lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sun, 22 Aug 2010 23:54:10 +0200
changeset 895 dca9eed2c375
parent 889 0bca98cbebbb
child 896 fb932bcfd803
permissions -rw-r--r--
Improve the tree update process and a pivot rule (#391)
and make some parts of the code clearer using better names
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 ///
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow_algs
    37   /// @{
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    42   /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    43   /// for finding a \ref min_cost_flow "minimum cost flow"
    44   /// \ref amo93networkflows, \ref dantzig63linearprog,
    45   /// \ref kellyoneill91netsimplex.
    46   /// This algorithm is a highly efficient specialized version of the
    47   /// linear programming simplex method directly for the minimum cost
    48   /// flow problem.
    49   ///
    50   /// In general, %NetworkSimplex is the fastest implementation available
    51   /// in LEMON for this problem.
    52   /// Moreover, it supports both directions of the supply/demand inequality
    53   /// constraints. For more information, see \ref SupplyType.
    54   ///
    55   /// Most of the parameters of the problem (except for the digraph)
    56   /// can be given using separate functions, and the algorithm can be
    57   /// executed using the \ref run() function. If some parameters are not
    58   /// specified, then default values will be used.
    59   ///
    60   /// \tparam GR The digraph type the algorithm runs on.
    61   /// \tparam V The number type used for flow amounts, capacity bounds
    62   /// and supply values in the algorithm. By default, it is \c int.
    63   /// \tparam C The number type used for costs and potentials in the
    64   /// algorithm. By default, it is the same as \c V.
    65   ///
    66   /// \warning Both number types must be signed and all input data must
    67   /// be integer.
    68   ///
    69   /// \note %NetworkSimplex provides five different pivot rule
    70   /// implementations, from which the most efficient one is used
    71   /// by default. For more information, see \ref PivotRule.
    72   template <typename GR, typename V = int, typename C = V>
    73   class NetworkSimplex
    74   {
    75   public:
    76 
    77     /// The type of the flow amounts, capacity bounds and supply values
    78     typedef V Value;
    79     /// The type of the arc costs
    80     typedef C Cost;
    81 
    82   public:
    83 
    84     /// \brief Problem type constants for the \c run() function.
    85     ///
    86     /// Enum type containing the problem type constants that can be
    87     /// returned by the \ref run() function of the algorithm.
    88     enum ProblemType {
    89       /// The problem has no feasible solution (flow).
    90       INFEASIBLE,
    91       /// The problem has optimal solution (i.e. it is feasible and
    92       /// bounded), and the algorithm has found optimal flow and node
    93       /// potentials (primal and dual solutions).
    94       OPTIMAL,
    95       /// The objective function of the problem is unbounded, i.e.
    96       /// there is a directed cycle having negative total cost and
    97       /// infinite upper bound.
    98       UNBOUNDED
    99     };
   100 
   101     /// \brief Constants for selecting the type of the supply constraints.
   102     ///
   103     /// Enum type containing constants for selecting the supply type,
   104     /// i.e. the direction of the inequalities in the supply/demand
   105     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   106     ///
   107     /// The default supply type is \c GEQ, the \c LEQ type can be
   108     /// selected using \ref supplyType().
   109     /// The equality form is a special case of both supply types.
   110     enum SupplyType {
   111       /// This option means that there are <em>"greater or equal"</em>
   112       /// supply/demand constraints in the definition of the problem.
   113       GEQ,
   114       /// This option means that there are <em>"less or equal"</em>
   115       /// supply/demand constraints in the definition of the problem.
   116       LEQ
   117     };
   118 
   119     /// \brief Constants for selecting the pivot rule.
   120     ///
   121     /// Enum type containing constants for selecting the pivot rule for
   122     /// the \ref run() function.
   123     ///
   124     /// \ref NetworkSimplex provides five different pivot rule
   125     /// implementations that significantly affect the running time
   126     /// of the algorithm.
   127     /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
   128     /// proved to be the most efficient and the most robust on various
   129     /// test inputs.
   130     /// However, another pivot rule can be selected using the \ref run()
   131     /// function with the proper parameter.
   132     enum PivotRule {
   133 
   134       /// The \e First \e Eligible pivot rule.
   135       /// The next eligible arc is selected in a wraparound fashion
   136       /// in every iteration.
   137       FIRST_ELIGIBLE,
   138 
   139       /// The \e Best \e Eligible pivot rule.
   140       /// The best eligible arc is selected in every iteration.
   141       BEST_ELIGIBLE,
   142 
   143       /// The \e Block \e Search pivot rule.
   144       /// A specified number of arcs are examined in every iteration
   145       /// in a wraparound fashion and the best eligible arc is selected
   146       /// from this block.
   147       BLOCK_SEARCH,
   148 
   149       /// The \e Candidate \e List pivot rule.
   150       /// In a major iteration a candidate list is built from eligible arcs
   151       /// in a wraparound fashion and in the following minor iterations
   152       /// the best eligible arc is selected from this list.
   153       CANDIDATE_LIST,
   154 
   155       /// The \e Altering \e Candidate \e List pivot rule.
   156       /// It is a modified version of the Candidate List method.
   157       /// It keeps only the several best eligible arcs from the former
   158       /// candidate list and extends this list in every iteration.
   159       ALTERING_LIST
   160     };
   161 
   162   private:
   163 
   164     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   165 
   166     typedef std::vector<int> IntVector;
   167     typedef std::vector<Value> ValueVector;
   168     typedef std::vector<Cost> CostVector;
   169     typedef std::vector<signed char> CharVector;
   170     // Note: vector<signed char> is used instead of vector<ArcState> and 
   171     // vector<ArcDirection> for efficiency reasons
   172 
   173     // State constants for arcs
   174     enum ArcState {
   175       STATE_UPPER = -1,
   176       STATE_TREE  =  0,
   177       STATE_LOWER =  1
   178     };
   179 
   180     // Direction constants for tree arcs
   181     enum ArcDirection {
   182       DIR_DOWN = -1,
   183       DIR_UP   =  1
   184     };
   185 
   186   private:
   187 
   188     // Data related to the underlying digraph
   189     const GR &_graph;
   190     int _node_num;
   191     int _arc_num;
   192     int _all_arc_num;
   193     int _search_arc_num;
   194 
   195     // Parameters of the problem
   196     bool _have_lower;
   197     SupplyType _stype;
   198     Value _sum_supply;
   199 
   200     // Data structures for storing the digraph
   201     IntNodeMap _node_id;
   202     IntArcMap _arc_id;
   203     IntVector _source;
   204     IntVector _target;
   205     bool _arc_mixing;
   206 
   207     // Node and arc data
   208     ValueVector _lower;
   209     ValueVector _upper;
   210     ValueVector _cap;
   211     CostVector _cost;
   212     ValueVector _supply;
   213     ValueVector _flow;
   214     CostVector _pi;
   215 
   216     // Data for storing the spanning tree structure
   217     IntVector _parent;
   218     IntVector _pred;
   219     IntVector _thread;
   220     IntVector _rev_thread;
   221     IntVector _succ_num;
   222     IntVector _last_succ;
   223     CharVector _pred_dir;
   224     CharVector _state;
   225     IntVector _dirty_revs;
   226     int _root;
   227 
   228     // Temporary data used in the current pivot iteration
   229     int in_arc, join, u_in, v_in, u_out, v_out;
   230     Value delta;
   231 
   232     const Value MAX;
   233 
   234   public:
   235 
   236     /// \brief Constant for infinite upper bounds (capacities).
   237     ///
   238     /// Constant for infinite upper bounds (capacities).
   239     /// It is \c std::numeric_limits<Value>::infinity() if available,
   240     /// \c std::numeric_limits<Value>::max() otherwise.
   241     const Value INF;
   242 
   243   private:
   244 
   245     // Implementation of the First Eligible pivot rule
   246     class FirstEligiblePivotRule
   247     {
   248     private:
   249 
   250       // References to the NetworkSimplex class
   251       const IntVector  &_source;
   252       const IntVector  &_target;
   253       const CostVector &_cost;
   254       const CharVector &_state;
   255       const CostVector &_pi;
   256       int &_in_arc;
   257       int _search_arc_num;
   258 
   259       // Pivot rule data
   260       int _next_arc;
   261 
   262     public:
   263 
   264       // Constructor
   265       FirstEligiblePivotRule(NetworkSimplex &ns) :
   266         _source(ns._source), _target(ns._target),
   267         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   268         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   269         _next_arc(0)
   270       {}
   271 
   272       // Find next entering arc
   273       bool findEnteringArc() {
   274         Cost c;
   275         for (int e = _next_arc; e != _search_arc_num; ++e) {
   276           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   277           if (c < 0) {
   278             _in_arc = e;
   279             _next_arc = e + 1;
   280             return true;
   281           }
   282         }
   283         for (int e = 0; e != _next_arc; ++e) {
   284           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   285           if (c < 0) {
   286             _in_arc = e;
   287             _next_arc = e + 1;
   288             return true;
   289           }
   290         }
   291         return false;
   292       }
   293 
   294     }; //class FirstEligiblePivotRule
   295 
   296 
   297     // Implementation of the Best Eligible pivot rule
   298     class BestEligiblePivotRule
   299     {
   300     private:
   301 
   302       // References to the NetworkSimplex class
   303       const IntVector  &_source;
   304       const IntVector  &_target;
   305       const CostVector &_cost;
   306       const CharVector &_state;
   307       const CostVector &_pi;
   308       int &_in_arc;
   309       int _search_arc_num;
   310 
   311     public:
   312 
   313       // Constructor
   314       BestEligiblePivotRule(NetworkSimplex &ns) :
   315         _source(ns._source), _target(ns._target),
   316         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   317         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
   318       {}
   319 
   320       // Find next entering arc
   321       bool findEnteringArc() {
   322         Cost c, min = 0;
   323         for (int e = 0; e != _search_arc_num; ++e) {
   324           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   325           if (c < min) {
   326             min = c;
   327             _in_arc = e;
   328           }
   329         }
   330         return min < 0;
   331       }
   332 
   333     }; //class BestEligiblePivotRule
   334 
   335 
   336     // Implementation of the Block Search pivot rule
   337     class BlockSearchPivotRule
   338     {
   339     private:
   340 
   341       // References to the NetworkSimplex class
   342       const IntVector  &_source;
   343       const IntVector  &_target;
   344       const CostVector &_cost;
   345       const CharVector &_state;
   346       const CostVector &_pi;
   347       int &_in_arc;
   348       int _search_arc_num;
   349 
   350       // Pivot rule data
   351       int _block_size;
   352       int _next_arc;
   353 
   354     public:
   355 
   356       // Constructor
   357       BlockSearchPivotRule(NetworkSimplex &ns) :
   358         _source(ns._source), _target(ns._target),
   359         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   360         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   361         _next_arc(0)
   362       {
   363         // The main parameters of the pivot rule
   364         const double BLOCK_SIZE_FACTOR = 1.0;
   365         const int MIN_BLOCK_SIZE = 10;
   366 
   367         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   368                                     std::sqrt(double(_search_arc_num))),
   369                                 MIN_BLOCK_SIZE );
   370       }
   371 
   372       // Find next entering arc
   373       bool findEnteringArc() {
   374         Cost c, min = 0;
   375         int cnt = _block_size;
   376         int e;
   377         for (e = _next_arc; e != _search_arc_num; ++e) {
   378           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   379           if (c < min) {
   380             min = c;
   381             _in_arc = e;
   382           }
   383           if (--cnt == 0) {
   384             if (min < 0) goto search_end;
   385             cnt = _block_size;
   386           }
   387         }
   388         for (e = 0; e != _next_arc; ++e) {
   389           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   390           if (c < min) {
   391             min = c;
   392             _in_arc = e;
   393           }
   394           if (--cnt == 0) {
   395             if (min < 0) goto search_end;
   396             cnt = _block_size;
   397           }
   398         }
   399         if (min >= 0) return false;
   400 
   401       search_end:
   402         _next_arc = e;
   403         return true;
   404       }
   405 
   406     }; //class BlockSearchPivotRule
   407 
   408 
   409     // Implementation of the Candidate List pivot rule
   410     class CandidateListPivotRule
   411     {
   412     private:
   413 
   414       // References to the NetworkSimplex class
   415       const IntVector  &_source;
   416       const IntVector  &_target;
   417       const CostVector &_cost;
   418       const CharVector &_state;
   419       const CostVector &_pi;
   420       int &_in_arc;
   421       int _search_arc_num;
   422 
   423       // Pivot rule data
   424       IntVector _candidates;
   425       int _list_length, _minor_limit;
   426       int _curr_length, _minor_count;
   427       int _next_arc;
   428 
   429     public:
   430 
   431       /// Constructor
   432       CandidateListPivotRule(NetworkSimplex &ns) :
   433         _source(ns._source), _target(ns._target),
   434         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   435         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   436         _next_arc(0)
   437       {
   438         // The main parameters of the pivot rule
   439         const double LIST_LENGTH_FACTOR = 0.25;
   440         const int MIN_LIST_LENGTH = 10;
   441         const double MINOR_LIMIT_FACTOR = 0.1;
   442         const int MIN_MINOR_LIMIT = 3;
   443 
   444         _list_length = std::max( int(LIST_LENGTH_FACTOR *
   445                                      std::sqrt(double(_search_arc_num))),
   446                                  MIN_LIST_LENGTH );
   447         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   448                                  MIN_MINOR_LIMIT );
   449         _curr_length = _minor_count = 0;
   450         _candidates.resize(_list_length);
   451       }
   452 
   453       /// Find next entering arc
   454       bool findEnteringArc() {
   455         Cost min, c;
   456         int e;
   457         if (_curr_length > 0 && _minor_count < _minor_limit) {
   458           // Minor iteration: select the best eligible arc from the
   459           // current candidate list
   460           ++_minor_count;
   461           min = 0;
   462           for (int i = 0; i < _curr_length; ++i) {
   463             e = _candidates[i];
   464             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   465             if (c < min) {
   466               min = c;
   467               _in_arc = e;
   468             }
   469             else if (c >= 0) {
   470               _candidates[i--] = _candidates[--_curr_length];
   471             }
   472           }
   473           if (min < 0) return true;
   474         }
   475 
   476         // Major iteration: build a new candidate list
   477         min = 0;
   478         _curr_length = 0;
   479         for (e = _next_arc; e != _search_arc_num; ++e) {
   480           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   481           if (c < 0) {
   482             _candidates[_curr_length++] = e;
   483             if (c < min) {
   484               min = c;
   485               _in_arc = e;
   486             }
   487             if (_curr_length == _list_length) goto search_end;
   488           }
   489         }
   490         for (e = 0; e != _next_arc; ++e) {
   491           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   492           if (c < 0) {
   493             _candidates[_curr_length++] = e;
   494             if (c < min) {
   495               min = c;
   496               _in_arc = e;
   497             }
   498             if (_curr_length == _list_length) goto search_end;
   499           }
   500         }
   501         if (_curr_length == 0) return false;
   502 
   503       search_end:
   504         _minor_count = 1;
   505         _next_arc = e;
   506         return true;
   507       }
   508 
   509     }; //class CandidateListPivotRule
   510 
   511 
   512     // Implementation of the Altering Candidate List pivot rule
   513     class AlteringListPivotRule
   514     {
   515     private:
   516 
   517       // References to the NetworkSimplex class
   518       const IntVector  &_source;
   519       const IntVector  &_target;
   520       const CostVector &_cost;
   521       const CharVector &_state;
   522       const CostVector &_pi;
   523       int &_in_arc;
   524       int _search_arc_num;
   525 
   526       // Pivot rule data
   527       int _block_size, _head_length, _curr_length;
   528       int _next_arc;
   529       IntVector _candidates;
   530       CostVector _cand_cost;
   531 
   532       // Functor class to compare arcs during sort of the candidate list
   533       class SortFunc
   534       {
   535       private:
   536         const CostVector &_map;
   537       public:
   538         SortFunc(const CostVector &map) : _map(map) {}
   539         bool operator()(int left, int right) {
   540           return _map[left] > _map[right];
   541         }
   542       };
   543 
   544       SortFunc _sort_func;
   545 
   546     public:
   547 
   548       // Constructor
   549       AlteringListPivotRule(NetworkSimplex &ns) :
   550         _source(ns._source), _target(ns._target),
   551         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   552         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   553         _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
   554       {
   555         // The main parameters of the pivot rule
   556         const double BLOCK_SIZE_FACTOR = 1.0;
   557         const int MIN_BLOCK_SIZE = 10;
   558         const double HEAD_LENGTH_FACTOR = 0.1;
   559         const int MIN_HEAD_LENGTH = 3;
   560 
   561         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   562                                     std::sqrt(double(_search_arc_num))),
   563                                 MIN_BLOCK_SIZE );
   564         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   565                                  MIN_HEAD_LENGTH );
   566         _candidates.resize(_head_length + _block_size);
   567         _curr_length = 0;
   568       }
   569 
   570       // Find next entering arc
   571       bool findEnteringArc() {
   572         // Check the current candidate list
   573         int e;
   574         Cost c;
   575         for (int i = 0; i != _curr_length; ++i) {
   576           e = _candidates[i];
   577           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   578           if (c < 0) {
   579             _cand_cost[e] = c;
   580           } else {
   581             _candidates[i--] = _candidates[--_curr_length];
   582           }
   583         }
   584 
   585         // Extend the list
   586         int cnt = _block_size;
   587         int limit = _head_length;
   588 
   589         for (e = _next_arc; e != _search_arc_num; ++e) {
   590           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   591           if (c < 0) {
   592             _cand_cost[e] = c;
   593             _candidates[_curr_length++] = e;
   594           }
   595           if (--cnt == 0) {
   596             if (_curr_length > limit) goto search_end;
   597             limit = 0;
   598             cnt = _block_size;
   599           }
   600         }
   601         for (e = 0; e != _next_arc; ++e) {
   602           _cand_cost[e] = _state[e] *
   603             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   604           if (_cand_cost[e] < 0) {
   605             _candidates[_curr_length++] = e;
   606           }
   607           if (--cnt == 0) {
   608             if (_curr_length > limit) goto search_end;
   609             limit = 0;
   610             cnt = _block_size;
   611           }
   612         }
   613         if (_curr_length == 0) return false;
   614 
   615       search_end:
   616 
   617         // Make heap of the candidate list (approximating a partial sort)
   618         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   619                    _sort_func );
   620 
   621         // Pop the first element of the heap
   622         _in_arc = _candidates[0];
   623         _next_arc = e;
   624         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   625                   _sort_func );
   626         _curr_length = std::min(_head_length, _curr_length - 1);
   627         return true;
   628       }
   629 
   630     }; //class AlteringListPivotRule
   631 
   632   public:
   633 
   634     /// \brief Constructor.
   635     ///
   636     /// The constructor of the class.
   637     ///
   638     /// \param graph The digraph the algorithm runs on.
   639     /// \param arc_mixing Indicate if the arcs have to be stored in a
   640     /// mixed order in the internal data structure.
   641     /// In special cases, it could lead to better overall performance,
   642     /// but it is usually slower. Therefore it is disabled by default.
   643     NetworkSimplex(const GR& graph, bool arc_mixing = false) :
   644       _graph(graph), _node_id(graph), _arc_id(graph),
   645       _arc_mixing(arc_mixing),
   646       MAX(std::numeric_limits<Value>::max()),
   647       INF(std::numeric_limits<Value>::has_infinity ?
   648           std::numeric_limits<Value>::infinity() : MAX)
   649     {
   650       // Check the number types
   651       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   652         "The flow type of NetworkSimplex must be signed");
   653       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   654         "The cost type of NetworkSimplex must be signed");
   655 
   656       // Reset data structures
   657       reset();
   658     }
   659 
   660     /// \name Parameters
   661     /// The parameters of the algorithm can be specified using these
   662     /// functions.
   663 
   664     /// @{
   665 
   666     /// \brief Set the lower bounds on the arcs.
   667     ///
   668     /// This function sets the lower bounds on the arcs.
   669     /// If it is not used before calling \ref run(), the lower bounds
   670     /// will be set to zero on all arcs.
   671     ///
   672     /// \param map An arc map storing the lower bounds.
   673     /// Its \c Value type must be convertible to the \c Value type
   674     /// of the algorithm.
   675     ///
   676     /// \return <tt>(*this)</tt>
   677     template <typename LowerMap>
   678     NetworkSimplex& lowerMap(const LowerMap& map) {
   679       _have_lower = true;
   680       for (ArcIt a(_graph); a != INVALID; ++a) {
   681         _lower[_arc_id[a]] = map[a];
   682       }
   683       return *this;
   684     }
   685 
   686     /// \brief Set the upper bounds (capacities) on the arcs.
   687     ///
   688     /// This function sets the upper bounds (capacities) on the arcs.
   689     /// If it is not used before calling \ref run(), the upper bounds
   690     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   691     /// unbounded from above).
   692     ///
   693     /// \param map An arc map storing the upper bounds.
   694     /// Its \c Value type must be convertible to the \c Value type
   695     /// of the algorithm.
   696     ///
   697     /// \return <tt>(*this)</tt>
   698     template<typename UpperMap>
   699     NetworkSimplex& upperMap(const UpperMap& map) {
   700       for (ArcIt a(_graph); a != INVALID; ++a) {
   701         _upper[_arc_id[a]] = map[a];
   702       }
   703       return *this;
   704     }
   705 
   706     /// \brief Set the costs of the arcs.
   707     ///
   708     /// This function sets the costs of the arcs.
   709     /// If it is not used before calling \ref run(), the costs
   710     /// will be set to \c 1 on all arcs.
   711     ///
   712     /// \param map An arc map storing the costs.
   713     /// Its \c Value type must be convertible to the \c Cost type
   714     /// of the algorithm.
   715     ///
   716     /// \return <tt>(*this)</tt>
   717     template<typename CostMap>
   718     NetworkSimplex& costMap(const CostMap& map) {
   719       for (ArcIt a(_graph); a != INVALID; ++a) {
   720         _cost[_arc_id[a]] = map[a];
   721       }
   722       return *this;
   723     }
   724 
   725     /// \brief Set the supply values of the nodes.
   726     ///
   727     /// This function sets the supply values of the nodes.
   728     /// If neither this function nor \ref stSupply() is used before
   729     /// calling \ref run(), the supply of each node will be set to zero.
   730     ///
   731     /// \param map A node map storing the supply values.
   732     /// Its \c Value type must be convertible to the \c Value type
   733     /// of the algorithm.
   734     ///
   735     /// \return <tt>(*this)</tt>
   736     template<typename SupplyMap>
   737     NetworkSimplex& supplyMap(const SupplyMap& map) {
   738       for (NodeIt n(_graph); n != INVALID; ++n) {
   739         _supply[_node_id[n]] = map[n];
   740       }
   741       return *this;
   742     }
   743 
   744     /// \brief Set single source and target nodes and a supply value.
   745     ///
   746     /// This function sets a single source node and a single target node
   747     /// and the required flow value.
   748     /// If neither this function nor \ref supplyMap() is used before
   749     /// calling \ref run(), the supply of each node will be set to zero.
   750     ///
   751     /// Using this function has the same effect as using \ref supplyMap()
   752     /// with such a map in which \c k is assigned to \c s, \c -k is
   753     /// assigned to \c t and all other nodes have zero supply value.
   754     ///
   755     /// \param s The source node.
   756     /// \param t The target node.
   757     /// \param k The required amount of flow from node \c s to node \c t
   758     /// (i.e. the supply of \c s and the demand of \c t).
   759     ///
   760     /// \return <tt>(*this)</tt>
   761     NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   762       for (int i = 0; i != _node_num; ++i) {
   763         _supply[i] = 0;
   764       }
   765       _supply[_node_id[s]] =  k;
   766       _supply[_node_id[t]] = -k;
   767       return *this;
   768     }
   769 
   770     /// \brief Set the type of the supply constraints.
   771     ///
   772     /// This function sets the type of the supply/demand constraints.
   773     /// If it is not used before calling \ref run(), the \ref GEQ supply
   774     /// type will be used.
   775     ///
   776     /// For more information, see \ref SupplyType.
   777     ///
   778     /// \return <tt>(*this)</tt>
   779     NetworkSimplex& supplyType(SupplyType supply_type) {
   780       _stype = supply_type;
   781       return *this;
   782     }
   783 
   784     /// @}
   785 
   786     /// \name Execution Control
   787     /// The algorithm can be executed using \ref run().
   788 
   789     /// @{
   790 
   791     /// \brief Run the algorithm.
   792     ///
   793     /// This function runs the algorithm.
   794     /// The paramters can be specified using functions \ref lowerMap(),
   795     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
   796     /// \ref supplyType().
   797     /// For example,
   798     /// \code
   799     ///   NetworkSimplex<ListDigraph> ns(graph);
   800     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   801     ///     .supplyMap(sup).run();
   802     /// \endcode
   803     ///
   804     /// This function can be called more than once. All the given parameters
   805     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   806     /// is used, thus only the modified parameters have to be set again.
   807     /// If the underlying digraph was also modified after the construction
   808     /// of the class (or the last \ref reset() call), then the \ref reset()
   809     /// function must be called.
   810     ///
   811     /// \param pivot_rule The pivot rule that will be used during the
   812     /// algorithm. For more information, see \ref PivotRule.
   813     ///
   814     /// \return \c INFEASIBLE if no feasible flow exists,
   815     /// \n \c OPTIMAL if the problem has optimal solution
   816     /// (i.e. it is feasible and bounded), and the algorithm has found
   817     /// optimal flow and node potentials (primal and dual solutions),
   818     /// \n \c UNBOUNDED if the objective function of the problem is
   819     /// unbounded, i.e. there is a directed cycle having negative total
   820     /// cost and infinite upper bound.
   821     ///
   822     /// \see ProblemType, PivotRule
   823     /// \see resetParams(), reset()
   824     ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
   825       if (!init()) return INFEASIBLE;
   826       return start(pivot_rule);
   827     }
   828 
   829     /// \brief Reset all the parameters that have been given before.
   830     ///
   831     /// This function resets all the paramaters that have been given
   832     /// before using functions \ref lowerMap(), \ref upperMap(),
   833     /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
   834     ///
   835     /// It is useful for multiple \ref run() calls. Basically, all the given
   836     /// parameters are kept for the next \ref run() call, unless
   837     /// \ref resetParams() or \ref reset() is used.
   838     /// If the underlying digraph was also modified after the construction
   839     /// of the class or the last \ref reset() call, then the \ref reset()
   840     /// function must be used, otherwise \ref resetParams() is sufficient.
   841     ///
   842     /// For example,
   843     /// \code
   844     ///   NetworkSimplex<ListDigraph> ns(graph);
   845     ///
   846     ///   // First run
   847     ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
   848     ///     .supplyMap(sup).run();
   849     ///
   850     ///   // Run again with modified cost map (resetParams() is not called,
   851     ///   // so only the cost map have to be set again)
   852     ///   cost[e] += 100;
   853     ///   ns.costMap(cost).run();
   854     ///
   855     ///   // Run again from scratch using resetParams()
   856     ///   // (the lower bounds will be set to zero on all arcs)
   857     ///   ns.resetParams();
   858     ///   ns.upperMap(capacity).costMap(cost)
   859     ///     .supplyMap(sup).run();
   860     /// \endcode
   861     ///
   862     /// \return <tt>(*this)</tt>
   863     ///
   864     /// \see reset(), run()
   865     NetworkSimplex& resetParams() {
   866       for (int i = 0; i != _node_num; ++i) {
   867         _supply[i] = 0;
   868       }
   869       for (int i = 0; i != _arc_num; ++i) {
   870         _lower[i] = 0;
   871         _upper[i] = INF;
   872         _cost[i] = 1;
   873       }
   874       _have_lower = false;
   875       _stype = GEQ;
   876       return *this;
   877     }
   878 
   879     /// \brief Reset the internal data structures and all the parameters
   880     /// that have been given before.
   881     ///
   882     /// This function resets the internal data structures and all the
   883     /// paramaters that have been given before using functions \ref lowerMap(),
   884     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
   885     /// \ref supplyType().
   886     ///
   887     /// It is useful for multiple \ref run() calls. Basically, all the given
   888     /// parameters are kept for the next \ref run() call, unless
   889     /// \ref resetParams() or \ref reset() is used.
   890     /// If the underlying digraph was also modified after the construction
   891     /// of the class or the last \ref reset() call, then the \ref reset()
   892     /// function must be used, otherwise \ref resetParams() is sufficient.
   893     ///
   894     /// See \ref resetParams() for examples.
   895     ///
   896     /// \return <tt>(*this)</tt>
   897     ///
   898     /// \see resetParams(), run()
   899     NetworkSimplex& reset() {
   900       // Resize vectors
   901       _node_num = countNodes(_graph);
   902       _arc_num = countArcs(_graph);
   903       int all_node_num = _node_num + 1;
   904       int max_arc_num = _arc_num + 2 * _node_num;
   905 
   906       _source.resize(max_arc_num);
   907       _target.resize(max_arc_num);
   908 
   909       _lower.resize(_arc_num);
   910       _upper.resize(_arc_num);
   911       _cap.resize(max_arc_num);
   912       _cost.resize(max_arc_num);
   913       _supply.resize(all_node_num);
   914       _flow.resize(max_arc_num);
   915       _pi.resize(all_node_num);
   916 
   917       _parent.resize(all_node_num);
   918       _pred.resize(all_node_num);
   919       _pred_dir.resize(all_node_num);
   920       _thread.resize(all_node_num);
   921       _rev_thread.resize(all_node_num);
   922       _succ_num.resize(all_node_num);
   923       _last_succ.resize(all_node_num);
   924       _state.resize(max_arc_num);
   925 
   926       // Copy the graph
   927       int i = 0;
   928       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   929         _node_id[n] = i;
   930       }
   931       if (_arc_mixing) {
   932         // Store the arcs in a mixed order
   933         int k = std::max(int(std::sqrt(double(_arc_num))), 10);
   934         int i = 0, j = 0;
   935         for (ArcIt a(_graph); a != INVALID; ++a) {
   936           _arc_id[a] = i;
   937           _source[i] = _node_id[_graph.source(a)];
   938           _target[i] = _node_id[_graph.target(a)];
   939           if ((i += k) >= _arc_num) i = ++j;
   940         }
   941       } else {
   942         // Store the arcs in the original order
   943         int i = 0;
   944         for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
   945           _arc_id[a] = i;
   946           _source[i] = _node_id[_graph.source(a)];
   947           _target[i] = _node_id[_graph.target(a)];
   948         }
   949       }
   950 
   951       // Reset parameters
   952       resetParams();
   953       return *this;
   954     }
   955 
   956     /// @}
   957 
   958     /// \name Query Functions
   959     /// The results of the algorithm can be obtained using these
   960     /// functions.\n
   961     /// The \ref run() function must be called before using them.
   962 
   963     /// @{
   964 
   965     /// \brief Return the total cost of the found flow.
   966     ///
   967     /// This function returns the total cost of the found flow.
   968     /// Its complexity is O(e).
   969     ///
   970     /// \note The return type of the function can be specified as a
   971     /// template parameter. For example,
   972     /// \code
   973     ///   ns.totalCost<double>();
   974     /// \endcode
   975     /// It is useful if the total cost cannot be stored in the \c Cost
   976     /// type of the algorithm, which is the default return type of the
   977     /// function.
   978     ///
   979     /// \pre \ref run() must be called before using this function.
   980     template <typename Number>
   981     Number totalCost() const {
   982       Number c = 0;
   983       for (ArcIt a(_graph); a != INVALID; ++a) {
   984         int i = _arc_id[a];
   985         c += Number(_flow[i]) * Number(_cost[i]);
   986       }
   987       return c;
   988     }
   989 
   990 #ifndef DOXYGEN
   991     Cost totalCost() const {
   992       return totalCost<Cost>();
   993     }
   994 #endif
   995 
   996     /// \brief Return the flow on the given arc.
   997     ///
   998     /// This function returns the flow on the given arc.
   999     ///
  1000     /// \pre \ref run() must be called before using this function.
  1001     Value flow(const Arc& a) const {
  1002       return _flow[_arc_id[a]];
  1003     }
  1004 
  1005     /// \brief Return the flow map (the primal solution).
  1006     ///
  1007     /// This function copies the flow value on each arc into the given
  1008     /// map. The \c Value type of the algorithm must be convertible to
  1009     /// the \c Value type of the map.
  1010     ///
  1011     /// \pre \ref run() must be called before using this function.
  1012     template <typename FlowMap>
  1013     void flowMap(FlowMap &map) const {
  1014       for (ArcIt a(_graph); a != INVALID; ++a) {
  1015         map.set(a, _flow[_arc_id[a]]);
  1016       }
  1017     }
  1018 
  1019     /// \brief Return the potential (dual value) of the given node.
  1020     ///
  1021     /// This function returns the potential (dual value) of the
  1022     /// given node.
  1023     ///
  1024     /// \pre \ref run() must be called before using this function.
  1025     Cost potential(const Node& n) const {
  1026       return _pi[_node_id[n]];
  1027     }
  1028 
  1029     /// \brief Return the potential map (the dual solution).
  1030     ///
  1031     /// This function copies the potential (dual value) of each node
  1032     /// into the given map.
  1033     /// The \c Cost type of the algorithm must be convertible to the
  1034     /// \c Value type of the map.
  1035     ///
  1036     /// \pre \ref run() must be called before using this function.
  1037     template <typename PotentialMap>
  1038     void potentialMap(PotentialMap &map) const {
  1039       for (NodeIt n(_graph); n != INVALID; ++n) {
  1040         map.set(n, _pi[_node_id[n]]);
  1041       }
  1042     }
  1043 
  1044     /// @}
  1045 
  1046   private:
  1047 
  1048     // Initialize internal data structures
  1049     bool init() {
  1050       if (_node_num == 0) return false;
  1051 
  1052       // Check the sum of supply values
  1053       _sum_supply = 0;
  1054       for (int i = 0; i != _node_num; ++i) {
  1055         _sum_supply += _supply[i];
  1056       }
  1057       if ( !((_stype == GEQ && _sum_supply <= 0) ||
  1058              (_stype == LEQ && _sum_supply >= 0)) ) return false;
  1059 
  1060       // Remove non-zero lower bounds
  1061       if (_have_lower) {
  1062         for (int i = 0; i != _arc_num; ++i) {
  1063           Value c = _lower[i];
  1064           if (c >= 0) {
  1065             _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
  1066           } else {
  1067             _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
  1068           }
  1069           _supply[_source[i]] -= c;
  1070           _supply[_target[i]] += c;
  1071         }
  1072       } else {
  1073         for (int i = 0; i != _arc_num; ++i) {
  1074           _cap[i] = _upper[i];
  1075         }
  1076       }
  1077 
  1078       // Initialize artifical cost
  1079       Cost ART_COST;
  1080       if (std::numeric_limits<Cost>::is_exact) {
  1081         ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
  1082       } else {
  1083         ART_COST = 0;
  1084         for (int i = 0; i != _arc_num; ++i) {
  1085           if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1086         }
  1087         ART_COST = (ART_COST + 1) * _node_num;
  1088       }
  1089 
  1090       // Initialize arc maps
  1091       for (int i = 0; i != _arc_num; ++i) {
  1092         _flow[i] = 0;
  1093         _state[i] = STATE_LOWER;
  1094       }
  1095 
  1096       // Set data for the artificial root node
  1097       _root = _node_num;
  1098       _parent[_root] = -1;
  1099       _pred[_root] = -1;
  1100       _thread[_root] = 0;
  1101       _rev_thread[0] = _root;
  1102       _succ_num[_root] = _node_num + 1;
  1103       _last_succ[_root] = _root - 1;
  1104       _supply[_root] = -_sum_supply;
  1105       _pi[_root] = 0;
  1106 
  1107       // Add artificial arcs and initialize the spanning tree data structure
  1108       if (_sum_supply == 0) {
  1109         // EQ supply constraints
  1110         _search_arc_num = _arc_num;
  1111         _all_arc_num = _arc_num + _node_num;
  1112         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1113           _parent[u] = _root;
  1114           _pred[u] = e;
  1115           _thread[u] = u + 1;
  1116           _rev_thread[u + 1] = u;
  1117           _succ_num[u] = 1;
  1118           _last_succ[u] = u;
  1119           _cap[e] = INF;
  1120           _state[e] = STATE_TREE;
  1121           if (_supply[u] >= 0) {
  1122             _pred_dir[u] = DIR_UP;
  1123             _pi[u] = 0;
  1124             _source[e] = u;
  1125             _target[e] = _root;
  1126             _flow[e] = _supply[u];
  1127             _cost[e] = 0;
  1128           } else {
  1129             _pred_dir[u] = DIR_DOWN;
  1130             _pi[u] = ART_COST;
  1131             _source[e] = _root;
  1132             _target[e] = u;
  1133             _flow[e] = -_supply[u];
  1134             _cost[e] = ART_COST;
  1135           }
  1136         }
  1137       }
  1138       else if (_sum_supply > 0) {
  1139         // LEQ supply constraints
  1140         _search_arc_num = _arc_num + _node_num;
  1141         int f = _arc_num + _node_num;
  1142         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1143           _parent[u] = _root;
  1144           _thread[u] = u + 1;
  1145           _rev_thread[u + 1] = u;
  1146           _succ_num[u] = 1;
  1147           _last_succ[u] = u;
  1148           if (_supply[u] >= 0) {
  1149             _pred_dir[u] = DIR_UP;
  1150             _pi[u] = 0;
  1151             _pred[u] = e;
  1152             _source[e] = u;
  1153             _target[e] = _root;
  1154             _cap[e] = INF;
  1155             _flow[e] = _supply[u];
  1156             _cost[e] = 0;
  1157             _state[e] = STATE_TREE;
  1158           } else {
  1159             _pred_dir[u] = DIR_DOWN;
  1160             _pi[u] = ART_COST;
  1161             _pred[u] = f;
  1162             _source[f] = _root;
  1163             _target[f] = u;
  1164             _cap[f] = INF;
  1165             _flow[f] = -_supply[u];
  1166             _cost[f] = ART_COST;
  1167             _state[f] = STATE_TREE;
  1168             _source[e] = u;
  1169             _target[e] = _root;
  1170             _cap[e] = INF;
  1171             _flow[e] = 0;
  1172             _cost[e] = 0;
  1173             _state[e] = STATE_LOWER;
  1174             ++f;
  1175           }
  1176         }
  1177         _all_arc_num = f;
  1178       }
  1179       else {
  1180         // GEQ supply constraints
  1181         _search_arc_num = _arc_num + _node_num;
  1182         int f = _arc_num + _node_num;
  1183         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1184           _parent[u] = _root;
  1185           _thread[u] = u + 1;
  1186           _rev_thread[u + 1] = u;
  1187           _succ_num[u] = 1;
  1188           _last_succ[u] = u;
  1189           if (_supply[u] <= 0) {
  1190             _pred_dir[u] = DIR_DOWN;
  1191             _pi[u] = 0;
  1192             _pred[u] = e;
  1193             _source[e] = _root;
  1194             _target[e] = u;
  1195             _cap[e] = INF;
  1196             _flow[e] = -_supply[u];
  1197             _cost[e] = 0;
  1198             _state[e] = STATE_TREE;
  1199           } else {
  1200             _pred_dir[u] = DIR_UP;
  1201             _pi[u] = -ART_COST;
  1202             _pred[u] = f;
  1203             _source[f] = u;
  1204             _target[f] = _root;
  1205             _cap[f] = INF;
  1206             _flow[f] = _supply[u];
  1207             _state[f] = STATE_TREE;
  1208             _cost[f] = ART_COST;
  1209             _source[e] = _root;
  1210             _target[e] = u;
  1211             _cap[e] = INF;
  1212             _flow[e] = 0;
  1213             _cost[e] = 0;
  1214             _state[e] = STATE_LOWER;
  1215             ++f;
  1216           }
  1217         }
  1218         _all_arc_num = f;
  1219       }
  1220 
  1221       return true;
  1222     }
  1223 
  1224     // Find the join node
  1225     void findJoinNode() {
  1226       int u = _source[in_arc];
  1227       int v = _target[in_arc];
  1228       while (u != v) {
  1229         if (_succ_num[u] < _succ_num[v]) {
  1230           u = _parent[u];
  1231         } else {
  1232           v = _parent[v];
  1233         }
  1234       }
  1235       join = u;
  1236     }
  1237 
  1238     // Find the leaving arc of the cycle and returns true if the
  1239     // leaving arc is not the same as the entering arc
  1240     bool findLeavingArc() {
  1241       // Initialize first and second nodes according to the direction
  1242       // of the cycle
  1243       int first, second;
  1244       if (_state[in_arc] == STATE_LOWER) {
  1245         first  = _source[in_arc];
  1246         second = _target[in_arc];
  1247       } else {
  1248         first  = _target[in_arc];
  1249         second = _source[in_arc];
  1250       }
  1251       delta = _cap[in_arc];
  1252       int result = 0;
  1253       Value c, d;
  1254       int e;
  1255 
  1256       // Search the cycle form the first node to the join node
  1257       for (int u = first; u != join; u = _parent[u]) {
  1258         e = _pred[u];
  1259         d = _flow[e];
  1260         if (_pred_dir[u] == DIR_DOWN) {
  1261           c = _cap[e];
  1262           d = c >= MAX ? INF : c - d;
  1263         }
  1264         if (d < delta) {
  1265           delta = d;
  1266           u_out = u;
  1267           result = 1;
  1268         }
  1269       }
  1270 
  1271       // Search the cycle form the second node to the join node
  1272       for (int u = second; u != join; u = _parent[u]) {
  1273         e = _pred[u];
  1274         d = _flow[e];
  1275         if (_pred_dir[u] == DIR_UP) {
  1276           c = _cap[e];
  1277           d = c >= MAX ? INF : c - d;
  1278         }
  1279         if (d <= delta) {
  1280           delta = d;
  1281           u_out = u;
  1282           result = 2;
  1283         }
  1284       }
  1285 
  1286       if (result == 1) {
  1287         u_in = first;
  1288         v_in = second;
  1289       } else {
  1290         u_in = second;
  1291         v_in = first;
  1292       }
  1293       return result != 0;
  1294     }
  1295 
  1296     // Change _flow and _state vectors
  1297     void changeFlow(bool change) {
  1298       // Augment along the cycle
  1299       if (delta > 0) {
  1300         Value val = _state[in_arc] * delta;
  1301         _flow[in_arc] += val;
  1302         for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1303           _flow[_pred[u]] -= _pred_dir[u] * val;
  1304         }
  1305         for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1306           _flow[_pred[u]] += _pred_dir[u] * val;
  1307         }
  1308       }
  1309       // Update the state of the entering and leaving arcs
  1310       if (change) {
  1311         _state[in_arc] = STATE_TREE;
  1312         _state[_pred[u_out]] =
  1313           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1314       } else {
  1315         _state[in_arc] = -_state[in_arc];
  1316       }
  1317     }
  1318 
  1319     // Update the tree structure
  1320     void updateTreeStructure() {
  1321       int old_rev_thread = _rev_thread[u_out];
  1322       int old_succ_num = _succ_num[u_out];
  1323       int old_last_succ = _last_succ[u_out];
  1324       v_out = _parent[u_out];
  1325 
  1326       // Check if u_in and u_out coincide
  1327       if (u_in == u_out) {
  1328         // Update _parent, _pred, _pred_dir
  1329         _parent[u_in] = v_in;
  1330         _pred[u_in] = in_arc;
  1331         _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
  1332 
  1333         // Update _thread and _rev_thread
  1334         if (_thread[v_in] != u_out) {
  1335           int after = _thread[old_last_succ];
  1336           _thread[old_rev_thread] = after;
  1337           _rev_thread[after] = old_rev_thread;
  1338           after = _thread[v_in];
  1339           _thread[v_in] = u_out;
  1340           _rev_thread[u_out] = v_in;
  1341           _thread[old_last_succ] = after;
  1342           _rev_thread[after] = old_last_succ;
  1343         }
  1344       } else {
  1345         // Handle the case when old_rev_thread equals to v_in
  1346         // (it also means that join and v_out coincide)
  1347         int thread_continue = old_rev_thread == v_in ?
  1348           _thread[old_last_succ] : _thread[v_in];
  1349 
  1350         // Update _thread and _parent along the stem nodes (i.e. the nodes
  1351         // between u_in and u_out, whose parent have to be changed)
  1352         int stem = u_in;              // the current stem node
  1353         int par_stem = v_in;          // the new parent of stem
  1354         int next_stem;                // the next stem node
  1355         int last = _last_succ[u_in];  // the last successor of stem
  1356         int before, after = _thread[last];
  1357         _thread[v_in] = u_in;
  1358         _dirty_revs.clear();
  1359         _dirty_revs.push_back(v_in);
  1360         while (stem != u_out) {
  1361           // Insert the next stem node into the thread list
  1362           next_stem = _parent[stem];
  1363           _thread[last] = next_stem;
  1364           _dirty_revs.push_back(last);
  1365 
  1366           // Remove the subtree of stem from the thread list
  1367           before = _rev_thread[stem];
  1368           _thread[before] = after;
  1369           _rev_thread[after] = before;
  1370 
  1371           // Change the parent node and shift stem nodes
  1372           _parent[stem] = par_stem;
  1373           par_stem = stem;
  1374           stem = next_stem;
  1375 
  1376           // Update last and after
  1377           last = _last_succ[stem] == _last_succ[par_stem] ?
  1378             _rev_thread[par_stem] : _last_succ[stem];
  1379           after = _thread[last];
  1380         }
  1381         _parent[u_out] = par_stem;
  1382         _thread[last] = thread_continue;
  1383         _rev_thread[thread_continue] = last;
  1384         _last_succ[u_out] = last;
  1385 
  1386         // Remove the subtree of u_out from the thread list except for
  1387         // the case when old_rev_thread equals to v_in
  1388         if (old_rev_thread != v_in) {
  1389           _thread[old_rev_thread] = after;
  1390           _rev_thread[after] = old_rev_thread;
  1391         }
  1392 
  1393         // Update _rev_thread using the new _thread values
  1394         for (int i = 0; i != int(_dirty_revs.size()); ++i) {
  1395           int u = _dirty_revs[i];
  1396           _rev_thread[_thread[u]] = u;
  1397         }
  1398 
  1399         // Update _pred, _pred_dir, _last_succ and _succ_num for the
  1400         // stem nodes from u_out to u_in
  1401         int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1402         for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) {
  1403           _pred[u] = _pred[p];
  1404           _pred_dir[u] = -_pred_dir[p];
  1405           tmp_sc += _succ_num[u] - _succ_num[p];
  1406           _succ_num[u] = tmp_sc;
  1407           _last_succ[p] = tmp_ls;
  1408         }
  1409         _pred[u_in] = in_arc;
  1410         _pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN;
  1411         _succ_num[u_in] = old_succ_num;
  1412       }
  1413 
  1414       // Update _last_succ from v_in towards the root
  1415       int up_limit_out = _last_succ[join] == v_in ? join : -1;
  1416       int last_succ_out = _last_succ[u_out];
  1417       for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) {
  1418         _last_succ[u] = last_succ_out;
  1419       }
  1420 
  1421       // Update _last_succ from v_out towards the root
  1422       if (join != old_rev_thread && v_in != old_rev_thread) {
  1423         for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1424              u = _parent[u]) {
  1425           _last_succ[u] = old_rev_thread;
  1426         }
  1427       }
  1428       else if (last_succ_out != old_last_succ) {
  1429         for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1430              u = _parent[u]) {
  1431           _last_succ[u] = last_succ_out;
  1432         }
  1433       }
  1434 
  1435       // Update _succ_num from v_in to join
  1436       for (int u = v_in; u != join; u = _parent[u]) {
  1437         _succ_num[u] += old_succ_num;
  1438       }
  1439       // Update _succ_num from v_out to join
  1440       for (int u = v_out; u != join; u = _parent[u]) {
  1441         _succ_num[u] -= old_succ_num;
  1442       }
  1443     }
  1444 
  1445     // Update potentials in the subtree that has been moved
  1446     void updatePotential() {
  1447       Cost sigma = _pi[v_in] - _pi[u_in] -
  1448                    _pred_dir[u_in] * _cost[in_arc];
  1449       int end = _thread[_last_succ[u_in]];
  1450       for (int u = u_in; u != end; u = _thread[u]) {
  1451         _pi[u] += sigma;
  1452       }
  1453     }
  1454 
  1455     // Heuristic initial pivots
  1456     bool initialPivots() {
  1457       Value curr, total = 0;
  1458       std::vector<Node> supply_nodes, demand_nodes;
  1459       for (NodeIt u(_graph); u != INVALID; ++u) {
  1460         curr = _supply[_node_id[u]];
  1461         if (curr > 0) {
  1462           total += curr;
  1463           supply_nodes.push_back(u);
  1464         }
  1465         else if (curr < 0) {
  1466           demand_nodes.push_back(u);
  1467         }
  1468       }
  1469       if (_sum_supply > 0) total -= _sum_supply;
  1470       if (total <= 0) return true;
  1471 
  1472       IntVector arc_vector;
  1473       if (_sum_supply >= 0) {
  1474         if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
  1475           // Perform a reverse graph search from the sink to the source
  1476           typename GR::template NodeMap<bool> reached(_graph, false);
  1477           Node s = supply_nodes[0], t = demand_nodes[0];
  1478           std::vector<Node> stack;
  1479           reached[t] = true;
  1480           stack.push_back(t);
  1481           while (!stack.empty()) {
  1482             Node u, v = stack.back();
  1483             stack.pop_back();
  1484             if (v == s) break;
  1485             for (InArcIt a(_graph, v); a != INVALID; ++a) {
  1486               if (reached[u = _graph.source(a)]) continue;
  1487               int j = _arc_id[a];
  1488               if (_cap[j] >= total) {
  1489                 arc_vector.push_back(j);
  1490                 reached[u] = true;
  1491                 stack.push_back(u);
  1492               }
  1493             }
  1494           }
  1495         } else {
  1496           // Find the min. cost incomming arc for each demand node
  1497           for (int i = 0; i != int(demand_nodes.size()); ++i) {
  1498             Node v = demand_nodes[i];
  1499             Cost c, min_cost = std::numeric_limits<Cost>::max();
  1500             Arc min_arc = INVALID;
  1501             for (InArcIt a(_graph, v); a != INVALID; ++a) {
  1502               c = _cost[_arc_id[a]];
  1503               if (c < min_cost) {
  1504                 min_cost = c;
  1505                 min_arc = a;
  1506               }
  1507             }
  1508             if (min_arc != INVALID) {
  1509               arc_vector.push_back(_arc_id[min_arc]);
  1510             }
  1511           }
  1512         }
  1513       } else {
  1514         // Find the min. cost outgoing arc for each supply node
  1515         for (int i = 0; i != int(supply_nodes.size()); ++i) {
  1516           Node u = supply_nodes[i];
  1517           Cost c, min_cost = std::numeric_limits<Cost>::max();
  1518           Arc min_arc = INVALID;
  1519           for (OutArcIt a(_graph, u); a != INVALID; ++a) {
  1520             c = _cost[_arc_id[a]];
  1521             if (c < min_cost) {
  1522               min_cost = c;
  1523               min_arc = a;
  1524             }
  1525           }
  1526           if (min_arc != INVALID) {
  1527             arc_vector.push_back(_arc_id[min_arc]);
  1528           }
  1529         }
  1530       }
  1531 
  1532       // Perform heuristic initial pivots
  1533       for (int i = 0; i != int(arc_vector.size()); ++i) {
  1534         in_arc = arc_vector[i];
  1535         if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
  1536             _pi[_target[in_arc]]) >= 0) continue;
  1537         findJoinNode();
  1538         bool change = findLeavingArc();
  1539         if (delta >= MAX) return false;
  1540         changeFlow(change);
  1541         if (change) {
  1542           updateTreeStructure();
  1543           updatePotential();
  1544         }
  1545       }
  1546       return true;
  1547     }
  1548 
  1549     // Execute the algorithm
  1550     ProblemType start(PivotRule pivot_rule) {
  1551       // Select the pivot rule implementation
  1552       switch (pivot_rule) {
  1553         case FIRST_ELIGIBLE:
  1554           return start<FirstEligiblePivotRule>();
  1555         case BEST_ELIGIBLE:
  1556           return start<BestEligiblePivotRule>();
  1557         case BLOCK_SEARCH:
  1558           return start<BlockSearchPivotRule>();
  1559         case CANDIDATE_LIST:
  1560           return start<CandidateListPivotRule>();
  1561         case ALTERING_LIST:
  1562           return start<AlteringListPivotRule>();
  1563       }
  1564       return INFEASIBLE; // avoid warning
  1565     }
  1566 
  1567     template <typename PivotRuleImpl>
  1568     ProblemType start() {
  1569       PivotRuleImpl pivot(*this);
  1570 
  1571       // Perform heuristic initial pivots
  1572       if (!initialPivots()) return UNBOUNDED;
  1573 
  1574       // Execute the Network Simplex algorithm
  1575       while (pivot.findEnteringArc()) {
  1576         findJoinNode();
  1577         bool change = findLeavingArc();
  1578         if (delta >= MAX) return UNBOUNDED;
  1579         changeFlow(change);
  1580         if (change) {
  1581           updateTreeStructure();
  1582           updatePotential();
  1583         }
  1584       }
  1585 
  1586       // Check feasibility
  1587       for (int e = _search_arc_num; e != _all_arc_num; ++e) {
  1588         if (_flow[e] != 0) return INFEASIBLE;
  1589       }
  1590 
  1591       // Transform the solution and the supply map to the original form
  1592       if (_have_lower) {
  1593         for (int i = 0; i != _arc_num; ++i) {
  1594           Value c = _lower[i];
  1595           if (c != 0) {
  1596             _flow[i] += c;
  1597             _supply[_source[i]] += c;
  1598             _supply[_target[i]] -= c;
  1599           }
  1600         }
  1601       }
  1602 
  1603       // Shift potentials to meet the requirements of the GEQ/LEQ type
  1604       // optimality conditions
  1605       if (_sum_supply == 0) {
  1606         if (_stype == GEQ) {
  1607           Cost max_pot = -std::numeric_limits<Cost>::max();
  1608           for (int i = 0; i != _node_num; ++i) {
  1609             if (_pi[i] > max_pot) max_pot = _pi[i];
  1610           }
  1611           if (max_pot > 0) {
  1612             for (int i = 0; i != _node_num; ++i)
  1613               _pi[i] -= max_pot;
  1614           }
  1615         } else {
  1616           Cost min_pot = std::numeric_limits<Cost>::max();
  1617           for (int i = 0; i != _node_num; ++i) {
  1618             if (_pi[i] < min_pot) min_pot = _pi[i];
  1619           }
  1620           if (min_pot < 0) {
  1621             for (int i = 0; i != _node_num; ++i)
  1622               _pi[i] -= min_pot;
  1623           }
  1624         }
  1625       }
  1626 
  1627       return OPTIMAL;
  1628     }
  1629 
  1630   }; //class NetworkSimplex
  1631 
  1632   ///@}
  1633 
  1634 } //namespace lemon
  1635 
  1636 #endif //LEMON_NETWORK_SIMPLEX_H