1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
30 // Disable the following warnings when compiling with MSVC:
31 // C4250: 'class1' : inherits 'class2::member' via dominance
32 // C4355: 'this' : used in base member initializer list
33 // C4503: 'function' : decorated name length exceeded, name was truncated
34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
35 // C4996: 'function': was declared deprecated
37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
41 ///\brief LEMON core utilities.
43 ///This header file contains core utilities for LEMON.
44 ///It is automatically included by all graph types, therefore it usually
45 ///do not have to be included directly.
49 /// \brief Dummy type to make it easier to create invalid iterators.
51 /// Dummy type to make it easier to create invalid iterators.
52 /// See \ref INVALID for the usage.
55 bool operator==(Invalid) { return true; }
56 bool operator!=(Invalid) { return false; }
57 bool operator< (Invalid) { return false; }
60 /// \brief Invalid iterators.
62 /// \ref Invalid is a global type that converts to each iterator
63 /// in such a way that the value of the target iterator will be invalid.
64 #ifdef LEMON_ONLY_TEMPLATES
65 const Invalid INVALID = Invalid();
67 extern const Invalid INVALID;
70 /// \addtogroup gutils
73 ///Create convenience typedefs for the digraph types and iterators
75 ///This \c \#define creates convenient type definitions for the following
76 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
77 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
78 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
80 ///\note If the graph type is a dependent type, ie. the graph type depend
81 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
83 #define DIGRAPH_TYPEDEFS(Digraph) \
84 typedef Digraph::Node Node; \
85 typedef Digraph::NodeIt NodeIt; \
86 typedef Digraph::Arc Arc; \
87 typedef Digraph::ArcIt ArcIt; \
88 typedef Digraph::InArcIt InArcIt; \
89 typedef Digraph::OutArcIt OutArcIt; \
90 typedef Digraph::NodeMap<bool> BoolNodeMap; \
91 typedef Digraph::NodeMap<int> IntNodeMap; \
92 typedef Digraph::NodeMap<double> DoubleNodeMap; \
93 typedef Digraph::ArcMap<bool> BoolArcMap; \
94 typedef Digraph::ArcMap<int> IntArcMap; \
95 typedef Digraph::ArcMap<double> DoubleArcMap
97 ///Create convenience typedefs for the digraph types and iterators
99 ///\see DIGRAPH_TYPEDEFS
101 ///\note Use this macro, if the graph type is a dependent type,
102 ///ie. the graph type depend on a template parameter.
103 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
104 typedef typename Digraph::Node Node; \
105 typedef typename Digraph::NodeIt NodeIt; \
106 typedef typename Digraph::Arc Arc; \
107 typedef typename Digraph::ArcIt ArcIt; \
108 typedef typename Digraph::InArcIt InArcIt; \
109 typedef typename Digraph::OutArcIt OutArcIt; \
110 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
111 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
112 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
113 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
114 typedef typename Digraph::template ArcMap<int> IntArcMap; \
115 typedef typename Digraph::template ArcMap<double> DoubleArcMap
117 ///Create convenience typedefs for the graph types and iterators
119 ///This \c \#define creates the same convenient type definitions as defined
120 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
121 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
124 ///\note If the graph type is a dependent type, ie. the graph type depend
125 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
127 #define GRAPH_TYPEDEFS(Graph) \
128 DIGRAPH_TYPEDEFS(Graph); \
129 typedef Graph::Edge Edge; \
130 typedef Graph::EdgeIt EdgeIt; \
131 typedef Graph::IncEdgeIt IncEdgeIt; \
132 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
133 typedef Graph::EdgeMap<int> IntEdgeMap; \
134 typedef Graph::EdgeMap<double> DoubleEdgeMap
136 ///Create convenience typedefs for the graph types and iterators
138 ///\see GRAPH_TYPEDEFS
140 ///\note Use this macro, if the graph type is a dependent type,
141 ///ie. the graph type depend on a template parameter.
142 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
143 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
144 typedef typename Graph::Edge Edge; \
145 typedef typename Graph::EdgeIt EdgeIt; \
146 typedef typename Graph::IncEdgeIt IncEdgeIt; \
147 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
148 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
149 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
151 /// \brief Function to count the items in a graph.
153 /// This function counts the items (nodes, arcs etc.) in a graph.
154 /// The complexity of the function is linear because
155 /// it iterates on all of the items.
156 template <typename Graph, typename Item>
157 inline int countItems(const Graph& g) {
158 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
160 for (ItemIt it(g); it != INVALID; ++it) {
168 namespace _core_bits {
170 template <typename Graph, typename Enable = void>
171 struct CountNodesSelector {
172 static int count(const Graph &g) {
173 return countItems<Graph, typename Graph::Node>(g);
177 template <typename Graph>
178 struct CountNodesSelector<
180 enable_if<typename Graph::NodeNumTag, void>::type>
182 static int count(const Graph &g) {
188 /// \brief Function to count the nodes in the graph.
190 /// This function counts the nodes in the graph.
191 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
192 /// graph structures it is specialized to run in <em>O</em>(1).
194 /// \note If the graph contains a \c nodeNum() member function and a
195 /// \c NodeNumTag tag then this function calls directly the member
196 /// function to query the cardinality of the node set.
197 template <typename Graph>
198 inline int countNodes(const Graph& g) {
199 return _core_bits::CountNodesSelector<Graph>::count(g);
204 namespace _core_bits {
206 template <typename Graph, typename Enable = void>
207 struct CountArcsSelector {
208 static int count(const Graph &g) {
209 return countItems<Graph, typename Graph::Arc>(g);
213 template <typename Graph>
214 struct CountArcsSelector<
216 typename enable_if<typename Graph::ArcNumTag, void>::type>
218 static int count(const Graph &g) {
224 /// \brief Function to count the arcs in the graph.
226 /// This function counts the arcs in the graph.
227 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
228 /// graph structures it is specialized to run in <em>O</em>(1).
230 /// \note If the graph contains a \c arcNum() member function and a
231 /// \c ArcNumTag tag then this function calls directly the member
232 /// function to query the cardinality of the arc set.
233 template <typename Graph>
234 inline int countArcs(const Graph& g) {
235 return _core_bits::CountArcsSelector<Graph>::count(g);
240 namespace _core_bits {
242 template <typename Graph, typename Enable = void>
243 struct CountEdgesSelector {
244 static int count(const Graph &g) {
245 return countItems<Graph, typename Graph::Edge>(g);
249 template <typename Graph>
250 struct CountEdgesSelector<
252 typename enable_if<typename Graph::EdgeNumTag, void>::type>
254 static int count(const Graph &g) {
260 /// \brief Function to count the edges in the graph.
262 /// This function counts the edges in the graph.
263 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
264 /// graph structures it is specialized to run in <em>O</em>(1).
266 /// \note If the graph contains a \c edgeNum() member function and a
267 /// \c EdgeNumTag tag then this function calls directly the member
268 /// function to query the cardinality of the edge set.
269 template <typename Graph>
270 inline int countEdges(const Graph& g) {
271 return _core_bits::CountEdgesSelector<Graph>::count(g);
276 template <typename Graph, typename DegIt>
277 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
279 for (DegIt it(_g, _n); it != INVALID; ++it) {
285 /// \brief Function to count the number of the out-arcs from node \c n.
287 /// This function counts the number of the out-arcs from node \c n
288 /// in the graph \c g.
289 template <typename Graph>
290 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
291 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
294 /// \brief Function to count the number of the in-arcs to node \c n.
296 /// This function counts the number of the in-arcs to node \c n
297 /// in the graph \c g.
298 template <typename Graph>
299 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
300 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
303 /// \brief Function to count the number of the inc-edges to node \c n.
305 /// This function counts the number of the inc-edges to node \c n
306 /// in the undirected graph \c g.
307 template <typename Graph>
308 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
309 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
312 namespace _core_bits {
314 template <typename Digraph, typename Item, typename RefMap>
317 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
319 virtual ~MapCopyBase() {}
322 template <typename Digraph, typename Item, typename RefMap,
323 typename FromMap, typename ToMap>
324 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
327 MapCopy(const FromMap& map, ToMap& tmap)
328 : _map(map), _tmap(tmap) {}
330 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
331 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
332 for (ItemIt it(digraph); it != INVALID; ++it) {
333 _tmap.set(refMap[it], _map[it]);
342 template <typename Digraph, typename Item, typename RefMap, typename It>
343 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
346 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
348 virtual void copy(const Digraph&, const RefMap& refMap) {
357 template <typename Digraph, typename Item, typename RefMap, typename Ref>
358 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
361 RefCopy(Ref& map) : _map(map) {}
363 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
364 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
365 for (ItemIt it(digraph); it != INVALID; ++it) {
366 _map.set(it, refMap[it]);
374 template <typename Digraph, typename Item, typename RefMap,
376 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
379 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
381 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
382 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
383 for (ItemIt it(digraph); it != INVALID; ++it) {
384 _cmap.set(refMap[it], it);
392 template <typename Digraph, typename Enable = void>
393 struct DigraphCopySelector {
394 template <typename From, typename NodeRefMap, typename ArcRefMap>
395 static void copy(const From& from, Digraph &to,
396 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
398 for (typename From::NodeIt it(from); it != INVALID; ++it) {
399 nodeRefMap[it] = to.addNode();
401 for (typename From::ArcIt it(from); it != INVALID; ++it) {
402 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
403 nodeRefMap[from.target(it)]);
408 template <typename Digraph>
409 struct DigraphCopySelector<
411 typename enable_if<typename Digraph::BuildTag, void>::type>
413 template <typename From, typename NodeRefMap, typename ArcRefMap>
414 static void copy(const From& from, Digraph &to,
415 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
416 to.build(from, nodeRefMap, arcRefMap);
420 template <typename Graph, typename Enable = void>
421 struct GraphCopySelector {
422 template <typename From, typename NodeRefMap, typename EdgeRefMap>
423 static void copy(const From& from, Graph &to,
424 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
426 for (typename From::NodeIt it(from); it != INVALID; ++it) {
427 nodeRefMap[it] = to.addNode();
429 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
430 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
431 nodeRefMap[from.v(it)]);
436 template <typename Graph>
437 struct GraphCopySelector<
439 typename enable_if<typename Graph::BuildTag, void>::type>
441 template <typename From, typename NodeRefMap, typename EdgeRefMap>
442 static void copy(const From& from, Graph &to,
443 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
444 to.build(from, nodeRefMap, edgeRefMap);
450 /// Check whether a graph is undirected.
452 /// This function returns \c true if the given graph is undirected.
454 template <typename GR>
455 bool undirected(const GR& g) { return false; }
457 template <typename GR>
458 typename enable_if<UndirectedTagIndicator<GR>, bool>::type
459 undirected(const GR&) {
462 template <typename GR>
463 typename disable_if<UndirectedTagIndicator<GR>, bool>::type
464 undirected(const GR&) {
469 /// \brief Class to copy a digraph.
471 /// Class to copy a digraph to another digraph (duplicate a digraph). The
472 /// simplest way of using it is through the \c digraphCopy() function.
474 /// This class not only make a copy of a digraph, but it can create
475 /// references and cross references between the nodes and arcs of
476 /// the two digraphs, and it can copy maps to use with the newly created
479 /// To make a copy from a digraph, first an instance of DigraphCopy
480 /// should be created, then the data belongs to the digraph should
481 /// assigned to copy. In the end, the \c run() member should be
484 /// The next code copies a digraph with several data:
486 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
487 /// // Create references for the nodes
488 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
490 /// // Create cross references (inverse) for the arcs
491 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
492 /// cg.arcCrossRef(acr);
493 /// // Copy an arc map
494 /// OrigGraph::ArcMap<double> oamap(orig_graph);
495 /// NewGraph::ArcMap<double> namap(new_graph);
496 /// cg.arcMap(oamap, namap);
498 /// OrigGraph::Node on;
499 /// NewGraph::Node nn;
501 /// // Execute copying
504 template <typename From, typename To>
508 typedef typename From::Node Node;
509 typedef typename From::NodeIt NodeIt;
510 typedef typename From::Arc Arc;
511 typedef typename From::ArcIt ArcIt;
513 typedef typename To::Node TNode;
514 typedef typename To::Arc TArc;
516 typedef typename From::template NodeMap<TNode> NodeRefMap;
517 typedef typename From::template ArcMap<TArc> ArcRefMap;
521 /// \brief Constructor of DigraphCopy.
523 /// Constructor of DigraphCopy for copying the content of the
524 /// \c from digraph into the \c to digraph.
525 DigraphCopy(const From& from, To& to)
526 : _from(from), _to(to) {}
528 /// \brief Destructor of DigraphCopy
530 /// Destructor of DigraphCopy.
532 for (int i = 0; i < int(_node_maps.size()); ++i) {
533 delete _node_maps[i];
535 for (int i = 0; i < int(_arc_maps.size()); ++i) {
541 /// \brief Copy the node references into the given map.
543 /// This function copies the node references into the given map.
544 /// The parameter should be a map, whose key type is the Node type of
545 /// the source digraph, while the value type is the Node type of the
546 /// destination digraph.
547 template <typename NodeRef>
548 DigraphCopy& nodeRef(NodeRef& map) {
549 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
550 NodeRefMap, NodeRef>(map));
554 /// \brief Copy the node cross references into the given map.
556 /// This function copies the node cross references (reverse references)
557 /// into the given map. The parameter should be a map, whose key type
558 /// is the Node type of the destination digraph, while the value type is
559 /// the Node type of the source digraph.
560 template <typename NodeCrossRef>
561 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
562 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
563 NodeRefMap, NodeCrossRef>(map));
567 /// \brief Make a copy of the given node map.
569 /// This function makes a copy of the given node map for the newly
571 /// The key type of the new map \c tmap should be the Node type of the
572 /// destination digraph, and the key type of the original map \c map
573 /// should be the Node type of the source digraph.
574 template <typename FromMap, typename ToMap>
575 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
576 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
577 NodeRefMap, FromMap, ToMap>(map, tmap));
581 /// \brief Make a copy of the given node.
583 /// This function makes a copy of the given node.
584 DigraphCopy& node(const Node& node, TNode& tnode) {
585 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
586 NodeRefMap, TNode>(node, tnode));
590 /// \brief Copy the arc references into the given map.
592 /// This function copies the arc references into the given map.
593 /// The parameter should be a map, whose key type is the Arc type of
594 /// the source digraph, while the value type is the Arc type of the
595 /// destination digraph.
596 template <typename ArcRef>
597 DigraphCopy& arcRef(ArcRef& map) {
598 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
599 ArcRefMap, ArcRef>(map));
603 /// \brief Copy the arc cross references into the given map.
605 /// This function copies the arc cross references (reverse references)
606 /// into the given map. The parameter should be a map, whose key type
607 /// is the Arc type of the destination digraph, while the value type is
608 /// the Arc type of the source digraph.
609 template <typename ArcCrossRef>
610 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
611 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
612 ArcRefMap, ArcCrossRef>(map));
616 /// \brief Make a copy of the given arc map.
618 /// This function makes a copy of the given arc map for the newly
620 /// The key type of the new map \c tmap should be the Arc type of the
621 /// destination digraph, and the key type of the original map \c map
622 /// should be the Arc type of the source digraph.
623 template <typename FromMap, typename ToMap>
624 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
625 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
626 ArcRefMap, FromMap, ToMap>(map, tmap));
630 /// \brief Make a copy of the given arc.
632 /// This function makes a copy of the given arc.
633 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
634 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
635 ArcRefMap, TArc>(arc, tarc));
639 /// \brief Execute copying.
641 /// This function executes the copying of the digraph along with the
642 /// copying of the assigned data.
644 NodeRefMap nodeRefMap(_from);
645 ArcRefMap arcRefMap(_from);
646 _core_bits::DigraphCopySelector<To>::
647 copy(_from, _to, nodeRefMap, arcRefMap);
648 for (int i = 0; i < int(_node_maps.size()); ++i) {
649 _node_maps[i]->copy(_from, nodeRefMap);
651 for (int i = 0; i < int(_arc_maps.size()); ++i) {
652 _arc_maps[i]->copy(_from, arcRefMap);
661 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
664 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
669 /// \brief Copy a digraph to another digraph.
671 /// This function copies a digraph to another digraph.
672 /// The complete usage of it is detailed in the DigraphCopy class, but
673 /// a short example shows a basic work:
675 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
678 /// After the copy the \c nr map will contain the mapping from the
679 /// nodes of the \c from digraph to the nodes of the \c to digraph and
680 /// \c acr will contain the mapping from the arcs of the \c to digraph
681 /// to the arcs of the \c from digraph.
684 template <typename From, typename To>
685 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
686 return DigraphCopy<From, To>(from, to);
689 /// \brief Class to copy a graph.
691 /// Class to copy a graph to another graph (duplicate a graph). The
692 /// simplest way of using it is through the \c graphCopy() function.
694 /// This class not only make a copy of a graph, but it can create
695 /// references and cross references between the nodes, edges and arcs of
696 /// the two graphs, and it can copy maps for using with the newly created
699 /// To make a copy from a graph, first an instance of GraphCopy
700 /// should be created, then the data belongs to the graph should
701 /// assigned to copy. In the end, the \c run() member should be
704 /// The next code copies a graph with several data:
706 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
707 /// // Create references for the nodes
708 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
710 /// // Create cross references (inverse) for the edges
711 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
712 /// cg.edgeCrossRef(ecr);
713 /// // Copy an edge map
714 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
715 /// NewGraph::EdgeMap<double> nemap(new_graph);
716 /// cg.edgeMap(oemap, nemap);
718 /// OrigGraph::Node on;
719 /// NewGraph::Node nn;
721 /// // Execute copying
724 template <typename From, typename To>
728 typedef typename From::Node Node;
729 typedef typename From::NodeIt NodeIt;
730 typedef typename From::Arc Arc;
731 typedef typename From::ArcIt ArcIt;
732 typedef typename From::Edge Edge;
733 typedef typename From::EdgeIt EdgeIt;
735 typedef typename To::Node TNode;
736 typedef typename To::Arc TArc;
737 typedef typename To::Edge TEdge;
739 typedef typename From::template NodeMap<TNode> NodeRefMap;
740 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
743 ArcRefMap(const From& from, const To& to,
744 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
745 : _from(from), _to(to),
746 _edge_ref(edge_ref), _node_ref(node_ref) {}
748 typedef typename From::Arc Key;
749 typedef typename To::Arc Value;
751 Value operator[](const Key& key) const {
752 bool forward = _from.u(key) != _from.v(key) ?
753 _node_ref[_from.source(key)] ==
754 _to.source(_to.direct(_edge_ref[key], true)) :
755 _from.direction(key);
756 return _to.direct(_edge_ref[key], forward);
761 const EdgeRefMap& _edge_ref;
762 const NodeRefMap& _node_ref;
767 /// \brief Constructor of GraphCopy.
769 /// Constructor of GraphCopy for copying the content of the
770 /// \c from graph into the \c to graph.
771 GraphCopy(const From& from, To& to)
772 : _from(from), _to(to) {}
774 /// \brief Destructor of GraphCopy
776 /// Destructor of GraphCopy.
778 for (int i = 0; i < int(_node_maps.size()); ++i) {
779 delete _node_maps[i];
781 for (int i = 0; i < int(_arc_maps.size()); ++i) {
784 for (int i = 0; i < int(_edge_maps.size()); ++i) {
785 delete _edge_maps[i];
789 /// \brief Copy the node references into the given map.
791 /// This function copies the node references into the given map.
792 /// The parameter should be a map, whose key type is the Node type of
793 /// the source graph, while the value type is the Node type of the
794 /// destination graph.
795 template <typename NodeRef>
796 GraphCopy& nodeRef(NodeRef& map) {
797 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
798 NodeRefMap, NodeRef>(map));
802 /// \brief Copy the node cross references into the given map.
804 /// This function copies the node cross references (reverse references)
805 /// into the given map. The parameter should be a map, whose key type
806 /// is the Node type of the destination graph, while the value type is
807 /// the Node type of the source graph.
808 template <typename NodeCrossRef>
809 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
810 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
811 NodeRefMap, NodeCrossRef>(map));
815 /// \brief Make a copy of the given node map.
817 /// This function makes a copy of the given node map for the newly
819 /// The key type of the new map \c tmap should be the Node type of the
820 /// destination graph, and the key type of the original map \c map
821 /// should be the Node type of the source graph.
822 template <typename FromMap, typename ToMap>
823 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
824 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
825 NodeRefMap, FromMap, ToMap>(map, tmap));
829 /// \brief Make a copy of the given node.
831 /// This function makes a copy of the given node.
832 GraphCopy& node(const Node& node, TNode& tnode) {
833 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
834 NodeRefMap, TNode>(node, tnode));
838 /// \brief Copy the arc references into the given map.
840 /// This function copies the arc references into the given map.
841 /// The parameter should be a map, whose key type is the Arc type of
842 /// the source graph, while the value type is the Arc type of the
843 /// destination graph.
844 template <typename ArcRef>
845 GraphCopy& arcRef(ArcRef& map) {
846 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
847 ArcRefMap, ArcRef>(map));
851 /// \brief Copy the arc cross references into the given map.
853 /// This function copies the arc cross references (reverse references)
854 /// into the given map. The parameter should be a map, whose key type
855 /// is the Arc type of the destination graph, while the value type is
856 /// the Arc type of the source graph.
857 template <typename ArcCrossRef>
858 GraphCopy& arcCrossRef(ArcCrossRef& map) {
859 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
860 ArcRefMap, ArcCrossRef>(map));
864 /// \brief Make a copy of the given arc map.
866 /// This function makes a copy of the given arc map for the newly
868 /// The key type of the new map \c tmap should be the Arc type of the
869 /// destination graph, and the key type of the original map \c map
870 /// should be the Arc type of the source graph.
871 template <typename FromMap, typename ToMap>
872 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
873 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
874 ArcRefMap, FromMap, ToMap>(map, tmap));
878 /// \brief Make a copy of the given arc.
880 /// This function makes a copy of the given arc.
881 GraphCopy& arc(const Arc& arc, TArc& tarc) {
882 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
883 ArcRefMap, TArc>(arc, tarc));
887 /// \brief Copy the edge references into the given map.
889 /// This function copies the edge references into the given map.
890 /// The parameter should be a map, whose key type is the Edge type of
891 /// the source graph, while the value type is the Edge type of the
892 /// destination graph.
893 template <typename EdgeRef>
894 GraphCopy& edgeRef(EdgeRef& map) {
895 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
896 EdgeRefMap, EdgeRef>(map));
900 /// \brief Copy the edge cross references into the given map.
902 /// This function copies the edge cross references (reverse references)
903 /// into the given map. The parameter should be a map, whose key type
904 /// is the Edge type of the destination graph, while the value type is
905 /// the Edge type of the source graph.
906 template <typename EdgeCrossRef>
907 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
908 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
909 Edge, EdgeRefMap, EdgeCrossRef>(map));
913 /// \brief Make a copy of the given edge map.
915 /// This function makes a copy of the given edge map for the newly
917 /// The key type of the new map \c tmap should be the Edge type of the
918 /// destination graph, and the key type of the original map \c map
919 /// should be the Edge type of the source graph.
920 template <typename FromMap, typename ToMap>
921 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
922 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
923 EdgeRefMap, FromMap, ToMap>(map, tmap));
927 /// \brief Make a copy of the given edge.
929 /// This function makes a copy of the given edge.
930 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
931 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
932 EdgeRefMap, TEdge>(edge, tedge));
936 /// \brief Execute copying.
938 /// This function executes the copying of the graph along with the
939 /// copying of the assigned data.
941 NodeRefMap nodeRefMap(_from);
942 EdgeRefMap edgeRefMap(_from);
943 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
944 _core_bits::GraphCopySelector<To>::
945 copy(_from, _to, nodeRefMap, edgeRefMap);
946 for (int i = 0; i < int(_node_maps.size()); ++i) {
947 _node_maps[i]->copy(_from, nodeRefMap);
949 for (int i = 0; i < int(_edge_maps.size()); ++i) {
950 _edge_maps[i]->copy(_from, edgeRefMap);
952 for (int i = 0; i < int(_arc_maps.size()); ++i) {
953 _arc_maps[i]->copy(_from, arcRefMap);
962 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
965 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
968 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
973 /// \brief Copy a graph to another graph.
975 /// This function copies a graph to another graph.
976 /// The complete usage of it is detailed in the GraphCopy class,
977 /// but a short example shows a basic work:
979 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
982 /// After the copy the \c nr map will contain the mapping from the
983 /// nodes of the \c from graph to the nodes of the \c to graph and
984 /// \c ecr will contain the mapping from the edges of the \c to graph
985 /// to the edges of the \c from graph.
988 template <typename From, typename To>
990 graphCopy(const From& from, To& to) {
991 return GraphCopy<From, To>(from, to);
994 namespace _core_bits {
996 template <typename Graph, typename Enable = void>
997 struct FindArcSelector {
998 typedef typename Graph::Node Node;
999 typedef typename Graph::Arc Arc;
1000 static Arc find(const Graph &g, Node u, Node v, Arc e) {
1006 while (e != INVALID && g.target(e) != v) {
1013 template <typename Graph>
1014 struct FindArcSelector<
1016 typename enable_if<typename Graph::FindArcTag, void>::type>
1018 typedef typename Graph::Node Node;
1019 typedef typename Graph::Arc Arc;
1020 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
1021 return g.findArc(u, v, prev);
1026 /// \brief Find an arc between two nodes of a digraph.
1028 /// This function finds an arc from node \c u to node \c v in the
1031 /// If \c prev is \ref INVALID (this is the default value), then
1032 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1033 /// the next arc from \c u to \c v after \c prev.
1034 /// \return The found arc or \ref INVALID if there is no such an arc.
1036 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1038 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1043 /// \note \ref ConArcIt provides iterator interface for the same
1047 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1048 template <typename Graph>
1049 inline typename Graph::Arc
1050 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1051 typename Graph::Arc prev = INVALID) {
1052 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1055 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1057 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1058 /// a higher level interface for the \ref findArc() function. You can
1059 /// use it the following way:
1061 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1067 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1068 template <typename GR>
1069 class ConArcIt : public GR::Arc {
1070 typedef typename GR::Arc Parent;
1074 typedef typename GR::Arc Arc;
1075 typedef typename GR::Node Node;
1077 /// \brief Constructor.
1079 /// Construct a new ConArcIt iterating on the arcs that
1080 /// connects nodes \c u and \c v.
1081 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1082 Parent::operator=(findArc(_graph, u, v));
1085 /// \brief Constructor.
1087 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1088 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1090 /// \brief Increment operator.
1092 /// It increments the iterator and gives back the next arc.
1093 ConArcIt& operator++() {
1094 Parent::operator=(findArc(_graph, _graph.source(*this),
1095 _graph.target(*this), *this));
1102 namespace _core_bits {
1104 template <typename Graph, typename Enable = void>
1105 struct FindEdgeSelector {
1106 typedef typename Graph::Node Node;
1107 typedef typename Graph::Edge Edge;
1108 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1112 g.firstInc(e, b, u);
1117 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1122 g.firstInc(e, b, u);
1127 while (e != INVALID && (!b || g.v(e) != v)) {
1135 template <typename Graph>
1136 struct FindEdgeSelector<
1138 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1140 typedef typename Graph::Node Node;
1141 typedef typename Graph::Edge Edge;
1142 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1143 return g.findEdge(u, v, prev);
1148 /// \brief Find an edge between two nodes of a graph.
1150 /// This function finds an edge from node \c u to node \c v in graph \c g.
1151 /// If node \c u and node \c v is equal then each loop edge
1152 /// will be enumerated once.
1154 /// If \c prev is \ref INVALID (this is the default value), then
1155 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1156 /// the next edge from \c u to \c v after \c prev.
1157 /// \return The found edge or \ref INVALID if there is no such an edge.
1159 /// Thus you can iterate through each edge between \c u and \c v
1162 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1167 /// \note \ref ConEdgeIt provides iterator interface for the same
1171 template <typename Graph>
1172 inline typename Graph::Edge
1173 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1174 typename Graph::Edge p = INVALID) {
1175 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1178 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1180 /// Iterator for iterating on parallel edges connecting the same nodes.
1181 /// It is a higher level interface for the findEdge() function. You can
1182 /// use it the following way:
1184 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1190 template <typename GR>
1191 class ConEdgeIt : public GR::Edge {
1192 typedef typename GR::Edge Parent;
1196 typedef typename GR::Edge Edge;
1197 typedef typename GR::Node Node;
1199 /// \brief Constructor.
1201 /// Construct a new ConEdgeIt iterating on the edges that
1202 /// connects nodes \c u and \c v.
1203 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1204 Parent::operator=(findEdge(_graph, _u, _v));
1207 /// \brief Constructor.
1209 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1210 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1212 /// \brief Increment operator.
1214 /// It increments the iterator and gives back the next edge.
1215 ConEdgeIt& operator++() {
1216 Parent::operator=(findEdge(_graph, _u, _v, *this));
1225 ///Dynamic arc look-up between given endpoints.
1227 ///Using this class, you can find an arc in a digraph from a given
1228 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1229 ///where <em>d</em> is the out-degree of the source node.
1231 ///It is possible to find \e all parallel arcs between two nodes with
1232 ///the \c operator() member.
1234 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1235 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1237 ///This class uses a self-adjusting binary search tree, the Splay tree
1238 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1239 ///time bound for arc look-ups. This class also guarantees the
1240 ///optimal time bound in a constant factor for any distribution of
1243 ///\tparam GR The type of the underlying digraph.
1247 template <typename GR>
1249 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1251 typedef typename ItemSetTraits<GR, typename GR::Arc>
1252 ::ItemNotifier::ObserverBase Parent;
1254 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1258 /// The Digraph type
1263 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1265 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1269 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1271 virtual void add(const Node& node) {
1273 Parent::set(node, INVALID);
1276 virtual void add(const std::vector<Node>& nodes) {
1278 for (int i = 0; i < int(nodes.size()); ++i) {
1279 Parent::set(nodes[i], INVALID);
1283 virtual void build() {
1286 typename Parent::Notifier* nf = Parent::notifier();
1287 for (nf->first(it); it != INVALID; nf->next(it)) {
1288 Parent::set(it, INVALID);
1296 ArcLess(const Digraph &_g) : g(_g) {}
1297 bool operator()(Arc a,Arc b) const
1299 return g.target(a)<g.target(b);
1307 typename Digraph::template ArcMap<Arc> _parent;
1308 typename Digraph::template ArcMap<Arc> _left;
1309 typename Digraph::template ArcMap<Arc> _right;
1317 ///It builds up the search database.
1318 DynArcLookUp(const Digraph &g)
1319 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1321 Parent::attach(_g.notifier(typename Digraph::Arc()));
1327 virtual void add(const Arc& arc) {
1331 virtual void add(const std::vector<Arc>& arcs) {
1332 for (int i = 0; i < int(arcs.size()); ++i) {
1337 virtual void erase(const Arc& arc) {
1341 virtual void erase(const std::vector<Arc>& arcs) {
1342 for (int i = 0; i < int(arcs.size()); ++i) {
1347 virtual void build() {
1351 virtual void clear() {
1352 for(NodeIt n(_g);n!=INVALID;++n) {
1357 void insert(Arc arc) {
1358 Node s = _g.source(arc);
1359 Node t = _g.target(arc);
1360 _left[arc] = INVALID;
1361 _right[arc] = INVALID;
1366 _parent[arc] = INVALID;
1370 if (t < _g.target(e)) {
1371 if (_left[e] == INVALID) {
1380 if (_right[e] == INVALID) {
1392 void remove(Arc arc) {
1393 if (_left[arc] == INVALID) {
1394 if (_right[arc] != INVALID) {
1395 _parent[_right[arc]] = _parent[arc];
1397 if (_parent[arc] != INVALID) {
1398 if (_left[_parent[arc]] == arc) {
1399 _left[_parent[arc]] = _right[arc];
1401 _right[_parent[arc]] = _right[arc];
1404 _head[_g.source(arc)] = _right[arc];
1406 } else if (_right[arc] == INVALID) {
1407 _parent[_left[arc]] = _parent[arc];
1408 if (_parent[arc] != INVALID) {
1409 if (_left[_parent[arc]] == arc) {
1410 _left[_parent[arc]] = _left[arc];
1412 _right[_parent[arc]] = _left[arc];
1415 _head[_g.source(arc)] = _left[arc];
1419 if (_right[e] != INVALID) {
1421 while (_right[e] != INVALID) {
1425 _right[_parent[e]] = _left[e];
1426 if (_left[e] != INVALID) {
1427 _parent[_left[e]] = _parent[e];
1430 _left[e] = _left[arc];
1431 _parent[_left[arc]] = e;
1432 _right[e] = _right[arc];
1433 _parent[_right[arc]] = e;
1435 _parent[e] = _parent[arc];
1436 if (_parent[arc] != INVALID) {
1437 if (_left[_parent[arc]] == arc) {
1438 _left[_parent[arc]] = e;
1440 _right[_parent[arc]] = e;
1445 _right[e] = _right[arc];
1446 _parent[_right[arc]] = e;
1447 _parent[e] = _parent[arc];
1449 if (_parent[arc] != INVALID) {
1450 if (_left[_parent[arc]] == arc) {
1451 _left[_parent[arc]] = e;
1453 _right[_parent[arc]] = e;
1456 _head[_g.source(arc)] = e;
1462 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1467 Arc left = refreshRec(v,a,m-1);
1471 _left[me] = INVALID;
1474 Arc right = refreshRec(v,m+1,b);
1476 _parent[right] = me;
1478 _right[me] = INVALID;
1484 for(NodeIt n(_g);n!=INVALID;++n) {
1486 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1488 std::sort(v.begin(),v.end(),ArcLess(_g));
1489 Arc head = refreshRec(v,0,v.size()-1);
1491 _parent[head] = INVALID;
1493 else _head[n] = INVALID;
1499 _parent[v] = _parent[w];
1501 _left[w] = _right[v];
1503 if (_parent[v] != INVALID) {
1504 if (_right[_parent[v]] == w) {
1505 _right[_parent[v]] = v;
1507 _left[_parent[v]] = v;
1510 if (_left[w] != INVALID){
1511 _parent[_left[w]] = w;
1517 _parent[v] = _parent[w];
1519 _right[w] = _left[v];
1521 if (_parent[v] != INVALID){
1522 if (_left[_parent[v]] == w) {
1523 _left[_parent[v]] = v;
1525 _right[_parent[v]] = v;
1528 if (_right[w] != INVALID){
1529 _parent[_right[w]] = w;
1534 while (_parent[v] != INVALID) {
1535 if (v == _left[_parent[v]]) {
1536 if (_parent[_parent[v]] == INVALID) {
1539 if (_parent[v] == _left[_parent[_parent[v]]]) {
1548 if (_parent[_parent[v]] == INVALID) {
1551 if (_parent[v] == _left[_parent[_parent[v]]]) {
1561 _head[_g.source(v)] = v;
1567 ///Find an arc between two nodes.
1569 ///Find an arc between two nodes.
1570 ///\param s The source node.
1571 ///\param t The target node.
1572 ///\param p The previous arc between \c s and \c t. It it is INVALID or
1573 ///not given, the operator finds the first appropriate arc.
1574 ///\return An arc from \c s to \c t after \c p or
1575 ///\ref INVALID if there is no more.
1577 ///For example, you can count the number of arcs from \c u to \c v in the
1580 ///DynArcLookUp<ListDigraph> ae(g);
1583 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1586 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1587 ///amortized time, specifically, the time complexity of the lookups
1588 ///is equal to the optimal search tree implementation for the
1589 ///current query distribution in a constant factor.
1591 ///\note This is a dynamic data structure, therefore the data
1592 ///structure is updated after each graph alteration. Thus although
1593 ///this data structure is theoretically faster than \ref ArcLookUp
1594 ///and \ref AllArcLookUp, it often provides worse performance than
1596 Arc operator()(Node s, Node t, Arc p = INVALID) const {
1599 if (a == INVALID) return INVALID;
1602 if (_g.target(a) < t) {
1603 if (_right[a] == INVALID) {
1604 const_cast<DynArcLookUp&>(*this).splay(a);
1610 if (_g.target(a) == t) {
1613 if (_left[a] == INVALID) {
1614 const_cast<DynArcLookUp&>(*this).splay(a);
1623 if (_right[a] != INVALID) {
1625 while (_left[a] != INVALID) {
1628 const_cast<DynArcLookUp&>(*this).splay(a);
1630 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
1633 if (_parent[a] == INVALID) {
1637 const_cast<DynArcLookUp&>(*this).splay(a);
1640 if (_g.target(a) == t) return a;
1641 else return INVALID;
1647 ///Fast arc look-up between given endpoints.
1649 ///Using this class, you can find an arc in a digraph from a given
1650 ///source to a given target in time <em>O</em>(log<em>d</em>),
1651 ///where <em>d</em> is the out-degree of the source node.
1653 ///It is not possible to find \e all parallel arcs between two nodes.
1654 ///Use \ref AllArcLookUp for this purpose.
1656 ///\warning This class is static, so you should call refresh() (or at
1657 ///least refresh(Node)) to refresh this data structure whenever the
1658 ///digraph changes. This is a time consuming (superlinearly proportional
1659 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1661 ///\tparam GR The type of the underlying digraph.
1668 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1672 /// The Digraph type
1677 typename Digraph::template NodeMap<Arc> _head;
1678 typename Digraph::template ArcMap<Arc> _left;
1679 typename Digraph::template ArcMap<Arc> _right;
1684 ArcLess(const Digraph &_g) : g(_g) {}
1685 bool operator()(Arc a,Arc b) const
1687 return g.target(a)<g.target(b);
1697 ///It builds up the search database, which remains valid until the digraph
1699 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1702 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1706 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1707 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1711 ///Refresh the search data structure at a node.
1713 ///Build up the search database of node \c n.
1715 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1716 ///is the number of the outgoing arcs of \c n.
1717 void refresh(Node n)
1720 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1722 std::sort(v.begin(),v.end(),ArcLess(_g));
1723 _head[n]=refreshRec(v,0,v.size()-1);
1725 else _head[n]=INVALID;
1727 ///Refresh the full data structure.
1729 ///Build up the full search database. In fact, it simply calls
1730 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1732 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1733 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1734 ///out-degree of the digraph.
1737 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1740 ///Find an arc between two nodes.
1742 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1743 ///where <em>d</em> is the number of outgoing arcs of \c s.
1744 ///\param s The source node.
1745 ///\param t The target node.
1746 ///\return An arc from \c s to \c t if there exists,
1747 ///\ref INVALID otherwise.
1749 ///\warning If you change the digraph, refresh() must be called before using
1750 ///this operator. If you change the outgoing arcs of
1751 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1752 Arc operator()(Node s, Node t) const
1756 e!=INVALID&&_g.target(e)!=t;
1757 e = t < _g.target(e)?_left[e]:_right[e]) ;
1763 ///Fast look-up of all arcs between given endpoints.
1765 ///This class is the same as \ref ArcLookUp, with the addition
1766 ///that it makes it possible to find all parallel arcs between given
1769 ///\warning This class is static, so you should call refresh() (or at
1770 ///least refresh(Node)) to refresh this data structure whenever the
1771 ///digraph changes. This is a time consuming (superlinearly proportional
1772 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1774 ///\tparam GR The type of the underlying digraph.
1779 class AllArcLookUp : public ArcLookUp<GR>
1781 using ArcLookUp<GR>::_g;
1782 using ArcLookUp<GR>::_right;
1783 using ArcLookUp<GR>::_left;
1784 using ArcLookUp<GR>::_head;
1786 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1788 typename GR::template ArcMap<Arc> _next;
1790 Arc refreshNext(Arc head,Arc next=INVALID)
1792 if(head==INVALID) return next;
1794 next=refreshNext(_right[head],next);
1795 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1797 return refreshNext(_left[head],head);
1803 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1808 /// The Digraph type
1815 ///It builds up the search database, which remains valid until the digraph
1817 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
1819 ///Refresh the data structure at a node.
1821 ///Build up the search database of node \c n.
1823 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1824 ///the number of the outgoing arcs of \c n.
1825 void refresh(Node n)
1827 ArcLookUp<GR>::refresh(n);
1828 refreshNext(_head[n]);
1831 ///Refresh the full data structure.
1833 ///Build up the full search database. In fact, it simply calls
1834 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1836 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1837 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1838 ///out-degree of the digraph.
1841 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1844 ///Find an arc between two nodes.
1846 ///Find an arc between two nodes.
1847 ///\param s The source node.
1848 ///\param t The target node.
1849 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1850 ///not given, the operator finds the first appropriate arc.
1851 ///\return An arc from \c s to \c t after \c prev or
1852 ///\ref INVALID if there is no more.
1854 ///For example, you can count the number of arcs from \c u to \c v in the
1857 ///AllArcLookUp<ListDigraph> ae(g);
1860 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1863 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1864 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1865 ///consecutive arcs are found in constant time.
1867 ///\warning If you change the digraph, refresh() must be called before using
1868 ///this operator. If you change the outgoing arcs of
1869 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1872 Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1874 using ArcLookUp<GR>::operator() ;
1875 Arc operator()(Node s, Node t, Arc prev) const
1877 return prev==INVALID?(*this)(s,t):_next[prev];