lemon/dim2.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:26:13 +0100
changeset 806 fa6f37d7a25b
parent 440 88ed40ad0d4f
child 1123 6aea07d5ca48
permissions -rw-r--r--
Entirely rework CapacityScaling (#180)

- Use the new interface similarly to NetworkSimplex.
- Rework the implementation using an efficient internal structure
for handling the residual network. This improvement made the
code much faster (up to 2-5 times faster on large graphs).
- Handle GEQ supply type (LEQ is not supported).
- Handle negative costs for arcs of finite capacity.
(Note that this algorithm cannot handle arcs of negative cost
and infinite upper bound, thus it returns UNBOUNDED if such
an arc exists.)
- Extend the documentation.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DIM2_H
    20 #define LEMON_DIM2_H
    21 
    22 #include <iostream>
    23 
    24 ///\ingroup geomdat
    25 ///\file
    26 ///\brief A simple two dimensional vector and a bounding box implementation
    27 
    28 namespace lemon {
    29 
    30   ///Tools for handling two dimensional coordinates
    31 
    32   ///This namespace is a storage of several
    33   ///tools for handling two dimensional coordinates
    34   namespace dim2 {
    35 
    36   /// \addtogroup geomdat
    37   /// @{
    38 
    39   /// Two dimensional vector (plain vector)
    40 
    41   /// A simple two dimensional vector (plain vector) implementation
    42   /// with the usual vector operations.
    43   template<typename T>
    44     class Point {
    45 
    46     public:
    47 
    48       typedef T Value;
    49 
    50       ///First coordinate
    51       T x;
    52       ///Second coordinate
    53       T y;
    54 
    55       ///Default constructor
    56       Point() {}
    57 
    58       ///Construct an instance from coordinates
    59       Point(T a, T b) : x(a), y(b) { }
    60 
    61       ///Returns the dimension of the vector (i.e. returns 2).
    62 
    63       ///The dimension of the vector.
    64       ///This function always returns 2.
    65       int size() const { return 2; }
    66 
    67       ///Subscripting operator
    68 
    69       ///\c p[0] is \c p.x and \c p[1] is \c p.y
    70       ///
    71       T& operator[](int idx) { return idx == 0 ? x : y; }
    72 
    73       ///Const subscripting operator
    74 
    75       ///\c p[0] is \c p.x and \c p[1] is \c p.y
    76       ///
    77       const T& operator[](int idx) const { return idx == 0 ? x : y; }
    78 
    79       ///Conversion constructor
    80       template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
    81 
    82       ///Give back the square of the norm of the vector
    83       T normSquare() const {
    84         return x*x+y*y;
    85       }
    86 
    87       ///Increment the left hand side by \c u
    88       Point<T>& operator +=(const Point<T>& u) {
    89         x += u.x;
    90         y += u.y;
    91         return *this;
    92       }
    93 
    94       ///Decrement the left hand side by \c u
    95       Point<T>& operator -=(const Point<T>& u) {
    96         x -= u.x;
    97         y -= u.y;
    98         return *this;
    99       }
   100 
   101       ///Multiply the left hand side with a scalar
   102       Point<T>& operator *=(const T &u) {
   103         x *= u;
   104         y *= u;
   105         return *this;
   106       }
   107 
   108       ///Divide the left hand side by a scalar
   109       Point<T>& operator /=(const T &u) {
   110         x /= u;
   111         y /= u;
   112         return *this;
   113       }
   114 
   115       ///Return the scalar product of two vectors
   116       T operator *(const Point<T>& u) const {
   117         return x*u.x+y*u.y;
   118       }
   119 
   120       ///Return the sum of two vectors
   121       Point<T> operator+(const Point<T> &u) const {
   122         Point<T> b=*this;
   123         return b+=u;
   124       }
   125 
   126       ///Return the negative of the vector
   127       Point<T> operator-() const {
   128         Point<T> b=*this;
   129         b.x=-b.x; b.y=-b.y;
   130         return b;
   131       }
   132 
   133       ///Return the difference of two vectors
   134       Point<T> operator-(const Point<T> &u) const {
   135         Point<T> b=*this;
   136         return b-=u;
   137       }
   138 
   139       ///Return a vector multiplied by a scalar
   140       Point<T> operator*(const T &u) const {
   141         Point<T> b=*this;
   142         return b*=u;
   143       }
   144 
   145       ///Return a vector divided by a scalar
   146       Point<T> operator/(const T &u) const {
   147         Point<T> b=*this;
   148         return b/=u;
   149       }
   150 
   151       ///Test equality
   152       bool operator==(const Point<T> &u) const {
   153         return (x==u.x) && (y==u.y);
   154       }
   155 
   156       ///Test inequality
   157       bool operator!=(Point u) const {
   158         return  (x!=u.x) || (y!=u.y);
   159       }
   160 
   161     };
   162 
   163   ///Return a Point
   164 
   165   ///Return a Point.
   166   ///\relates Point
   167   template <typename T>
   168   inline Point<T> makePoint(const T& x, const T& y) {
   169     return Point<T>(x, y);
   170   }
   171 
   172   ///Return a vector multiplied by a scalar
   173 
   174   ///Return a vector multiplied by a scalar.
   175   ///\relates Point
   176   template<typename T> Point<T> operator*(const T &u,const Point<T> &x) {
   177     return x*u;
   178   }
   179 
   180   ///Read a plain vector from a stream
   181 
   182   ///Read a plain vector from a stream.
   183   ///\relates Point
   184   ///
   185   template<typename T>
   186   inline std::istream& operator>>(std::istream &is, Point<T> &z) {
   187     char c;
   188     if (is >> c) {
   189       if (c != '(') is.putback(c);
   190     } else {
   191       is.clear();
   192     }
   193     if (!(is >> z.x)) return is;
   194     if (is >> c) {
   195       if (c != ',') is.putback(c);
   196     } else {
   197       is.clear();
   198     }
   199     if (!(is >> z.y)) return is;
   200     if (is >> c) {
   201       if (c != ')') is.putback(c);
   202     } else {
   203       is.clear();
   204     }
   205     return is;
   206   }
   207 
   208   ///Write a plain vector to a stream
   209 
   210   ///Write a plain vector to a stream.
   211   ///\relates Point
   212   ///
   213   template<typename T>
   214   inline std::ostream& operator<<(std::ostream &os, const Point<T>& z)
   215   {
   216     os << "(" << z.x << "," << z.y << ")";
   217     return os;
   218   }
   219 
   220   ///Rotate by 90 degrees
   221 
   222   ///Returns the parameter rotated by 90 degrees in positive direction.
   223   ///\relates Point
   224   ///
   225   template<typename T>
   226   inline Point<T> rot90(const Point<T> &z)
   227   {
   228     return Point<T>(-z.y,z.x);
   229   }
   230 
   231   ///Rotate by 180 degrees
   232 
   233   ///Returns the parameter rotated by 180 degrees.
   234   ///\relates Point
   235   ///
   236   template<typename T>
   237   inline Point<T> rot180(const Point<T> &z)
   238   {
   239     return Point<T>(-z.x,-z.y);
   240   }
   241 
   242   ///Rotate by 270 degrees
   243 
   244   ///Returns the parameter rotated by 90 degrees in negative direction.
   245   ///\relates Point
   246   ///
   247   template<typename T>
   248   inline Point<T> rot270(const Point<T> &z)
   249   {
   250     return Point<T>(z.y,-z.x);
   251   }
   252 
   253 
   254 
   255   /// Bounding box of plain vectors (points).
   256 
   257   /// A class to calculate or store the bounding box of plain vectors
   258   /// (\ref Point "points").
   259   template<typename T>
   260   class Box {
   261       Point<T> _bottom_left, _top_right;
   262       bool _empty;
   263     public:
   264 
   265       ///Default constructor: creates an empty box
   266       Box() { _empty = true; }
   267 
   268       ///Construct a box from one point
   269       Box(Point<T> a) {
   270         _bottom_left = _top_right = a;
   271         _empty = false;
   272       }
   273 
   274       ///Construct a box from two points
   275 
   276       ///Construct a box from two points.
   277       ///\param a The bottom left corner.
   278       ///\param b The top right corner.
   279       ///\warning The coordinates of the bottom left corner must be no more
   280       ///than those of the top right one.
   281       Box(Point<T> a,Point<T> b)
   282       {
   283         _bottom_left = a;
   284         _top_right = b;
   285         _empty = false;
   286       }
   287 
   288       ///Construct a box from four numbers
   289 
   290       ///Construct a box from four numbers.
   291       ///\param l The left side of the box.
   292       ///\param b The bottom of the box.
   293       ///\param r The right side of the box.
   294       ///\param t The top of the box.
   295       ///\warning The left side must be no more than the right side and
   296       ///bottom must be no more than the top.
   297       Box(T l,T b,T r,T t)
   298       {
   299         _bottom_left=Point<T>(l,b);
   300         _top_right=Point<T>(r,t);
   301         _empty = false;
   302       }
   303 
   304       ///Return \c true if the box is empty.
   305 
   306       ///Return \c true if the box is empty (i.e. return \c false
   307       ///if at least one point was added to the box or the coordinates of
   308       ///the box were set).
   309       ///
   310       ///The coordinates of an empty box are not defined.
   311       bool empty() const {
   312         return _empty;
   313       }
   314 
   315       ///Make the box empty
   316       void clear() {
   317         _empty = true;
   318       }
   319 
   320       ///Give back the bottom left corner of the box
   321 
   322       ///Give back the bottom left corner of the box.
   323       ///If the box is empty, then the return value is not defined.
   324       Point<T> bottomLeft() const {
   325         return _bottom_left;
   326       }
   327 
   328       ///Set the bottom left corner of the box
   329 
   330       ///Set the bottom left corner of the box.
   331       ///\pre The box must not be empty.
   332       void bottomLeft(Point<T> p) {
   333         _bottom_left = p;
   334       }
   335 
   336       ///Give back the top right corner of the box
   337 
   338       ///Give back the top right corner of the box.
   339       ///If the box is empty, then the return value is not defined.
   340       Point<T> topRight() const {
   341         return _top_right;
   342       }
   343 
   344       ///Set the top right corner of the box
   345 
   346       ///Set the top right corner of the box.
   347       ///\pre The box must not be empty.
   348       void topRight(Point<T> p) {
   349         _top_right = p;
   350       }
   351 
   352       ///Give back the bottom right corner of the box
   353 
   354       ///Give back the bottom right corner of the box.
   355       ///If the box is empty, then the return value is not defined.
   356       Point<T> bottomRight() const {
   357         return Point<T>(_top_right.x,_bottom_left.y);
   358       }
   359 
   360       ///Set the bottom right corner of the box
   361 
   362       ///Set the bottom right corner of the box.
   363       ///\pre The box must not be empty.
   364       void bottomRight(Point<T> p) {
   365         _top_right.x = p.x;
   366         _bottom_left.y = p.y;
   367       }
   368 
   369       ///Give back the top left corner of the box
   370 
   371       ///Give back the top left corner of the box.
   372       ///If the box is empty, then the return value is not defined.
   373       Point<T> topLeft() const {
   374         return Point<T>(_bottom_left.x,_top_right.y);
   375       }
   376 
   377       ///Set the top left corner of the box
   378 
   379       ///Set the top left corner of the box.
   380       ///\pre The box must not be empty.
   381       void topLeft(Point<T> p) {
   382         _top_right.y = p.y;
   383         _bottom_left.x = p.x;
   384       }
   385 
   386       ///Give back the bottom of the box
   387 
   388       ///Give back the bottom of the box.
   389       ///If the box is empty, then the return value is not defined.
   390       T bottom() const {
   391         return _bottom_left.y;
   392       }
   393 
   394       ///Set the bottom of the box
   395 
   396       ///Set the bottom of the box.
   397       ///\pre The box must not be empty.
   398       void bottom(T t) {
   399         _bottom_left.y = t;
   400       }
   401 
   402       ///Give back the top of the box
   403 
   404       ///Give back the top of the box.
   405       ///If the box is empty, then the return value is not defined.
   406       T top() const {
   407         return _top_right.y;
   408       }
   409 
   410       ///Set the top of the box
   411 
   412       ///Set the top of the box.
   413       ///\pre The box must not be empty.
   414       void top(T t) {
   415         _top_right.y = t;
   416       }
   417 
   418       ///Give back the left side of the box
   419 
   420       ///Give back the left side of the box.
   421       ///If the box is empty, then the return value is not defined.
   422       T left() const {
   423         return _bottom_left.x;
   424       }
   425 
   426       ///Set the left side of the box
   427 
   428       ///Set the left side of the box.
   429       ///\pre The box must not be empty.
   430       void left(T t) {
   431         _bottom_left.x = t;
   432       }
   433 
   434       /// Give back the right side of the box
   435 
   436       /// Give back the right side of the box.
   437       ///If the box is empty, then the return value is not defined.
   438       T right() const {
   439         return _top_right.x;
   440       }
   441 
   442       ///Set the right side of the box
   443 
   444       ///Set the right side of the box.
   445       ///\pre The box must not be empty.
   446       void right(T t) {
   447         _top_right.x = t;
   448       }
   449 
   450       ///Give back the height of the box
   451 
   452       ///Give back the height of the box.
   453       ///If the box is empty, then the return value is not defined.
   454       T height() const {
   455         return _top_right.y-_bottom_left.y;
   456       }
   457 
   458       ///Give back the width of the box
   459 
   460       ///Give back the width of the box.
   461       ///If the box is empty, then the return value is not defined.
   462       T width() const {
   463         return _top_right.x-_bottom_left.x;
   464       }
   465 
   466       ///Checks whether a point is inside the box
   467       bool inside(const Point<T>& u) const {
   468         if (_empty)
   469           return false;
   470         else {
   471           return ( (u.x-_bottom_left.x)*(_top_right.x-u.x) >= 0 &&
   472                    (u.y-_bottom_left.y)*(_top_right.y-u.y) >= 0 );
   473         }
   474       }
   475 
   476       ///Increments the box with a point
   477 
   478       ///Increments the box with a point.
   479       ///
   480       Box& add(const Point<T>& u){
   481         if (_empty) {
   482           _bottom_left = _top_right = u;
   483           _empty = false;
   484         }
   485         else {
   486           if (_bottom_left.x > u.x) _bottom_left.x = u.x;
   487           if (_bottom_left.y > u.y) _bottom_left.y = u.y;
   488           if (_top_right.x < u.x) _top_right.x = u.x;
   489           if (_top_right.y < u.y) _top_right.y = u.y;
   490         }
   491         return *this;
   492       }
   493 
   494       ///Increments the box to contain another box
   495 
   496       ///Increments the box to contain another box.
   497       ///
   498       Box& add(const Box &u){
   499         if ( !u.empty() ){
   500           add(u._bottom_left);
   501           add(u._top_right);
   502         }
   503         return *this;
   504       }
   505 
   506       ///Intersection of two boxes
   507 
   508       ///Intersection of two boxes.
   509       ///
   510       Box operator&(const Box& u) const {
   511         Box b;
   512         if (_empty || u._empty) {
   513           b._empty = true;
   514         } else {
   515           b._bottom_left.x = std::max(_bottom_left.x, u._bottom_left.x);
   516           b._bottom_left.y = std::max(_bottom_left.y, u._bottom_left.y);
   517           b._top_right.x = std::min(_top_right.x, u._top_right.x);
   518           b._top_right.y = std::min(_top_right.y, u._top_right.y);
   519           b._empty = b._bottom_left.x > b._top_right.x ||
   520                      b._bottom_left.y > b._top_right.y;
   521         }
   522         return b;
   523       }
   524 
   525   };//class Box
   526 
   527 
   528   ///Read a box from a stream
   529 
   530   ///Read a box from a stream.
   531   ///\relates Box
   532   template<typename T>
   533   inline std::istream& operator>>(std::istream &is, Box<T>& b) {
   534     char c;
   535     Point<T> p;
   536     if (is >> c) {
   537       if (c != '(') is.putback(c);
   538     } else {
   539       is.clear();
   540     }
   541     if (!(is >> p)) return is;
   542     b.bottomLeft(p);
   543     if (is >> c) {
   544       if (c != ',') is.putback(c);
   545     } else {
   546       is.clear();
   547     }
   548     if (!(is >> p)) return is;
   549     b.topRight(p);
   550     if (is >> c) {
   551       if (c != ')') is.putback(c);
   552     } else {
   553       is.clear();
   554     }
   555     return is;
   556   }
   557 
   558   ///Write a box to a stream
   559 
   560   ///Write a box to a stream.
   561   ///\relates Box
   562   template<typename T>
   563   inline std::ostream& operator<<(std::ostream &os, const Box<T>& b)
   564   {
   565     os << "(" << b.bottomLeft() << "," << b.topRight() << ")";
   566     return os;
   567   }
   568 
   569   ///Map of x-coordinates of a <tt>Point</tt>-map
   570 
   571   ///Map of x-coordinates of a \ref Point "Point"-map.
   572   ///
   573   template<class M>
   574   class XMap
   575   {
   576     M& _map;
   577   public:
   578 
   579     typedef typename M::Value::Value Value;
   580     typedef typename M::Key Key;
   581     ///\e
   582     XMap(M& map) : _map(map) {}
   583     Value operator[](Key k) const {return _map[k].x;}
   584     void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
   585   };
   586 
   587   ///Returns an XMap class
   588 
   589   ///This function just returns an XMap class.
   590   ///\relates XMap
   591   template<class M>
   592   inline XMap<M> xMap(M &m)
   593   {
   594     return XMap<M>(m);
   595   }
   596 
   597   template<class M>
   598   inline XMap<M> xMap(const M &m)
   599   {
   600     return XMap<M>(m);
   601   }
   602 
   603   ///Constant (read only) version of XMap
   604 
   605   ///Constant (read only) version of XMap.
   606   ///
   607   template<class M>
   608   class ConstXMap
   609   {
   610     const M& _map;
   611   public:
   612 
   613     typedef typename M::Value::Value Value;
   614     typedef typename M::Key Key;
   615     ///\e
   616     ConstXMap(const M &map) : _map(map) {}
   617     Value operator[](Key k) const {return _map[k].x;}
   618   };
   619 
   620   ///Returns a ConstXMap class
   621 
   622   ///This function just returns a ConstXMap class.
   623   ///\relates ConstXMap
   624   template<class M>
   625   inline ConstXMap<M> xMap(const M &m)
   626   {
   627     return ConstXMap<M>(m);
   628   }
   629 
   630   ///Map of y-coordinates of a <tt>Point</tt>-map
   631 
   632   ///Map of y-coordinates of a \ref Point "Point"-map.
   633   ///
   634   template<class M>
   635   class YMap
   636   {
   637     M& _map;
   638   public:
   639 
   640     typedef typename M::Value::Value Value;
   641     typedef typename M::Key Key;
   642     ///\e
   643     YMap(M& map) : _map(map) {}
   644     Value operator[](Key k) const {return _map[k].y;}
   645     void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
   646   };
   647 
   648   ///Returns a YMap class
   649 
   650   ///This function just returns a YMap class.
   651   ///\relates YMap
   652   template<class M>
   653   inline YMap<M> yMap(M &m)
   654   {
   655     return YMap<M>(m);
   656   }
   657 
   658   template<class M>
   659   inline YMap<M> yMap(const M &m)
   660   {
   661     return YMap<M>(m);
   662   }
   663 
   664   ///Constant (read only) version of YMap
   665 
   666   ///Constant (read only) version of YMap.
   667   ///
   668   template<class M>
   669   class ConstYMap
   670   {
   671     const M& _map;
   672   public:
   673 
   674     typedef typename M::Value::Value Value;
   675     typedef typename M::Key Key;
   676     ///\e
   677     ConstYMap(const M &map) : _map(map) {}
   678     Value operator[](Key k) const {return _map[k].y;}
   679   };
   680 
   681   ///Returns a ConstYMap class
   682 
   683   ///This function just returns a ConstYMap class.
   684   ///\relates ConstYMap
   685   template<class M>
   686   inline ConstYMap<M> yMap(const M &m)
   687   {
   688     return ConstYMap<M>(m);
   689   }
   690 
   691 
   692   ///\brief Map of the normSquare() of a <tt>Point</tt>-map
   693   ///
   694   ///Map of the \ref Point::normSquare() "normSquare()"
   695   ///of a \ref Point "Point"-map.
   696   template<class M>
   697   class NormSquareMap
   698   {
   699     const M& _map;
   700   public:
   701 
   702     typedef typename M::Value::Value Value;
   703     typedef typename M::Key Key;
   704     ///\e
   705     NormSquareMap(const M &map) : _map(map) {}
   706     Value operator[](Key k) const {return _map[k].normSquare();}
   707   };
   708 
   709   ///Returns a NormSquareMap class
   710 
   711   ///This function just returns a NormSquareMap class.
   712   ///\relates NormSquareMap
   713   template<class M>
   714   inline NormSquareMap<M> normSquareMap(const M &m)
   715   {
   716     return NormSquareMap<M>(m);
   717   }
   718 
   719   /// @}
   720 
   721   } //namespce dim2
   722 
   723 } //namespace lemon
   724 
   725 #endif //LEMON_DIM2_H