test/connectivity_test.cc
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 15 Mar 2011 19:32:21 +0100
changeset 936 ddd3c0d3d9bf
parent 649 76cbcb3e9bbb
child 998 7fdaa05a69a1
permissions -rw-r--r--
Implement the scaling Price Refinement heuristic in CostScaling (#417)
instead of Early Termination.

These two heuristics are similar, but the newer one is faster
and not only makes it possible to skip some epsilon phases, but
it can improve the performance of the other phases, as well.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #include <lemon/connectivity.h>
    20 #include <lemon/list_graph.h>
    21 #include <lemon/adaptors.h>
    22 
    23 #include "test_tools.h"
    24 
    25 using namespace lemon;
    26 
    27 
    28 int main()
    29 {
    30   typedef ListDigraph Digraph;
    31   typedef Undirector<Digraph> Graph;
    32 
    33   {
    34     Digraph d;
    35     Digraph::NodeMap<int> order(d);
    36     Graph g(d);
    37 
    38     check(stronglyConnected(d), "The empty digraph is strongly connected");
    39     check(countStronglyConnectedComponents(d) == 0,
    40           "The empty digraph has 0 strongly connected component");
    41     check(connected(g), "The empty graph is connected");
    42     check(countConnectedComponents(g) == 0,
    43           "The empty graph has 0 connected component");
    44 
    45     check(biNodeConnected(g), "The empty graph is bi-node-connected");
    46     check(countBiNodeConnectedComponents(g) == 0,
    47           "The empty graph has 0 bi-node-connected component");
    48     check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
    49     check(countBiEdgeConnectedComponents(g) == 0,
    50           "The empty graph has 0 bi-edge-connected component");
    51 
    52     check(dag(d), "The empty digraph is DAG.");
    53     check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
    54     check(loopFree(d), "The empty digraph is loop-free.");
    55     check(parallelFree(d), "The empty digraph is parallel-free.");
    56     check(simpleGraph(d), "The empty digraph is simple.");
    57 
    58     check(acyclic(g), "The empty graph is acyclic.");
    59     check(tree(g), "The empty graph is tree.");
    60     check(bipartite(g), "The empty graph is bipartite.");
    61     check(loopFree(g), "The empty graph is loop-free.");
    62     check(parallelFree(g), "The empty graph is parallel-free.");
    63     check(simpleGraph(g), "The empty graph is simple.");
    64   }
    65 
    66   {
    67     Digraph d;
    68     Digraph::NodeMap<int> order(d);
    69     Graph g(d);
    70     Digraph::Node n = d.addNode();
    71 
    72     check(stronglyConnected(d), "This digraph is strongly connected");
    73     check(countStronglyConnectedComponents(d) == 1,
    74           "This digraph has 1 strongly connected component");
    75     check(connected(g), "This graph is connected");
    76     check(countConnectedComponents(g) == 1,
    77           "This graph has 1 connected component");
    78 
    79     check(biNodeConnected(g), "This graph is bi-node-connected");
    80     check(countBiNodeConnectedComponents(g) == 0,
    81           "This graph has 0 bi-node-connected component");
    82     check(biEdgeConnected(g), "This graph is bi-edge-connected");
    83     check(countBiEdgeConnectedComponents(g) == 1,
    84           "This graph has 1 bi-edge-connected component");
    85 
    86     check(dag(d), "This digraph is DAG.");
    87     check(checkedTopologicalSort(d, order), "This digraph is DAG.");
    88     check(loopFree(d), "This digraph is loop-free.");
    89     check(parallelFree(d), "This digraph is parallel-free.");
    90     check(simpleGraph(d), "This digraph is simple.");
    91 
    92     check(acyclic(g), "This graph is acyclic.");
    93     check(tree(g), "This graph is tree.");
    94     check(bipartite(g), "This graph is bipartite.");
    95     check(loopFree(g), "This graph is loop-free.");
    96     check(parallelFree(g), "This graph is parallel-free.");
    97     check(simpleGraph(g), "This graph is simple.");
    98   }
    99 
   100   {
   101     Digraph d;
   102     Digraph::NodeMap<int> order(d);
   103     Graph g(d);
   104 
   105     Digraph::Node n1 = d.addNode();
   106     Digraph::Node n2 = d.addNode();
   107     Digraph::Node n3 = d.addNode();
   108     Digraph::Node n4 = d.addNode();
   109     Digraph::Node n5 = d.addNode();
   110     Digraph::Node n6 = d.addNode();
   111 
   112     d.addArc(n1, n3);
   113     d.addArc(n3, n2);
   114     d.addArc(n2, n1);
   115     d.addArc(n4, n2);
   116     d.addArc(n4, n3);
   117     d.addArc(n5, n6);
   118     d.addArc(n6, n5);
   119 
   120     check(!stronglyConnected(d), "This digraph is not strongly connected");
   121     check(countStronglyConnectedComponents(d) == 3,
   122           "This digraph has 3 strongly connected components");
   123     check(!connected(g), "This graph is not connected");
   124     check(countConnectedComponents(g) == 2,
   125           "This graph has 2 connected components");
   126 
   127     check(!dag(d), "This digraph is not DAG.");
   128     check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
   129     check(loopFree(d), "This digraph is loop-free.");
   130     check(parallelFree(d), "This digraph is parallel-free.");
   131     check(simpleGraph(d), "This digraph is simple.");
   132 
   133     check(!acyclic(g), "This graph is not acyclic.");
   134     check(!tree(g), "This graph is not tree.");
   135     check(!bipartite(g), "This graph is not bipartite.");
   136     check(loopFree(g), "This graph is loop-free.");
   137     check(!parallelFree(g), "This graph is not parallel-free.");
   138     check(!simpleGraph(g), "This graph is not simple.");
   139 
   140     d.addArc(n3, n3);
   141 
   142     check(!loopFree(d), "This digraph is not loop-free.");
   143     check(!loopFree(g), "This graph is not loop-free.");
   144     check(!simpleGraph(d), "This digraph is not simple.");
   145 
   146     d.addArc(n3, n2);
   147 
   148     check(!parallelFree(d), "This digraph is not parallel-free.");
   149   }
   150 
   151   {
   152     Digraph d;
   153     Digraph::ArcMap<bool> cutarcs(d, false);
   154     Graph g(d);
   155 
   156     Digraph::Node n1 = d.addNode();
   157     Digraph::Node n2 = d.addNode();
   158     Digraph::Node n3 = d.addNode();
   159     Digraph::Node n4 = d.addNode();
   160     Digraph::Node n5 = d.addNode();
   161     Digraph::Node n6 = d.addNode();
   162     Digraph::Node n7 = d.addNode();
   163     Digraph::Node n8 = d.addNode();
   164 
   165     d.addArc(n1, n2);
   166     d.addArc(n5, n1);
   167     d.addArc(n2, n8);
   168     d.addArc(n8, n5);
   169     d.addArc(n6, n4);
   170     d.addArc(n4, n6);
   171     d.addArc(n2, n5);
   172     d.addArc(n1, n8);
   173     d.addArc(n6, n7);
   174     d.addArc(n7, n6);
   175 
   176     check(!stronglyConnected(d), "This digraph is not strongly connected");
   177     check(countStronglyConnectedComponents(d) == 3,
   178           "This digraph has 3 strongly connected components");
   179     Digraph::NodeMap<int> scomp1(d);
   180     check(stronglyConnectedComponents(d, scomp1) == 3,
   181           "This digraph has 3 strongly connected components");
   182     check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
   183           scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
   184     check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
   185           scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
   186     check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
   187           "Wrong stronglyConnectedComponents()");
   188     Digraph::ArcMap<bool> scut1(d, false);
   189     check(stronglyConnectedCutArcs(d, scut1) == 0,
   190           "This digraph has 0 strongly connected cut arc.");
   191     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   192       check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
   193     }
   194 
   195     check(!connected(g), "This graph is not connected");
   196     check(countConnectedComponents(g) == 3,
   197           "This graph has 3 connected components");
   198     Graph::NodeMap<int> comp(g);
   199     check(connectedComponents(g, comp) == 3,
   200           "This graph has 3 connected components");
   201     check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
   202           comp[n3] != comp[n4], "Wrong connectedComponents()");
   203     check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
   204           comp[n1] == comp[n8], "Wrong connectedComponents()");
   205     check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
   206           "Wrong connectedComponents()");
   207 
   208     cutarcs[d.addArc(n3, n1)] = true;
   209     cutarcs[d.addArc(n3, n5)] = true;
   210     cutarcs[d.addArc(n3, n8)] = true;
   211     cutarcs[d.addArc(n8, n6)] = true;
   212     cutarcs[d.addArc(n8, n7)] = true;
   213 
   214     check(!stronglyConnected(d), "This digraph is not strongly connected");
   215     check(countStronglyConnectedComponents(d) == 3,
   216           "This digraph has 3 strongly connected components");
   217     Digraph::NodeMap<int> scomp2(d);
   218     check(stronglyConnectedComponents(d, scomp2) == 3,
   219           "This digraph has 3 strongly connected components");
   220     check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
   221     check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
   222           scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
   223     check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
   224           "Wrong stronglyConnectedComponents()");
   225     Digraph::ArcMap<bool> scut2(d, false);
   226     check(stronglyConnectedCutArcs(d, scut2) == 5,
   227           "This digraph has 5 strongly connected cut arcs.");
   228     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   229       check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
   230     }
   231   }
   232 
   233   {
   234     // DAG example for topological sort from the book New Algorithms
   235     // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
   236     Digraph d;
   237     Digraph::NodeMap<int> order(d);
   238 
   239     Digraph::Node belt = d.addNode();
   240     Digraph::Node trousers = d.addNode();
   241     Digraph::Node necktie = d.addNode();
   242     Digraph::Node coat = d.addNode();
   243     Digraph::Node socks = d.addNode();
   244     Digraph::Node shirt = d.addNode();
   245     Digraph::Node shoe = d.addNode();
   246     Digraph::Node watch = d.addNode();
   247     Digraph::Node pants = d.addNode();
   248 
   249     d.addArc(socks, shoe);
   250     d.addArc(pants, shoe);
   251     d.addArc(pants, trousers);
   252     d.addArc(trousers, shoe);
   253     d.addArc(trousers, belt);
   254     d.addArc(belt, coat);
   255     d.addArc(shirt, belt);
   256     d.addArc(shirt, necktie);
   257     d.addArc(necktie, coat);
   258 
   259     check(dag(d), "This digraph is DAG.");
   260     topologicalSort(d, order);
   261     for (Digraph::ArcIt a(d); a != INVALID; ++a) {
   262       check(order[d.source(a)] < order[d.target(a)],
   263             "Wrong topologicalSort()");
   264     }
   265   }
   266 
   267   {
   268     ListGraph g;
   269     ListGraph::NodeMap<bool> map(g);
   270 
   271     ListGraph::Node n1 = g.addNode();
   272     ListGraph::Node n2 = g.addNode();
   273     ListGraph::Node n3 = g.addNode();
   274     ListGraph::Node n4 = g.addNode();
   275     ListGraph::Node n5 = g.addNode();
   276     ListGraph::Node n6 = g.addNode();
   277     ListGraph::Node n7 = g.addNode();
   278 
   279     g.addEdge(n1, n3);
   280     g.addEdge(n1, n4);
   281     g.addEdge(n2, n5);
   282     g.addEdge(n3, n6);
   283     g.addEdge(n4, n6);
   284     g.addEdge(n4, n7);
   285     g.addEdge(n5, n7);
   286 
   287     check(bipartite(g), "This graph is bipartite");
   288     check(bipartitePartitions(g, map), "This graph is bipartite");
   289 
   290     check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
   291           "Wrong bipartitePartitions()");
   292     check(map[n3] == map[n4] && map[n3] == map[n5],
   293           "Wrong bipartitePartitions()");
   294   }
   295 
   296   return 0;
   297 }