1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/bits/enable_if.h>
26 #include <lemon/bits/traits.h>
29 ///\brief LEMON core utilities.
31 ///This header file contains core utilities for LEMON.
32 ///It is automatically included by all graph types, therefore it usually
33 ///do not have to be included directly.
37 /// \brief Dummy type to make it easier to create invalid iterators.
39 /// Dummy type to make it easier to create invalid iterators.
40 /// See \ref INVALID for the usage.
43 bool operator==(Invalid) { return true; }
44 bool operator!=(Invalid) { return false; }
45 bool operator< (Invalid) { return false; }
48 /// \brief Invalid iterators.
50 /// \ref Invalid is a global type that converts to each iterator
51 /// in such a way that the value of the target iterator will be invalid.
52 #ifdef LEMON_ONLY_TEMPLATES
53 const Invalid INVALID = Invalid();
55 extern const Invalid INVALID;
58 /// \addtogroup gutils
61 ///Create convenient typedefs for the digraph types and iterators
63 ///This \c \#define creates convenient type definitions for the following
64 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
65 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
66 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
68 ///\note If the graph type is a dependent type, ie. the graph type depend
69 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
71 #define DIGRAPH_TYPEDEFS(Digraph) \
72 typedef Digraph::Node Node; \
73 typedef Digraph::NodeIt NodeIt; \
74 typedef Digraph::Arc Arc; \
75 typedef Digraph::ArcIt ArcIt; \
76 typedef Digraph::InArcIt InArcIt; \
77 typedef Digraph::OutArcIt OutArcIt; \
78 typedef Digraph::NodeMap<bool> BoolNodeMap; \
79 typedef Digraph::NodeMap<int> IntNodeMap; \
80 typedef Digraph::NodeMap<double> DoubleNodeMap; \
81 typedef Digraph::ArcMap<bool> BoolArcMap; \
82 typedef Digraph::ArcMap<int> IntArcMap; \
83 typedef Digraph::ArcMap<double> DoubleArcMap;
85 ///Create convenient typedefs for the digraph types and iterators
87 ///\see DIGRAPH_TYPEDEFS
89 ///\note Use this macro, if the graph type is a dependent type,
90 ///ie. the graph type depend on a template parameter.
91 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
92 typedef typename Digraph::Node Node; \
93 typedef typename Digraph::NodeIt NodeIt; \
94 typedef typename Digraph::Arc Arc; \
95 typedef typename Digraph::ArcIt ArcIt; \
96 typedef typename Digraph::InArcIt InArcIt; \
97 typedef typename Digraph::OutArcIt OutArcIt; \
98 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
99 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
100 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
101 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
102 typedef typename Digraph::template ArcMap<int> IntArcMap; \
103 typedef typename Digraph::template ArcMap<double> DoubleArcMap;
105 ///Create convenient typedefs for the graph types and iterators
107 ///This \c \#define creates the same convenient type definitions as defined
108 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
109 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
112 ///\note If the graph type is a dependent type, ie. the graph type depend
113 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
115 #define GRAPH_TYPEDEFS(Graph) \
116 DIGRAPH_TYPEDEFS(Graph); \
117 typedef Graph::Edge Edge; \
118 typedef Graph::EdgeIt EdgeIt; \
119 typedef Graph::IncEdgeIt IncEdgeIt; \
120 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
121 typedef Graph::EdgeMap<int> IntEdgeMap; \
122 typedef Graph::EdgeMap<double> DoubleEdgeMap;
124 ///Create convenient typedefs for the graph types and iterators
126 ///\see GRAPH_TYPEDEFS
128 ///\note Use this macro, if the graph type is a dependent type,
129 ///ie. the graph type depend on a template parameter.
130 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
131 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
132 typedef typename Graph::Edge Edge; \
133 typedef typename Graph::EdgeIt EdgeIt; \
134 typedef typename Graph::IncEdgeIt IncEdgeIt; \
135 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
136 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
137 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap;
139 /// \brief Function to count the items in a graph.
141 /// This function counts the items (nodes, arcs etc.) in a graph.
142 /// The complexity of the function is linear because
143 /// it iterates on all of the items.
144 template <typename Graph, typename Item>
145 inline int countItems(const Graph& g) {
146 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
148 for (ItemIt it(g); it != INVALID; ++it) {
156 namespace _core_bits {
158 template <typename Graph, typename Enable = void>
159 struct CountNodesSelector {
160 static int count(const Graph &g) {
161 return countItems<Graph, typename Graph::Node>(g);
165 template <typename Graph>
166 struct CountNodesSelector<
168 enable_if<typename Graph::NodeNumTag, void>::type>
170 static int count(const Graph &g) {
176 /// \brief Function to count the nodes in the graph.
178 /// This function counts the nodes in the graph.
179 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
180 /// graph structures it is specialized to run in <em>O</em>(1).
182 /// \note If the graph contains a \c nodeNum() member function and a
183 /// \c NodeNumTag tag then this function calls directly the member
184 /// function to query the cardinality of the node set.
185 template <typename Graph>
186 inline int countNodes(const Graph& g) {
187 return _core_bits::CountNodesSelector<Graph>::count(g);
192 namespace _core_bits {
194 template <typename Graph, typename Enable = void>
195 struct CountArcsSelector {
196 static int count(const Graph &g) {
197 return countItems<Graph, typename Graph::Arc>(g);
201 template <typename Graph>
202 struct CountArcsSelector<
204 typename enable_if<typename Graph::ArcNumTag, void>::type>
206 static int count(const Graph &g) {
212 /// \brief Function to count the arcs in the graph.
214 /// This function counts the arcs in the graph.
215 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
216 /// graph structures it is specialized to run in <em>O</em>(1).
218 /// \note If the graph contains a \c arcNum() member function and a
219 /// \c ArcNumTag tag then this function calls directly the member
220 /// function to query the cardinality of the arc set.
221 template <typename Graph>
222 inline int countArcs(const Graph& g) {
223 return _core_bits::CountArcsSelector<Graph>::count(g);
228 namespace _core_bits {
230 template <typename Graph, typename Enable = void>
231 struct CountEdgesSelector {
232 static int count(const Graph &g) {
233 return countItems<Graph, typename Graph::Edge>(g);
237 template <typename Graph>
238 struct CountEdgesSelector<
240 typename enable_if<typename Graph::EdgeNumTag, void>::type>
242 static int count(const Graph &g) {
248 /// \brief Function to count the edges in the graph.
250 /// This function counts the edges in the graph.
251 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
252 /// graph structures it is specialized to run in <em>O</em>(1).
254 /// \note If the graph contains a \c edgeNum() member function and a
255 /// \c EdgeNumTag tag then this function calls directly the member
256 /// function to query the cardinality of the edge set.
257 template <typename Graph>
258 inline int countEdges(const Graph& g) {
259 return _core_bits::CountEdgesSelector<Graph>::count(g);
264 template <typename Graph, typename DegIt>
265 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
267 for (DegIt it(_g, _n); it != INVALID; ++it) {
273 /// \brief Function to count the number of the out-arcs from node \c n.
275 /// This function counts the number of the out-arcs from node \c n
276 /// in the graph \c g.
277 template <typename Graph>
278 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
279 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
282 /// \brief Function to count the number of the in-arcs to node \c n.
284 /// This function counts the number of the in-arcs to node \c n
285 /// in the graph \c g.
286 template <typename Graph>
287 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
288 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
291 /// \brief Function to count the number of the inc-edges to node \c n.
293 /// This function counts the number of the inc-edges to node \c n
294 /// in the undirected graph \c g.
295 template <typename Graph>
296 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
297 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
300 namespace _core_bits {
302 template <typename Digraph, typename Item, typename RefMap>
305 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
307 virtual ~MapCopyBase() {}
310 template <typename Digraph, typename Item, typename RefMap,
311 typename FromMap, typename ToMap>
312 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
315 MapCopy(const FromMap& map, ToMap& tmap)
316 : _map(map), _tmap(tmap) {}
318 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
319 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
320 for (ItemIt it(digraph); it != INVALID; ++it) {
321 _tmap.set(refMap[it], _map[it]);
330 template <typename Digraph, typename Item, typename RefMap, typename It>
331 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
334 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
336 virtual void copy(const Digraph&, const RefMap& refMap) {
345 template <typename Digraph, typename Item, typename RefMap, typename Ref>
346 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
349 RefCopy(Ref& map) : _map(map) {}
351 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
352 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
353 for (ItemIt it(digraph); it != INVALID; ++it) {
354 _map.set(it, refMap[it]);
362 template <typename Digraph, typename Item, typename RefMap,
364 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
367 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
369 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
370 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
371 for (ItemIt it(digraph); it != INVALID; ++it) {
372 _cmap.set(refMap[it], it);
380 template <typename Digraph, typename Enable = void>
381 struct DigraphCopySelector {
382 template <typename From, typename NodeRefMap, typename ArcRefMap>
383 static void copy(const From& from, Digraph &to,
384 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
385 for (typename From::NodeIt it(from); it != INVALID; ++it) {
386 nodeRefMap[it] = to.addNode();
388 for (typename From::ArcIt it(from); it != INVALID; ++it) {
389 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
390 nodeRefMap[from.target(it)]);
395 template <typename Digraph>
396 struct DigraphCopySelector<
398 typename enable_if<typename Digraph::BuildTag, void>::type>
400 template <typename From, typename NodeRefMap, typename ArcRefMap>
401 static void copy(const From& from, Digraph &to,
402 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
403 to.build(from, nodeRefMap, arcRefMap);
407 template <typename Graph, typename Enable = void>
408 struct GraphCopySelector {
409 template <typename From, typename NodeRefMap, typename EdgeRefMap>
410 static void copy(const From& from, Graph &to,
411 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
412 for (typename From::NodeIt it(from); it != INVALID; ++it) {
413 nodeRefMap[it] = to.addNode();
415 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
416 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
417 nodeRefMap[from.v(it)]);
422 template <typename Graph>
423 struct GraphCopySelector<
425 typename enable_if<typename Graph::BuildTag, void>::type>
427 template <typename From, typename NodeRefMap, typename EdgeRefMap>
428 static void copy(const From& from, Graph &to,
429 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
430 to.build(from, nodeRefMap, edgeRefMap);
436 /// \brief Class to copy a digraph.
438 /// Class to copy a digraph to another digraph (duplicate a digraph). The
439 /// simplest way of using it is through the \c digraphCopy() function.
441 /// This class not only make a copy of a digraph, but it can create
442 /// references and cross references between the nodes and arcs of
443 /// the two digraphs, and it can copy maps to use with the newly created
446 /// To make a copy from a digraph, first an instance of DigraphCopy
447 /// should be created, then the data belongs to the digraph should
448 /// assigned to copy. In the end, the \c run() member should be
451 /// The next code copies a digraph with several data:
453 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
454 /// // Create references for the nodes
455 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
457 /// // Create cross references (inverse) for the arcs
458 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
459 /// cg.arcCrossRef(acr);
460 /// // Copy an arc map
461 /// OrigGraph::ArcMap<double> oamap(orig_graph);
462 /// NewGraph::ArcMap<double> namap(new_graph);
463 /// cg.arcMap(oamap, namap);
465 /// OrigGraph::Node on;
466 /// NewGraph::Node nn;
468 /// // Execute copying
471 template <typename From, typename To>
475 typedef typename From::Node Node;
476 typedef typename From::NodeIt NodeIt;
477 typedef typename From::Arc Arc;
478 typedef typename From::ArcIt ArcIt;
480 typedef typename To::Node TNode;
481 typedef typename To::Arc TArc;
483 typedef typename From::template NodeMap<TNode> NodeRefMap;
484 typedef typename From::template ArcMap<TArc> ArcRefMap;
488 /// \brief Constructor of DigraphCopy.
490 /// Constructor of DigraphCopy for copying the content of the
491 /// \c from digraph into the \c to digraph.
492 DigraphCopy(const From& from, To& to)
493 : _from(from), _to(to) {}
495 /// \brief Destructor of DigraphCopy
497 /// Destructor of DigraphCopy.
499 for (int i = 0; i < int(_node_maps.size()); ++i) {
500 delete _node_maps[i];
502 for (int i = 0; i < int(_arc_maps.size()); ++i) {
508 /// \brief Copy the node references into the given map.
510 /// This function copies the node references into the given map.
511 /// The parameter should be a map, whose key type is the Node type of
512 /// the source digraph, while the value type is the Node type of the
513 /// destination digraph.
514 template <typename NodeRef>
515 DigraphCopy& nodeRef(NodeRef& map) {
516 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
517 NodeRefMap, NodeRef>(map));
521 /// \brief Copy the node cross references into the given map.
523 /// This function copies the node cross references (reverse references)
524 /// into the given map. The parameter should be a map, whose key type
525 /// is the Node type of the destination digraph, while the value type is
526 /// the Node type of the source digraph.
527 template <typename NodeCrossRef>
528 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
529 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
530 NodeRefMap, NodeCrossRef>(map));
534 /// \brief Make a copy of the given node map.
536 /// This function makes a copy of the given node map for the newly
538 /// The key type of the new map \c tmap should be the Node type of the
539 /// destination digraph, and the key type of the original map \c map
540 /// should be the Node type of the source digraph.
541 template <typename FromMap, typename ToMap>
542 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
543 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
544 NodeRefMap, FromMap, ToMap>(map, tmap));
548 /// \brief Make a copy of the given node.
550 /// This function makes a copy of the given node.
551 DigraphCopy& node(const Node& node, TNode& tnode) {
552 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
553 NodeRefMap, TNode>(node, tnode));
557 /// \brief Copy the arc references into the given map.
559 /// This function copies the arc references into the given map.
560 /// The parameter should be a map, whose key type is the Arc type of
561 /// the source digraph, while the value type is the Arc type of the
562 /// destination digraph.
563 template <typename ArcRef>
564 DigraphCopy& arcRef(ArcRef& map) {
565 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
566 ArcRefMap, ArcRef>(map));
570 /// \brief Copy the arc cross references into the given map.
572 /// This function copies the arc cross references (reverse references)
573 /// into the given map. The parameter should be a map, whose key type
574 /// is the Arc type of the destination digraph, while the value type is
575 /// the Arc type of the source digraph.
576 template <typename ArcCrossRef>
577 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
578 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
579 ArcRefMap, ArcCrossRef>(map));
583 /// \brief Make a copy of the given arc map.
585 /// This function makes a copy of the given arc map for the newly
587 /// The key type of the new map \c tmap should be the Arc type of the
588 /// destination digraph, and the key type of the original map \c map
589 /// should be the Arc type of the source digraph.
590 template <typename FromMap, typename ToMap>
591 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
592 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
593 ArcRefMap, FromMap, ToMap>(map, tmap));
597 /// \brief Make a copy of the given arc.
599 /// This function makes a copy of the given arc.
600 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
601 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
602 ArcRefMap, TArc>(arc, tarc));
606 /// \brief Execute copying.
608 /// This function executes the copying of the digraph along with the
609 /// copying of the assigned data.
611 NodeRefMap nodeRefMap(_from);
612 ArcRefMap arcRefMap(_from);
613 _core_bits::DigraphCopySelector<To>::
614 copy(_from, _to, nodeRefMap, arcRefMap);
615 for (int i = 0; i < int(_node_maps.size()); ++i) {
616 _node_maps[i]->copy(_from, nodeRefMap);
618 for (int i = 0; i < int(_arc_maps.size()); ++i) {
619 _arc_maps[i]->copy(_from, arcRefMap);
628 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
631 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
636 /// \brief Copy a digraph to another digraph.
638 /// This function copies a digraph to another digraph.
639 /// The complete usage of it is detailed in the DigraphCopy class, but
640 /// a short example shows a basic work:
642 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
645 /// After the copy the \c nr map will contain the mapping from the
646 /// nodes of the \c from digraph to the nodes of the \c to digraph and
647 /// \c acr will contain the mapping from the arcs of the \c to digraph
648 /// to the arcs of the \c from digraph.
651 template <typename From, typename To>
652 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
653 return DigraphCopy<From, To>(from, to);
656 /// \brief Class to copy a graph.
658 /// Class to copy a graph to another graph (duplicate a graph). The
659 /// simplest way of using it is through the \c graphCopy() function.
661 /// This class not only make a copy of a graph, but it can create
662 /// references and cross references between the nodes, edges and arcs of
663 /// the two graphs, and it can copy maps for using with the newly created
666 /// To make a copy from a graph, first an instance of GraphCopy
667 /// should be created, then the data belongs to the graph should
668 /// assigned to copy. In the end, the \c run() member should be
671 /// The next code copies a graph with several data:
673 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
674 /// // Create references for the nodes
675 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
677 /// // Create cross references (inverse) for the edges
678 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
679 /// cg.edgeCrossRef(ecr);
680 /// // Copy an edge map
681 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
682 /// NewGraph::EdgeMap<double> nemap(new_graph);
683 /// cg.edgeMap(oemap, nemap);
685 /// OrigGraph::Node on;
686 /// NewGraph::Node nn;
688 /// // Execute copying
691 template <typename From, typename To>
695 typedef typename From::Node Node;
696 typedef typename From::NodeIt NodeIt;
697 typedef typename From::Arc Arc;
698 typedef typename From::ArcIt ArcIt;
699 typedef typename From::Edge Edge;
700 typedef typename From::EdgeIt EdgeIt;
702 typedef typename To::Node TNode;
703 typedef typename To::Arc TArc;
704 typedef typename To::Edge TEdge;
706 typedef typename From::template NodeMap<TNode> NodeRefMap;
707 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
710 ArcRefMap(const From& from, const To& to,
711 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
712 : _from(from), _to(to),
713 _edge_ref(edge_ref), _node_ref(node_ref) {}
715 typedef typename From::Arc Key;
716 typedef typename To::Arc Value;
718 Value operator[](const Key& key) const {
719 bool forward = _from.u(key) != _from.v(key) ?
720 _node_ref[_from.source(key)] ==
721 _to.source(_to.direct(_edge_ref[key], true)) :
722 _from.direction(key);
723 return _to.direct(_edge_ref[key], forward);
728 const EdgeRefMap& _edge_ref;
729 const NodeRefMap& _node_ref;
734 /// \brief Constructor of GraphCopy.
736 /// Constructor of GraphCopy for copying the content of the
737 /// \c from graph into the \c to graph.
738 GraphCopy(const From& from, To& to)
739 : _from(from), _to(to) {}
741 /// \brief Destructor of GraphCopy
743 /// Destructor of GraphCopy.
745 for (int i = 0; i < int(_node_maps.size()); ++i) {
746 delete _node_maps[i];
748 for (int i = 0; i < int(_arc_maps.size()); ++i) {
751 for (int i = 0; i < int(_edge_maps.size()); ++i) {
752 delete _edge_maps[i];
756 /// \brief Copy the node references into the given map.
758 /// This function copies the node references into the given map.
759 /// The parameter should be a map, whose key type is the Node type of
760 /// the source graph, while the value type is the Node type of the
761 /// destination graph.
762 template <typename NodeRef>
763 GraphCopy& nodeRef(NodeRef& map) {
764 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
765 NodeRefMap, NodeRef>(map));
769 /// \brief Copy the node cross references into the given map.
771 /// This function copies the node cross references (reverse references)
772 /// into the given map. The parameter should be a map, whose key type
773 /// is the Node type of the destination graph, while the value type is
774 /// the Node type of the source graph.
775 template <typename NodeCrossRef>
776 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
777 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
778 NodeRefMap, NodeCrossRef>(map));
782 /// \brief Make a copy of the given node map.
784 /// This function makes a copy of the given node map for the newly
786 /// The key type of the new map \c tmap should be the Node type of the
787 /// destination graph, and the key type of the original map \c map
788 /// should be the Node type of the source graph.
789 template <typename FromMap, typename ToMap>
790 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
791 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
792 NodeRefMap, FromMap, ToMap>(map, tmap));
796 /// \brief Make a copy of the given node.
798 /// This function makes a copy of the given node.
799 GraphCopy& node(const Node& node, TNode& tnode) {
800 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
801 NodeRefMap, TNode>(node, tnode));
805 /// \brief Copy the arc references into the given map.
807 /// This function copies the arc references into the given map.
808 /// The parameter should be a map, whose key type is the Arc type of
809 /// the source graph, while the value type is the Arc type of the
810 /// destination graph.
811 template <typename ArcRef>
812 GraphCopy& arcRef(ArcRef& map) {
813 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
814 ArcRefMap, ArcRef>(map));
818 /// \brief Copy the arc cross references into the given map.
820 /// This function copies the arc cross references (reverse references)
821 /// into the given map. The parameter should be a map, whose key type
822 /// is the Arc type of the destination graph, while the value type is
823 /// the Arc type of the source graph.
824 template <typename ArcCrossRef>
825 GraphCopy& arcCrossRef(ArcCrossRef& map) {
826 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
827 ArcRefMap, ArcCrossRef>(map));
831 /// \brief Make a copy of the given arc map.
833 /// This function makes a copy of the given arc map for the newly
835 /// The key type of the new map \c tmap should be the Arc type of the
836 /// destination graph, and the key type of the original map \c map
837 /// should be the Arc type of the source graph.
838 template <typename FromMap, typename ToMap>
839 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
840 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
841 ArcRefMap, FromMap, ToMap>(map, tmap));
845 /// \brief Make a copy of the given arc.
847 /// This function makes a copy of the given arc.
848 GraphCopy& arc(const Arc& arc, TArc& tarc) {
849 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
850 ArcRefMap, TArc>(arc, tarc));
854 /// \brief Copy the edge references into the given map.
856 /// This function copies the edge references into the given map.
857 /// The parameter should be a map, whose key type is the Edge type of
858 /// the source graph, while the value type is the Edge type of the
859 /// destination graph.
860 template <typename EdgeRef>
861 GraphCopy& edgeRef(EdgeRef& map) {
862 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
863 EdgeRefMap, EdgeRef>(map));
867 /// \brief Copy the edge cross references into the given map.
869 /// This function copies the edge cross references (reverse references)
870 /// into the given map. The parameter should be a map, whose key type
871 /// is the Edge type of the destination graph, while the value type is
872 /// the Edge type of the source graph.
873 template <typename EdgeCrossRef>
874 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
875 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
876 Edge, EdgeRefMap, EdgeCrossRef>(map));
880 /// \brief Make a copy of the given edge map.
882 /// This function makes a copy of the given edge map for the newly
884 /// The key type of the new map \c tmap should be the Edge type of the
885 /// destination graph, and the key type of the original map \c map
886 /// should be the Edge type of the source graph.
887 template <typename FromMap, typename ToMap>
888 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
889 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
890 EdgeRefMap, FromMap, ToMap>(map, tmap));
894 /// \brief Make a copy of the given edge.
896 /// This function makes a copy of the given edge.
897 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
898 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
899 EdgeRefMap, TEdge>(edge, tedge));
903 /// \brief Execute copying.
905 /// This function executes the copying of the graph along with the
906 /// copying of the assigned data.
908 NodeRefMap nodeRefMap(_from);
909 EdgeRefMap edgeRefMap(_from);
910 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
911 _core_bits::GraphCopySelector<To>::
912 copy(_from, _to, nodeRefMap, edgeRefMap);
913 for (int i = 0; i < int(_node_maps.size()); ++i) {
914 _node_maps[i]->copy(_from, nodeRefMap);
916 for (int i = 0; i < int(_edge_maps.size()); ++i) {
917 _edge_maps[i]->copy(_from, edgeRefMap);
919 for (int i = 0; i < int(_arc_maps.size()); ++i) {
920 _arc_maps[i]->copy(_from, arcRefMap);
929 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
932 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
935 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
940 /// \brief Copy a graph to another graph.
942 /// This function copies a graph to another graph.
943 /// The complete usage of it is detailed in the GraphCopy class,
944 /// but a short example shows a basic work:
946 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
949 /// After the copy the \c nr map will contain the mapping from the
950 /// nodes of the \c from graph to the nodes of the \c to graph and
951 /// \c ecr will contain the mapping from the edges of the \c to graph
952 /// to the edges of the \c from graph.
955 template <typename From, typename To>
957 graphCopy(const From& from, To& to) {
958 return GraphCopy<From, To>(from, to);
961 namespace _core_bits {
963 template <typename Graph, typename Enable = void>
964 struct FindArcSelector {
965 typedef typename Graph::Node Node;
966 typedef typename Graph::Arc Arc;
967 static Arc find(const Graph &g, Node u, Node v, Arc e) {
973 while (e != INVALID && g.target(e) != v) {
980 template <typename Graph>
981 struct FindArcSelector<
983 typename enable_if<typename Graph::FindArcTag, void>::type>
985 typedef typename Graph::Node Node;
986 typedef typename Graph::Arc Arc;
987 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
988 return g.findArc(u, v, prev);
993 /// \brief Find an arc between two nodes of a digraph.
995 /// This function finds an arc from node \c u to node \c v in the
998 /// If \c prev is \ref INVALID (this is the default value), then
999 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1000 /// the next arc from \c u to \c v after \c prev.
1001 /// \return The found arc or \ref INVALID if there is no such an arc.
1003 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1005 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1010 /// \note \ref ConArcIt provides iterator interface for the same
1014 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1015 template <typename Graph>
1016 inline typename Graph::Arc
1017 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1018 typename Graph::Arc prev = INVALID) {
1019 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1022 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1024 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1025 /// a higher level interface for the \ref findArc() function. You can
1026 /// use it the following way:
1028 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1034 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1035 template <typename _Graph>
1036 class ConArcIt : public _Graph::Arc {
1039 typedef _Graph Graph;
1040 typedef typename Graph::Arc Parent;
1042 typedef typename Graph::Arc Arc;
1043 typedef typename Graph::Node Node;
1045 /// \brief Constructor.
1047 /// Construct a new ConArcIt iterating on the arcs that
1048 /// connects nodes \c u and \c v.
1049 ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
1050 Parent::operator=(findArc(_graph, u, v));
1053 /// \brief Constructor.
1055 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1056 ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
1058 /// \brief Increment operator.
1060 /// It increments the iterator and gives back the next arc.
1061 ConArcIt& operator++() {
1062 Parent::operator=(findArc(_graph, _graph.source(*this),
1063 _graph.target(*this), *this));
1067 const Graph& _graph;
1070 namespace _core_bits {
1072 template <typename Graph, typename Enable = void>
1073 struct FindEdgeSelector {
1074 typedef typename Graph::Node Node;
1075 typedef typename Graph::Edge Edge;
1076 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1080 g.firstInc(e, b, u);
1085 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1090 g.firstInc(e, b, u);
1095 while (e != INVALID && (!b || g.v(e) != v)) {
1103 template <typename Graph>
1104 struct FindEdgeSelector<
1106 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1108 typedef typename Graph::Node Node;
1109 typedef typename Graph::Edge Edge;
1110 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1111 return g.findEdge(u, v, prev);
1116 /// \brief Find an edge between two nodes of a graph.
1118 /// This function finds an edge from node \c u to node \c v in graph \c g.
1119 /// If node \c u and node \c v is equal then each loop edge
1120 /// will be enumerated once.
1122 /// If \c prev is \ref INVALID (this is the default value), then
1123 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1124 /// the next edge from \c u to \c v after \c prev.
1125 /// \return The found edge or \ref INVALID if there is no such an edge.
1127 /// Thus you can iterate through each edge between \c u and \c v
1130 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1135 /// \note \ref ConEdgeIt provides iterator interface for the same
1139 template <typename Graph>
1140 inline typename Graph::Edge
1141 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1142 typename Graph::Edge p = INVALID) {
1143 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1146 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1148 /// Iterator for iterating on parallel edges connecting the same nodes.
1149 /// It is a higher level interface for the findEdge() function. You can
1150 /// use it the following way:
1152 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1158 template <typename _Graph>
1159 class ConEdgeIt : public _Graph::Edge {
1162 typedef _Graph Graph;
1163 typedef typename Graph::Edge Parent;
1165 typedef typename Graph::Edge Edge;
1166 typedef typename Graph::Node Node;
1168 /// \brief Constructor.
1170 /// Construct a new ConEdgeIt iterating on the edges that
1171 /// connects nodes \c u and \c v.
1172 ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
1173 Parent::operator=(findEdge(_graph, u, v));
1176 /// \brief Constructor.
1178 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1179 ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1181 /// \brief Increment operator.
1183 /// It increments the iterator and gives back the next edge.
1184 ConEdgeIt& operator++() {
1185 Parent::operator=(findEdge(_graph, _graph.u(*this),
1186 _graph.v(*this), *this));
1190 const Graph& _graph;
1194 ///Dynamic arc look-up between given endpoints.
1196 ///Using this class, you can find an arc in a digraph from a given
1197 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1198 ///where <em>d</em> is the out-degree of the source node.
1200 ///It is possible to find \e all parallel arcs between two nodes with
1201 ///the \c operator() member.
1203 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1204 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1206 ///This class uses a self-adjusting binary search tree, the Splay tree
1207 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1208 ///time bound for arc look-ups. This class also guarantees the
1209 ///optimal time bound in a constant factor for any distribution of
1212 ///\tparam G The type of the underlying digraph.
1218 : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
1221 typedef typename ItemSetTraits<G, typename G::Arc>
1222 ::ItemNotifier::ObserverBase Parent;
1224 TEMPLATE_DIGRAPH_TYPEDEFS(G);
1229 class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
1232 typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
1234 AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
1236 virtual void add(const Node& node) {
1238 Parent::set(node, INVALID);
1241 virtual void add(const std::vector<Node>& nodes) {
1243 for (int i = 0; i < int(nodes.size()); ++i) {
1244 Parent::set(nodes[i], INVALID);
1248 virtual void build() {
1251 typename Parent::Notifier* nf = Parent::notifier();
1252 for (nf->first(it); it != INVALID; nf->next(it)) {
1253 Parent::set(it, INVALID);
1260 typename Digraph::template ArcMap<Arc> _parent;
1261 typename Digraph::template ArcMap<Arc> _left;
1262 typename Digraph::template ArcMap<Arc> _right;
1267 ArcLess(const Digraph &_g) : g(_g) {}
1268 bool operator()(Arc a,Arc b) const
1270 return g.target(a)<g.target(b);
1280 ///It builds up the search database.
1281 DynArcLookUp(const Digraph &g)
1282 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1284 Parent::attach(_g.notifier(typename Digraph::Arc()));
1290 virtual void add(const Arc& arc) {
1294 virtual void add(const std::vector<Arc>& arcs) {
1295 for (int i = 0; i < int(arcs.size()); ++i) {
1300 virtual void erase(const Arc& arc) {
1304 virtual void erase(const std::vector<Arc>& arcs) {
1305 for (int i = 0; i < int(arcs.size()); ++i) {
1310 virtual void build() {
1314 virtual void clear() {
1315 for(NodeIt n(_g);n!=INVALID;++n) {
1316 _head.set(n, INVALID);
1320 void insert(Arc arc) {
1321 Node s = _g.source(arc);
1322 Node t = _g.target(arc);
1323 _left.set(arc, INVALID);
1324 _right.set(arc, INVALID);
1329 _parent.set(arc, INVALID);
1333 if (t < _g.target(e)) {
1334 if (_left[e] == INVALID) {
1336 _parent.set(arc, e);
1343 if (_right[e] == INVALID) {
1345 _parent.set(arc, e);
1355 void remove(Arc arc) {
1356 if (_left[arc] == INVALID) {
1357 if (_right[arc] != INVALID) {
1358 _parent.set(_right[arc], _parent[arc]);
1360 if (_parent[arc] != INVALID) {
1361 if (_left[_parent[arc]] == arc) {
1362 _left.set(_parent[arc], _right[arc]);
1364 _right.set(_parent[arc], _right[arc]);
1367 _head.set(_g.source(arc), _right[arc]);
1369 } else if (_right[arc] == INVALID) {
1370 _parent.set(_left[arc], _parent[arc]);
1371 if (_parent[arc] != INVALID) {
1372 if (_left[_parent[arc]] == arc) {
1373 _left.set(_parent[arc], _left[arc]);
1375 _right.set(_parent[arc], _left[arc]);
1378 _head.set(_g.source(arc), _left[arc]);
1382 if (_right[e] != INVALID) {
1384 while (_right[e] != INVALID) {
1388 _right.set(_parent[e], _left[e]);
1389 if (_left[e] != INVALID) {
1390 _parent.set(_left[e], _parent[e]);
1393 _left.set(e, _left[arc]);
1394 _parent.set(_left[arc], e);
1395 _right.set(e, _right[arc]);
1396 _parent.set(_right[arc], e);
1398 _parent.set(e, _parent[arc]);
1399 if (_parent[arc] != INVALID) {
1400 if (_left[_parent[arc]] == arc) {
1401 _left.set(_parent[arc], e);
1403 _right.set(_parent[arc], e);
1408 _right.set(e, _right[arc]);
1409 _parent.set(_right[arc], e);
1410 _parent.set(e, _parent[arc]);
1412 if (_parent[arc] != INVALID) {
1413 if (_left[_parent[arc]] == arc) {
1414 _left.set(_parent[arc], e);
1416 _right.set(_parent[arc], e);
1419 _head.set(_g.source(arc), e);
1425 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1430 Arc left = refreshRec(v,a,m-1);
1431 _left.set(me, left);
1432 _parent.set(left, me);
1434 _left.set(me, INVALID);
1437 Arc right = refreshRec(v,m+1,b);
1438 _right.set(me, right);
1439 _parent.set(right, me);
1441 _right.set(me, INVALID);
1447 for(NodeIt n(_g);n!=INVALID;++n) {
1449 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1451 std::sort(v.begin(),v.end(),ArcLess(_g));
1452 Arc head = refreshRec(v,0,v.size()-1);
1454 _parent.set(head, INVALID);
1456 else _head.set(n, INVALID);
1462 _parent.set(v, _parent[w]);
1464 _left.set(w, _right[v]);
1466 if (_parent[v] != INVALID) {
1467 if (_right[_parent[v]] == w) {
1468 _right.set(_parent[v], v);
1470 _left.set(_parent[v], v);
1473 if (_left[w] != INVALID){
1474 _parent.set(_left[w], w);
1480 _parent.set(v, _parent[w]);
1482 _right.set(w, _left[v]);
1484 if (_parent[v] != INVALID){
1485 if (_left[_parent[v]] == w) {
1486 _left.set(_parent[v], v);
1488 _right.set(_parent[v], v);
1491 if (_right[w] != INVALID){
1492 _parent.set(_right[w], w);
1497 while (_parent[v] != INVALID) {
1498 if (v == _left[_parent[v]]) {
1499 if (_parent[_parent[v]] == INVALID) {
1502 if (_parent[v] == _left[_parent[_parent[v]]]) {
1511 if (_parent[_parent[v]] == INVALID) {
1514 if (_parent[v] == _left[_parent[_parent[v]]]) {
1524 _head[_g.source(v)] = v;
1530 ///Find an arc between two nodes.
1532 ///Find an arc between two nodes.
1533 ///\param s The source node.
1534 ///\param t The target node.
1535 ///\param p The previous arc between \c s and \c t. It it is INVALID or
1536 ///not given, the operator finds the first appropriate arc.
1537 ///\return An arc from \c s to \c t after \c p or
1538 ///\ref INVALID if there is no more.
1540 ///For example, you can count the number of arcs from \c u to \c v in the
1543 ///DynArcLookUp<ListDigraph> ae(g);
1546 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1549 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1550 ///amortized time, specifically, the time complexity of the lookups
1551 ///is equal to the optimal search tree implementation for the
1552 ///current query distribution in a constant factor.
1554 ///\note This is a dynamic data structure, therefore the data
1555 ///structure is updated after each graph alteration. Thus although
1556 ///this data structure is theoretically faster than \ref ArcLookUp
1557 ///and \ref AllArcLookup, it often provides worse performance than
1559 Arc operator()(Node s, Node t, Arc p = INVALID) const {
1562 if (a == INVALID) return INVALID;
1565 if (_g.target(a) < t) {
1566 if (_right[a] == INVALID) {
1567 const_cast<DynArcLookUp&>(*this).splay(a);
1573 if (_g.target(a) == t) {
1576 if (_left[a] == INVALID) {
1577 const_cast<DynArcLookUp&>(*this).splay(a);
1586 if (_right[a] != INVALID) {
1588 while (_left[a] != INVALID) {
1591 const_cast<DynArcLookUp&>(*this).splay(a);
1593 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
1596 if (_parent[a] == INVALID) {
1600 const_cast<DynArcLookUp&>(*this).splay(a);
1603 if (_g.target(a) == t) return a;
1604 else return INVALID;
1610 ///Fast arc look-up between given endpoints.
1612 ///Using this class, you can find an arc in a digraph from a given
1613 ///source to a given target in time <em>O</em>(log<em>d</em>),
1614 ///where <em>d</em> is the out-degree of the source node.
1616 ///It is not possible to find \e all parallel arcs between two nodes.
1617 ///Use \ref AllArcLookUp for this purpose.
1619 ///\warning This class is static, so you should call refresh() (or at
1620 ///least refresh(Node)) to refresh this data structure whenever the
1621 ///digraph changes. This is a time consuming (superlinearly proportional
1622 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1624 ///\tparam G The type of the underlying digraph.
1632 TEMPLATE_DIGRAPH_TYPEDEFS(G);
1637 typename Digraph::template NodeMap<Arc> _head;
1638 typename Digraph::template ArcMap<Arc> _left;
1639 typename Digraph::template ArcMap<Arc> _right;
1644 ArcLess(const Digraph &_g) : g(_g) {}
1645 bool operator()(Arc a,Arc b) const
1647 return g.target(a)<g.target(b);
1657 ///It builds up the search database, which remains valid until the digraph
1659 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1662 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1666 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1667 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1671 ///Refresh the search data structure at a node.
1673 ///Build up the search database of node \c n.
1675 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1676 ///is the number of the outgoing arcs of \c n.
1677 void refresh(Node n)
1680 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1682 std::sort(v.begin(),v.end(),ArcLess(_g));
1683 _head[n]=refreshRec(v,0,v.size()-1);
1685 else _head[n]=INVALID;
1687 ///Refresh the full data structure.
1689 ///Build up the full search database. In fact, it simply calls
1690 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1692 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1693 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1694 ///out-degree of the digraph.
1697 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1700 ///Find an arc between two nodes.
1702 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), where
1703 ///<em>d</em> is the number of outgoing arcs of \c s.
1704 ///\param s The source node.
1705 ///\param t The target node.
1706 ///\return An arc from \c s to \c t if there exists,
1707 ///\ref INVALID otherwise.
1709 ///\warning If you change the digraph, refresh() must be called before using
1710 ///this operator. If you change the outgoing arcs of
1711 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1712 Arc operator()(Node s, Node t) const
1716 e!=INVALID&&_g.target(e)!=t;
1717 e = t < _g.target(e)?_left[e]:_right[e]) ;
1723 ///Fast look-up of all arcs between given endpoints.
1725 ///This class is the same as \ref ArcLookUp, with the addition
1726 ///that it makes it possible to find all parallel arcs between given
1729 ///\warning This class is static, so you should call refresh() (or at
1730 ///least refresh(Node)) to refresh this data structure whenever the
1731 ///digraph changes. This is a time consuming (superlinearly proportional
1732 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1734 ///\tparam G The type of the underlying digraph.
1739 class AllArcLookUp : public ArcLookUp<G>
1741 using ArcLookUp<G>::_g;
1742 using ArcLookUp<G>::_right;
1743 using ArcLookUp<G>::_left;
1744 using ArcLookUp<G>::_head;
1746 TEMPLATE_DIGRAPH_TYPEDEFS(G);
1749 typename Digraph::template ArcMap<Arc> _next;
1751 Arc refreshNext(Arc head,Arc next=INVALID)
1753 if(head==INVALID) return next;
1755 next=refreshNext(_right[head],next);
1756 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1758 return refreshNext(_left[head],head);
1764 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1772 ///It builds up the search database, which remains valid until the digraph
1774 AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
1776 ///Refresh the data structure at a node.
1778 ///Build up the search database of node \c n.
1780 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1781 ///the number of the outgoing arcs of \c n.
1782 void refresh(Node n)
1784 ArcLookUp<G>::refresh(n);
1785 refreshNext(_head[n]);
1788 ///Refresh the full data structure.
1790 ///Build up the full search database. In fact, it simply calls
1791 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1793 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1794 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1795 ///out-degree of the digraph.
1798 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1801 ///Find an arc between two nodes.
1803 ///Find an arc between two nodes.
1804 ///\param s The source node.
1805 ///\param t The target node.
1806 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1807 ///not given, the operator finds the first appropriate arc.
1808 ///\return An arc from \c s to \c t after \c prev or
1809 ///\ref INVALID if there is no more.
1811 ///For example, you can count the number of arcs from \c u to \c v in the
1814 ///AllArcLookUp<ListDigraph> ae(g);
1817 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1820 ///Finding the first arc take <em>O</em>(log<em>d</em>) time, where
1821 ///<em>d</em> is the number of outgoing arcs of \c s. Then, the
1822 ///consecutive arcs are found in constant time.
1824 ///\warning If you change the digraph, refresh() must be called before using
1825 ///this operator. If you change the outgoing arcs of
1826 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1829 Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1831 using ArcLookUp<G>::operator() ;
1832 Arc operator()(Node s, Node t, Arc prev) const
1834 return prev==INVALID?(*this)(s,t):_next[prev];