1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CAPACITY_SCALING_H
20 #define LEMON_CAPACITY_SCALING_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/bin_heap.h>
34 /// \brief Default traits class of CapacityScaling algorithm.
36 /// Default traits class of CapacityScaling algorithm.
37 /// \tparam GR Digraph type.
38 /// \tparam V The number type used for flow amounts, capacity bounds
39 /// and supply values. By default it is \c int.
40 /// \tparam C The number type used for costs and potentials.
41 /// By default it is the same as \c V.
42 template <typename GR, typename V = int, typename C = V>
43 struct CapacityScalingDefaultTraits
45 /// The type of the digraph
47 /// The type of the flow amounts, capacity bounds and supply values
49 /// The type of the arc costs
52 /// \brief The type of the heap used for internal Dijkstra computations.
54 /// The type of the heap used for internal Dijkstra computations.
55 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 /// its priority type must be \c Cost and its cross reference type
57 /// must be \ref RangeMap "RangeMap<int>".
58 typedef BinHeap<Cost, RangeMap<int> > Heap;
61 /// \addtogroup min_cost_flow_algs
64 /// \brief Implementation of the Capacity Scaling algorithm for
65 /// finding a \ref min_cost_flow "minimum cost flow".
67 /// \ref CapacityScaling implements the capacity scaling version
68 /// of the successive shortest path algorithm for finding a
69 /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 /// \ref edmondskarp72theoretical. It is an efficient dual
73 /// Most of the parameters of the problem (except for the digraph)
74 /// can be given using separate functions, and the algorithm can be
75 /// executed using the \ref run() function. If some parameters are not
76 /// specified, then default values will be used.
78 /// \tparam GR The digraph type the algorithm runs on.
79 /// \tparam V The number type used for flow amounts, capacity bounds
80 /// and supply values in the algorithm. By default, it is \c int.
81 /// \tparam C The number type used for costs and potentials in the
82 /// algorithm. By default, it is the same as \c V.
83 /// \tparam TR The traits class that defines various types used by the
84 /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 /// "CapacityScalingDefaultTraits<GR, V, C>".
86 /// In most cases, this parameter should not be set directly,
87 /// consider to use the named template parameters instead.
89 /// \warning Both number types must be signed and all input data must
91 /// \warning This algorithm does not support negative costs for such
92 /// arcs that have infinite upper bound.
94 template <typename GR, typename V, typename C, typename TR>
96 template < typename GR, typename V = int, typename C = V,
97 typename TR = CapacityScalingDefaultTraits<GR, V, C> >
103 /// The type of the digraph
104 typedef typename TR::Digraph Digraph;
105 /// The type of the flow amounts, capacity bounds and supply values
106 typedef typename TR::Value Value;
107 /// The type of the arc costs
108 typedef typename TR::Cost Cost;
110 /// The type of the heap used for internal Dijkstra computations
111 typedef typename TR::Heap Heap;
113 /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
118 /// \brief Problem type constants for the \c run() function.
120 /// Enum type containing the problem type constants that can be
121 /// returned by the \ref run() function of the algorithm.
123 /// The problem has no feasible solution (flow).
125 /// The problem has optimal solution (i.e. it is feasible and
126 /// bounded), and the algorithm has found optimal flow and node
127 /// potentials (primal and dual solutions).
129 /// The digraph contains an arc of negative cost and infinite
130 /// upper bound. It means that the objective function is unbounded
131 /// on that arc, however, note that it could actually be bounded
132 /// over the feasible flows, but this algroithm cannot handle
139 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
141 typedef std::vector<int> IntVector;
142 typedef std::vector<Value> ValueVector;
143 typedef std::vector<Cost> CostVector;
144 typedef std::vector<char> BoolVector;
145 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
149 // Data related to the underlying digraph
156 // Parameters of the problem
160 // Data structures for storing the digraph
164 IntVector _first_out;
176 ValueVector _res_cap;
179 IntVector _excess_nodes;
180 IntVector _deficit_nodes;
188 /// \brief Constant for infinite upper bounds (capacities).
190 /// Constant for infinite upper bounds (capacities).
191 /// It is \c std::numeric_limits<Value>::infinity() if available,
192 /// \c std::numeric_limits<Value>::max() otherwise.
197 // Special implementation of the Dijkstra algorithm for finding
198 // shortest paths in the residual network of the digraph with
199 // respect to the reduced arc costs and modifying the node
200 // potentials according to the found distance labels.
201 class ResidualDijkstra
207 const IntVector &_first_out;
208 const IntVector &_target;
209 const CostVector &_cost;
210 const ValueVector &_res_cap;
211 const ValueVector &_excess;
215 IntVector _proc_nodes;
220 ResidualDijkstra(CapacityScaling& cs) :
221 _node_num(cs._node_num), _geq(cs._sum_supply < 0),
222 _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
223 _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
224 _pred(cs._pred), _dist(cs._node_num)
227 int run(int s, Value delta = 1) {
228 RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
229 Heap heap(heap_cross_ref);
235 while (!heap.empty() && _excess[heap.top()] > -delta) {
236 int u = heap.top(), v;
237 Cost d = heap.prio() + _pi[u], dn;
238 _dist[u] = heap.prio();
239 _proc_nodes.push_back(u);
242 // Traverse outgoing residual arcs
243 int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
244 for (int a = _first_out[u]; a != last_out; ++a) {
245 if (_res_cap[a] < delta) continue;
247 switch (heap.state(v)) {
249 heap.push(v, d + _cost[a] - _pi[v]);
253 dn = d + _cost[a] - _pi[v];
255 heap.decrease(v, dn);
259 case Heap::POST_HEAP:
264 if (heap.empty()) return -1;
266 // Update potentials of processed nodes
268 Cost dt = heap.prio();
269 for (int i = 0; i < int(_proc_nodes.size()); ++i) {
270 _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
276 }; //class ResidualDijkstra
280 /// \name Named Template Parameters
283 template <typename T>
284 struct SetHeapTraits : public Traits {
288 /// \brief \ref named-templ-param "Named parameter" for setting
291 /// \ref named-templ-param "Named parameter" for setting \c Heap
292 /// type, which is used for internal Dijkstra computations.
293 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
294 /// its priority type must be \c Cost and its cross reference type
295 /// must be \ref RangeMap "RangeMap<int>".
296 template <typename T>
298 : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
299 typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
310 /// \brief Constructor.
312 /// The constructor of the class.
314 /// \param graph The digraph the algorithm runs on.
315 CapacityScaling(const GR& graph) :
316 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
317 INF(std::numeric_limits<Value>::has_infinity ?
318 std::numeric_limits<Value>::infinity() :
319 std::numeric_limits<Value>::max())
321 // Check the number types
322 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
323 "The flow type of CapacityScaling must be signed");
324 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
325 "The cost type of CapacityScaling must be signed");
327 // Reset data structures
332 /// The parameters of the algorithm can be specified using these
337 /// \brief Set the lower bounds on the arcs.
339 /// This function sets the lower bounds on the arcs.
340 /// If it is not used before calling \ref run(), the lower bounds
341 /// will be set to zero on all arcs.
343 /// \param map An arc map storing the lower bounds.
344 /// Its \c Value type must be convertible to the \c Value type
345 /// of the algorithm.
347 /// \return <tt>(*this)</tt>
348 template <typename LowerMap>
349 CapacityScaling& lowerMap(const LowerMap& map) {
351 for (ArcIt a(_graph); a != INVALID; ++a) {
352 _lower[_arc_idf[a]] = map[a];
353 _lower[_arc_idb[a]] = map[a];
358 /// \brief Set the upper bounds (capacities) on the arcs.
360 /// This function sets the upper bounds (capacities) on the arcs.
361 /// If it is not used before calling \ref run(), the upper bounds
362 /// will be set to \ref INF on all arcs (i.e. the flow value will be
363 /// unbounded from above).
365 /// \param map An arc map storing the upper bounds.
366 /// Its \c Value type must be convertible to the \c Value type
367 /// of the algorithm.
369 /// \return <tt>(*this)</tt>
370 template<typename UpperMap>
371 CapacityScaling& upperMap(const UpperMap& map) {
372 for (ArcIt a(_graph); a != INVALID; ++a) {
373 _upper[_arc_idf[a]] = map[a];
378 /// \brief Set the costs of the arcs.
380 /// This function sets the costs of the arcs.
381 /// If it is not used before calling \ref run(), the costs
382 /// will be set to \c 1 on all arcs.
384 /// \param map An arc map storing the costs.
385 /// Its \c Value type must be convertible to the \c Cost type
386 /// of the algorithm.
388 /// \return <tt>(*this)</tt>
389 template<typename CostMap>
390 CapacityScaling& costMap(const CostMap& map) {
391 for (ArcIt a(_graph); a != INVALID; ++a) {
392 _cost[_arc_idf[a]] = map[a];
393 _cost[_arc_idb[a]] = -map[a];
398 /// \brief Set the supply values of the nodes.
400 /// This function sets the supply values of the nodes.
401 /// If neither this function nor \ref stSupply() is used before
402 /// calling \ref run(), the supply of each node will be set to zero.
404 /// \param map A node map storing the supply values.
405 /// Its \c Value type must be convertible to the \c Value type
406 /// of the algorithm.
408 /// \return <tt>(*this)</tt>
409 template<typename SupplyMap>
410 CapacityScaling& supplyMap(const SupplyMap& map) {
411 for (NodeIt n(_graph); n != INVALID; ++n) {
412 _supply[_node_id[n]] = map[n];
417 /// \brief Set single source and target nodes and a supply value.
419 /// This function sets a single source node and a single target node
420 /// and the required flow value.
421 /// If neither this function nor \ref supplyMap() is used before
422 /// calling \ref run(), the supply of each node will be set to zero.
424 /// Using this function has the same effect as using \ref supplyMap()
425 /// with such a map in which \c k is assigned to \c s, \c -k is
426 /// assigned to \c t and all other nodes have zero supply value.
428 /// \param s The source node.
429 /// \param t The target node.
430 /// \param k The required amount of flow from node \c s to node \c t
431 /// (i.e. the supply of \c s and the demand of \c t).
433 /// \return <tt>(*this)</tt>
434 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
435 for (int i = 0; i != _node_num; ++i) {
438 _supply[_node_id[s]] = k;
439 _supply[_node_id[t]] = -k;
445 /// \name Execution control
446 /// The algorithm can be executed using \ref run().
450 /// \brief Run the algorithm.
452 /// This function runs the algorithm.
453 /// The paramters can be specified using functions \ref lowerMap(),
454 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
457 /// CapacityScaling<ListDigraph> cs(graph);
458 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
459 /// .supplyMap(sup).run();
462 /// This function can be called more than once. All the given parameters
463 /// are kept for the next call, unless \ref resetParams() or \ref reset()
464 /// is used, thus only the modified parameters have to be set again.
465 /// If the underlying digraph was also modified after the construction
466 /// of the class (or the last \ref reset() call), then the \ref reset()
467 /// function must be called.
469 /// \param factor The capacity scaling factor. It must be larger than
470 /// one to use scaling. If it is less or equal to one, then scaling
471 /// will be disabled.
473 /// \return \c INFEASIBLE if no feasible flow exists,
474 /// \n \c OPTIMAL if the problem has optimal solution
475 /// (i.e. it is feasible and bounded), and the algorithm has found
476 /// optimal flow and node potentials (primal and dual solutions),
477 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
478 /// and infinite upper bound. It means that the objective function
479 /// is unbounded on that arc, however, note that it could actually be
480 /// bounded over the feasible flows, but this algroithm cannot handle
484 /// \see resetParams(), reset()
485 ProblemType run(int factor = 4) {
487 ProblemType pt = init();
488 if (pt != OPTIMAL) return pt;
492 /// \brief Reset all the parameters that have been given before.
494 /// This function resets all the paramaters that have been given
495 /// before using functions \ref lowerMap(), \ref upperMap(),
496 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
498 /// It is useful for multiple \ref run() calls. Basically, all the given
499 /// parameters are kept for the next \ref run() call, unless
500 /// \ref resetParams() or \ref reset() is used.
501 /// If the underlying digraph was also modified after the construction
502 /// of the class or the last \ref reset() call, then the \ref reset()
503 /// function must be used, otherwise \ref resetParams() is sufficient.
507 /// CapacityScaling<ListDigraph> cs(graph);
510 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
511 /// .supplyMap(sup).run();
513 /// // Run again with modified cost map (resetParams() is not called,
514 /// // so only the cost map have to be set again)
516 /// cs.costMap(cost).run();
518 /// // Run again from scratch using resetParams()
519 /// // (the lower bounds will be set to zero on all arcs)
520 /// cs.resetParams();
521 /// cs.upperMap(capacity).costMap(cost)
522 /// .supplyMap(sup).run();
525 /// \return <tt>(*this)</tt>
527 /// \see reset(), run()
528 CapacityScaling& resetParams() {
529 for (int i = 0; i != _node_num; ++i) {
532 for (int j = 0; j != _res_arc_num; ++j) {
535 _cost[j] = _forward[j] ? 1 : -1;
541 /// \brief Reset the internal data structures and all the parameters
542 /// that have been given before.
544 /// This function resets the internal data structures and all the
545 /// paramaters that have been given before using functions \ref lowerMap(),
546 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
548 /// It is useful for multiple \ref run() calls. Basically, all the given
549 /// parameters are kept for the next \ref run() call, unless
550 /// \ref resetParams() or \ref reset() is used.
551 /// If the underlying digraph was also modified after the construction
552 /// of the class or the last \ref reset() call, then the \ref reset()
553 /// function must be used, otherwise \ref resetParams() is sufficient.
555 /// See \ref resetParams() for examples.
557 /// \return <tt>(*this)</tt>
559 /// \see resetParams(), run()
560 CapacityScaling& reset() {
562 _node_num = countNodes(_graph);
563 _arc_num = countArcs(_graph);
564 _res_arc_num = 2 * (_arc_num + _node_num);
568 _first_out.resize(_node_num + 1);
569 _forward.resize(_res_arc_num);
570 _source.resize(_res_arc_num);
571 _target.resize(_res_arc_num);
572 _reverse.resize(_res_arc_num);
574 _lower.resize(_res_arc_num);
575 _upper.resize(_res_arc_num);
576 _cost.resize(_res_arc_num);
577 _supply.resize(_node_num);
579 _res_cap.resize(_res_arc_num);
580 _pi.resize(_node_num);
581 _excess.resize(_node_num);
582 _pred.resize(_node_num);
585 int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
586 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
590 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
592 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
596 _target[j] = _node_id[_graph.runningNode(a)];
598 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
602 _target[j] = _node_id[_graph.runningNode(a)];
615 _first_out[_node_num] = k;
616 for (ArcIt a(_graph); a != INVALID; ++a) {
617 int fi = _arc_idf[a];
618 int bi = _arc_idb[a];
630 /// \name Query Functions
631 /// The results of the algorithm can be obtained using these
633 /// The \ref run() function must be called before using them.
637 /// \brief Return the total cost of the found flow.
639 /// This function returns the total cost of the found flow.
640 /// Its complexity is O(e).
642 /// \note The return type of the function can be specified as a
643 /// template parameter. For example,
645 /// cs.totalCost<double>();
647 /// It is useful if the total cost cannot be stored in the \c Cost
648 /// type of the algorithm, which is the default return type of the
651 /// \pre \ref run() must be called before using this function.
652 template <typename Number>
653 Number totalCost() const {
655 for (ArcIt a(_graph); a != INVALID; ++a) {
657 c += static_cast<Number>(_res_cap[i]) *
658 (-static_cast<Number>(_cost[i]));
664 Cost totalCost() const {
665 return totalCost<Cost>();
669 /// \brief Return the flow on the given arc.
671 /// This function returns the flow on the given arc.
673 /// \pre \ref run() must be called before using this function.
674 Value flow(const Arc& a) const {
675 return _res_cap[_arc_idb[a]];
678 /// \brief Return the flow map (the primal solution).
680 /// This function copies the flow value on each arc into the given
681 /// map. The \c Value type of the algorithm must be convertible to
682 /// the \c Value type of the map.
684 /// \pre \ref run() must be called before using this function.
685 template <typename FlowMap>
686 void flowMap(FlowMap &map) const {
687 for (ArcIt a(_graph); a != INVALID; ++a) {
688 map.set(a, _res_cap[_arc_idb[a]]);
692 /// \brief Return the potential (dual value) of the given node.
694 /// This function returns the potential (dual value) of the
697 /// \pre \ref run() must be called before using this function.
698 Cost potential(const Node& n) const {
699 return _pi[_node_id[n]];
702 /// \brief Return the potential map (the dual solution).
704 /// This function copies the potential (dual value) of each node
705 /// into the given map.
706 /// The \c Cost type of the algorithm must be convertible to the
707 /// \c Value type of the map.
709 /// \pre \ref run() must be called before using this function.
710 template <typename PotentialMap>
711 void potentialMap(PotentialMap &map) const {
712 for (NodeIt n(_graph); n != INVALID; ++n) {
713 map.set(n, _pi[_node_id[n]]);
721 // Initialize the algorithm
723 if (_node_num <= 1) return INFEASIBLE;
725 // Check the sum of supply values
727 for (int i = 0; i != _root; ++i) {
728 _sum_supply += _supply[i];
730 if (_sum_supply > 0) return INFEASIBLE;
732 // Initialize vectors
733 for (int i = 0; i != _root; ++i) {
735 _excess[i] = _supply[i];
738 // Remove non-zero lower bounds
739 const Value MAX = std::numeric_limits<Value>::max();
742 for (int i = 0; i != _root; ++i) {
743 last_out = _first_out[i+1];
744 for (int j = _first_out[i]; j != last_out; ++j) {
748 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
750 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
753 _excess[_target[j]] += c;
760 for (int j = 0; j != _res_arc_num; ++j) {
761 _res_cap[j] = _forward[j] ? _upper[j] : 0;
765 // Handle negative costs
766 for (int i = 0; i != _root; ++i) {
767 last_out = _first_out[i+1] - 1;
768 for (int j = _first_out[i]; j != last_out; ++j) {
769 Value rc = _res_cap[j];
770 if (_cost[j] < 0 && rc > 0) {
771 if (rc >= MAX) return UNBOUNDED;
773 _excess[_target[j]] += rc;
775 _res_cap[_reverse[j]] += rc;
780 // Handle GEQ supply type
781 if (_sum_supply < 0) {
783 _excess[_root] = -_sum_supply;
784 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
785 int ra = _reverse[a];
786 _res_cap[a] = -_sum_supply + 1;
794 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
795 int ra = _reverse[a];
803 // Initialize delta value
806 Value max_sup = 0, max_dem = 0, max_cap = 0;
807 for (int i = 0; i != _root; ++i) {
808 Value ex = _excess[i];
809 if ( ex > max_sup) max_sup = ex;
810 if (-ex > max_dem) max_dem = -ex;
811 int last_out = _first_out[i+1] - 1;
812 for (int j = _first_out[i]; j != last_out; ++j) {
813 if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
816 max_sup = std::min(std::min(max_sup, max_dem), max_cap);
817 for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
826 ProblemType start() {
827 // Execute the algorithm
830 pt = startWithScaling();
832 pt = startWithoutScaling();
834 // Handle non-zero lower bounds
836 int limit = _first_out[_root];
837 for (int j = 0; j != limit; ++j) {
838 if (!_forward[j]) _res_cap[j] += _lower[j];
842 // Shift potentials if necessary
843 Cost pr = _pi[_root];
844 if (_sum_supply < 0 || pr > 0) {
845 for (int i = 0; i != _node_num; ++i) {
853 // Execute the capacity scaling algorithm
854 ProblemType startWithScaling() {
855 // Perform capacity scaling phases
857 ResidualDijkstra _dijkstra(*this);
859 // Saturate all arcs not satisfying the optimality condition
861 for (int u = 0; u != _node_num; ++u) {
862 last_out = _sum_supply < 0 ?
863 _first_out[u+1] : _first_out[u+1] - 1;
864 for (int a = _first_out[u]; a != last_out; ++a) {
866 Cost c = _cost[a] + _pi[u] - _pi[v];
867 Value rc = _res_cap[a];
868 if (c < 0 && rc >= _delta) {
872 _res_cap[_reverse[a]] += rc;
877 // Find excess nodes and deficit nodes
878 _excess_nodes.clear();
879 _deficit_nodes.clear();
880 for (int u = 0; u != _node_num; ++u) {
881 Value ex = _excess[u];
882 if (ex >= _delta) _excess_nodes.push_back(u);
883 if (ex <= -_delta) _deficit_nodes.push_back(u);
885 int next_node = 0, next_def_node = 0;
887 // Find augmenting shortest paths
888 while (next_node < int(_excess_nodes.size())) {
889 // Check deficit nodes
891 bool delta_deficit = false;
892 for ( ; next_def_node < int(_deficit_nodes.size());
894 if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
895 delta_deficit = true;
899 if (!delta_deficit) break;
902 // Run Dijkstra in the residual network
903 s = _excess_nodes[next_node];
904 if ((t = _dijkstra.run(s, _delta)) == -1) {
912 // Augment along a shortest path from s to t
913 Value d = std::min(_excess[s], -_excess[t]);
917 while ((a = _pred[u]) != -1) {
918 if (_res_cap[a] < d) d = _res_cap[a];
923 while ((a = _pred[u]) != -1) {
925 _res_cap[_reverse[a]] += d;
931 if (_excess[s] < _delta) ++next_node;
934 if (_delta == 1) break;
935 _delta = _delta <= _factor ? 1 : _delta / _factor;
941 // Execute the successive shortest path algorithm
942 ProblemType startWithoutScaling() {
944 _excess_nodes.clear();
945 for (int i = 0; i != _node_num; ++i) {
946 if (_excess[i] > 0) _excess_nodes.push_back(i);
948 if (_excess_nodes.size() == 0) return OPTIMAL;
951 // Find shortest paths
953 ResidualDijkstra _dijkstra(*this);
954 while ( _excess[_excess_nodes[next_node]] > 0 ||
955 ++next_node < int(_excess_nodes.size()) )
957 // Run Dijkstra in the residual network
958 s = _excess_nodes[next_node];
959 if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
961 // Augment along a shortest path from s to t
962 Value d = std::min(_excess[s], -_excess[t]);
966 while ((a = _pred[u]) != -1) {
967 if (_res_cap[a] < d) d = _res_cap[a];
972 while ((a = _pred[u]) != -1) {
974 _res_cap[_reverse[a]] += d;
984 }; //class CapacityScaling
990 #endif //LEMON_CAPACITY_SCALING_H