[_parent[v]] = v;
  2129         } else {
  2130           _right[_parent[v]] = v;
  2131         }
  2132       }
  2133       if (_right[w] != INVALID){
  2134         _parent[_right[w]] = w;
  2135       }
  2136     }
  2137 
  2138     void splay(Arc v) {
  2139       while (_parent[v] != INVALID) {
  2140         if (v == _left[_parent[v]]) {
  2141           if (_parent[_parent[v]] == INVALID) {
  2142             zig(v);
  2143           } else {
  2144             if (_parent[v] == _left[_parent[_parent[v]]]) {
  2145               zig(_parent[v]);
  2146               zig(v);
  2147             } else {
  2148               zig(v);
  2149               zag(v);
  2150             }
  2151           }
  2152         } else {
  2153           if (_parent[_parent[v]] == INVALID) {
  2154             zag(v);
  2155           } else {
  2156             if (_parent[v] == _left[_parent[_parent[v]]]) {
  2157               zag(v);
  2158               zig(v);
  2159             } else {
  2160               zag(_parent[v]);
  2161               zag(v);
  2162             }
  2163           }
  2164         }
  2165       }
  2166       _head[_g.source(v)] = v;
  2167     }
  2168 
  2169 
  2170   public:
  2171 
  2172     ///Find an arc between two nodes.
  2173 
  2174     ///Find an arc between two nodes.
  2175     ///\param s The source node.
  2176     ///\param t The target node.
  2177     ///\param p The previous arc between \c s and \c t. It it is INVALID or
  2178     ///not given, the operator finds the first appropriate arc.
  2179     ///\return An arc from \c s to \c t after \c p or
  2180     ///\ref INVALID if there is no more.
  2181     ///
  2182     ///For example, you can count the number of arcs from \c u to \c v in the
  2183     ///following way.
  2184     ///\code
  2185     ///DynArcLookUp<ListDigraph> ae(g);
  2186     ///...
  2187     ///int n = 0;
  2188     ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
  2189     ///\endcode
  2190     ///
  2191     ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
  2192     ///amortized time, specifically, the time complexity of the lookups
  2193     ///is equal to the optimal search tree implementation for the
  2194     ///current query distribution in a constant factor.
  2195     ///
  2196     ///\note This is a dynamic data structure, therefore the data
  2197     ///structure is updated after each graph alteration. Thus although
  2198     ///this data structure is theoretically faster than \ref ArcLookUp
  2199     ///and \ref AllArcLookUp, it often provides worse performance than
  2200     ///them.
  2201     Arc operator()(Node s, Node t, Arc p = INVALID) const  {
  2202       if (p == INVALID) {
  2203         Arc a = _head[s];
  2204         if (a == INVALID) return INVALID;
  2205         Arc r = INVALID;
  2206         while (true) {
  2207           if (_g.target(a) < t) {
  2208             if (_right[a] == INVALID) {
  2209               const_cast<DynArcLookUp&>(*this).splay(a);
  2210               return r;
  2211             } else {
  2212               a = _right[a];
  2213             }
  2214           } else {
  2215             if (_g.target(a) == t) {
  2216               r = a;
  2217             }
  2218             if (_left[a] == INVALID) {
  2219               const_cast<DynArcLookUp&>(*this).splay(a);
  2220               return r;
  2221             } else {
  2222               a = _left[a];
  2223             }
  2224           }
  2225         }
  2226       } else {
  2227         Arc a = p;
  2228         if (_right[a] != INVALID) {
  2229           a = _right[a];
  2230           while (_left[a] != INVALID) {
  2231             a = _left[a];
  2232           }
  2233           const_cast<DynArcLookUp&>(*this).splay(a);
  2234         } else {
  2235           while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
  2236             a = _parent[a];
  2237           }
  2238           if (_parent[a] == INVALID) {
  2239             return INVALID;
  2240           } else {
  2241             a = _parent[a];
  2242             const_cast<DynArcLookUp&>(*this).splay(a);
  2243           }
  2244         }
  2245         if (_g.target(a) == t) return a;
  2246         else return INVALID;
  2247       }
  2248     }
  2249 
  2250   };
  2251 
  2252   ///Fast arc look-up between given endpoints.
  2253 
  2254   ///Using this class, you can find an arc in a digraph from a given
  2255   ///source to a given target in time <em>O</em>(log<em>d</em>),
  2256   ///where <em>d</em> is the out-degree of the source node.
  2257   ///
  2258   ///It is not possible to find \e all parallel arcs between two nodes.
  2259   ///Use \ref AllArcLookUp for this purpose.
  2260   ///
  2261   ///\warning This class is static, so you should call refresh() (or at
  2262   ///least refresh(Node)) to refresh this data structure whenever the
  2263   ///digraph changes. This is a time consuming (superlinearly proportional
  2264   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  2265   ///
  2266   ///\tparam GR The type of the underlying digraph.
  2267   ///
  2268   ///\sa DynArcLookUp
  2269   ///\sa AllArcLookUp
  2270   template<class GR>
  2271   class ArcLookUp
  2272   {
  2273     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  2274 
  2275   public:
  2276 
  2277     /// The Digraph type
  2278     typedef GR Digraph;
  2279 
  2280   protected:
  2281     const Digraph &_g;
  2282     typename Digraph::template NodeMap<Arc> _head;
  2283     typename Digraph::template ArcMap<Arc> _left;
  2284     typename Digraph::template ArcMap<Arc> _right;
  2285 
  2286     class ArcLess {
  2287       const Digraph &g;
  2288     public:
  2289       ArcLess(const Digraph &_g) : g(_g) {}
  2290       bool operator()(Arc a,Arc b) const
  2291       {
  2292         return g.target(a)<g.target(b);
  2293       }
  2294     };
  2295 
  2296   public:
  2297 
  2298     ///Constructor
  2299 
  2300     ///Constructor.
  2301     ///
  2302     ///It builds up the search database, which remains valid until the digraph
  2303     ///changes.
  2304     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  2305 
  2306   private:
  2307     Arc refreshRec(std::vector<Arc> &v,int a,int b)
  2308     {
  2309       int m=(a+b)/2;
  2310       Arc me=v[m];
  2311       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
  2312       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
  2313       return me;
  2314     }
  2315   public:
  2316     ///Refresh the search data structure at a node.
  2317 
  2318     ///Build up the search database of node \c n.
  2319     ///
  2320     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
  2321     ///is the number of the outgoing arcs of \c n.
  2322     void refresh(Node n)
  2323     {
  2324       std::vector<Arc> v;
  2325       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2326       if(v.size()) {
  2327         std::sort(v.begin(),v.end(),ArcLess(_g));
  2328         _head[n]=refreshRec(v,0,v.size()-1);
  2329       }
  2330       else _head[n]=INVALID;
  2331     }
  2332     ///Refresh the full data structure.
  2333 
  2334     ///Build up the full search database. In fact, it simply calls
  2335     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2336     ///
  2337     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  2338     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  2339     ///out-degree of the digraph.
  2340     void refresh()
  2341     {
  2342       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2343     }
  2344 
  2345     ///Find an arc between two nodes.
  2346 
  2347     ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
  2348     ///where <em>d</em> is the number of outgoing arcs of \c s.
  2349     ///\param s The source node.
  2350     ///\param t The target node.
  2351     ///\return An arc from \c s to \c t if there exists,
  2352     ///\ref INVALID otherwise.
  2353     ///
  2354     ///\warning If you change the digraph, refresh() must be called before using
  2355     ///this operator. If you change the outgoing arcs of
  2356     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  2357     Arc operator()(Node s, Node t) const
  2358     {
  2359       Arc e;
  2360       for(e=_head[s];
  2361           e!=INVALID&&_g.target(e)!=t;
  2362           e = t < _g.target(e)?_left[e]:_right[e]) ;
  2363       return e;
  2364     }
  2365 
  2366   };
  2367 
  2368   ///Fast look-up of all arcs between given endpoints.
  2369 
  2370   ///This class is the same as \ref ArcLookUp, with the addition
  2371   ///that it makes it possible to find all parallel arcs between given
  2372   ///endpoints.
  2373   ///
  2374   ///\warning This class is static, so you should call refresh() (or at
  2375   ///least refresh(Node)) to refresh this data structure whenever the
  2376   ///digraph changes. This is a time consuming (superlinearly proportional
  2377   ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
  2378   ///
  2379   ///\tparam GR The type of the underlying digraph.
  2380   ///
  2381   ///\sa DynArcLookUp
  2382   ///\sa ArcLookUp
  2383   template<class GR>
  2384   class AllArcLookUp : public ArcLookUp<GR>
  2385   {
  2386     using ArcLookUp<GR>::_g;
  2387     using ArcLookUp<GR>::_right;
  2388     using ArcLookUp<GR>::_left;
  2389     using ArcLookUp<GR>::_head;
  2390 
  2391     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
  2392 
  2393     typename GR::template ArcMap<Arc> _next;
  2394 
  2395     Arc refreshNext(Arc head,Arc next=INVALID)
  2396     {
  2397       if(head==INVALID) return next;
  2398       else {
  2399         next=refreshNext(_right[head],next);
  2400         _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2401           ? next : INVALID;
  2402         return refreshNext(_left[head],head);
  2403       }
  2404     }
  2405 
  2406     void refreshNext()
  2407     {
  2408       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2409     }
  2410 
  2411   public:
  2412 
  2413     /// The Digraph type
  2414     typedef GR Digraph;
  2415 
  2416     ///Constructor
  2417 
  2418     ///Constructor.
  2419     ///
  2420     ///It builds up the search database, which remains valid until the digraph
  2421     ///changes.
  2422     AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
  2423 
  2424     ///Refresh the data structure at a node.
  2425 
  2426     ///Build up the search database of node \c n.
  2427     ///
  2428     ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
  2429     ///the number of the outgoing arcs of \c n.
  2430     void refresh(Node n)
  2431     {
  2432       ArcLookUp<GR>::refresh(n);
  2433       refreshNext(_head[n]);
  2434     }
  2435 
  2436     ///Refresh the full data structure.
  2437 
  2438     ///Build up the full search database. In fact, it simply calls
  2439     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2440     ///
  2441     ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
  2442     ///the number of the arcs in the digraph and <em>D</em> is the maximum
  2443     ///out-degree of the digraph.
  2444     void refresh()
  2445     {
  2446       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2447     }
  2448 
  2449     ///Find an arc between two nodes.
  2450 
  2451     ///Find an arc between two nodes.
  2452     ///\param s The source node.
  2453     ///\param t The target node.
  2454     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
  2455     ///not given, the operator finds the first appropriate arc.
  2456     ///\return An arc from \c s to \c t after \c prev or
  2457     ///\ref INVALID if there is no more.
  2458     ///
  2459     ///For example, you can count the number of arcs from \c u to \c v in the
  2460     ///following way.
  2461     ///\code
  2462     ///AllArcLookUp<ListDigraph> ae(g);
  2463     ///...
  2464     ///int n = 0;
  2465     ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
  2466     ///\endcode
  2467     ///
  2468     ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
  2469     ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
  2470     ///consecutive arcs are found in constant time.
  2471     ///
  2472     ///\warning If you change the digraph, refresh() must be called before using
  2473     ///this operator. If you change the outgoing arcs of
  2474     ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
  2475     ///
  2476     Arc operator()(Node s, Node t, Arc prev=INVALID) const
  2477     {
  2478       if(prev==INVALID)
  2479         {
  2480           Arc f=INVALID;
  2481           Arc e;
  2482           for(e=_head[s];
  2483               e!=INVALID&&_g.target(e)!=t;
  2484               e = t < _g.target(e)?_left[e]:_right[e]) ;
  2485           while(e!=INVALID)
  2486             if(_g.target(e)==t)
  2487               {
  2488                 f = e;
  2489                 e = _left[e];
  2490               }
  2491             else e = _right[e];
  2492           return f;
  2493         }
  2494       else return _next[prev];
  2495     }
  2496 
  2497   };
  2498 
  2499   /// @}
  2500 
  2501 } //namespace lemon
  2502 
  2503 #endif