deba@681: /* -*- mode: C++; indent-tabs-mode: nil; -*- deba@681: * deba@681: * This file is a part of LEMON, a generic C++ optimization library. deba@681: * deba@681: * Copyright (C) 2003-2009 deba@681: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport deba@681: * (Egervary Research Group on Combinatorial Optimization, EGRES). deba@681: * deba@681: * Permission to use, modify and distribute this software is granted deba@681: * provided that this copyright notice appears in all copies. For deba@681: * precise terms see the accompanying LICENSE file. deba@681: * deba@681: * This software is provided "AS IS" with no warranty of any kind, deba@681: * express or implied, and with no claim as to its suitability for any deba@681: * purpose. deba@681: * deba@681: */ deba@681: deba@681: #ifndef LEMON_FIB_HEAP_H deba@681: #define LEMON_FIB_HEAP_H deba@681: deba@681: ///\file deba@681: ///\ingroup auxdat deba@681: ///\brief Fibonacci Heap implementation. deba@681: deba@681: #include deba@681: #include deba@681: #include deba@681: deba@681: namespace lemon { deba@681: deba@681: /// \ingroup auxdat deba@681: /// deba@681: ///\brief Fibonacci Heap. deba@681: /// deba@681: ///This class implements the \e Fibonacci \e heap data structure. A \e heap deba@681: ///is a data structure for storing items with specified values called \e deba@681: ///priorities in such a way that finding the item with minimum priority is deba@683: ///efficient. \c CMP specifies the ordering of the priorities. In a heap deba@681: ///one can change the priority of an item, add or erase an item, etc. deba@681: /// deba@681: ///The methods \ref increase and \ref erase are not efficient in a Fibonacci deba@681: ///heap. In case of many calls to these operations, it is better to use a deba@681: ///\ref BinHeap "binary heap". deba@681: /// deba@683: ///\param PRIO Type of the priority of the items. deba@683: ///\param IM A read and writable Item int map, used internally deba@681: ///to handle the cross references. deba@683: ///\param CMP A class for the ordering of the priorities. The deba@683: ///default is \c std::less. deba@681: /// deba@681: ///\sa BinHeap deba@681: ///\sa Dijkstra deba@681: #ifdef DOXYGEN deba@683: template deba@681: #else deba@683: template > deba@681: #endif deba@681: class FibHeap { deba@681: public: deba@681: ///\e deba@683: typedef IM ItemIntMap; deba@681: ///\e deba@683: typedef PRIO Prio; deba@681: ///\e deba@681: typedef typename ItemIntMap::Key Item; deba@681: ///\e deba@681: typedef std::pair Pair; deba@681: ///\e deba@683: typedef CMP Compare; deba@681: deba@681: private: deba@683: class Store; deba@681: deba@683: std::vector _data; deba@683: int _minimum; deba@683: ItemIntMap &_iim; deba@683: Compare _comp; deba@683: int _num; deba@681: deba@681: public: deba@683: deba@683: /// \brief Type to represent the items states. deba@683: /// deba@683: /// Each Item element have a state associated to it. It may be "in heap", deba@683: /// "pre heap" or "post heap". The latter two are indifferent from the deba@683: /// heap's point of view, but may be useful to the user. deba@683: /// deba@683: /// The item-int map must be initialized in such way that it assigns deba@683: /// \c PRE_HEAP (-1) to any element to be put in the heap. deba@681: enum State { deba@683: IN_HEAP = 0, ///< = 0. deba@683: PRE_HEAP = -1, ///< = -1. deba@683: POST_HEAP = -2 ///< = -2. deba@681: }; deba@681: deba@681: /// \brief The constructor deba@681: /// deba@683: /// \c map should be given to the constructor, since it is deba@681: /// used internally to handle the cross references. deba@683: explicit FibHeap(ItemIntMap &map) deba@683: : _minimum(0), _iim(map), _num() {} deba@681: deba@681: /// \brief The constructor deba@681: /// deba@683: /// \c map should be given to the constructor, since it is used deba@683: /// internally to handle the cross references. \c comp is an deba@681: /// object for ordering of the priorities. deba@683: FibHeap(ItemIntMap &map, const Compare &comp) deba@683: : _minimum(0), _iim(map), _comp(comp), _num() {} deba@681: deba@681: /// \brief The number of items stored in the heap. deba@681: /// deba@681: /// Returns the number of items stored in the heap. deba@683: int size() const { return _num; } deba@681: deba@681: /// \brief Checks if the heap stores no items. deba@681: /// deba@681: /// Returns \c true if and only if the heap stores no items. deba@683: bool empty() const { return _num==0; } deba@681: deba@681: /// \brief Make empty this heap. deba@681: /// deba@681: /// Make empty this heap. It does not change the cross reference deba@681: /// map. If you want to reuse a heap what is not surely empty you deba@681: /// should first clear the heap and after that you should set the deba@681: /// cross reference map for each item to \c PRE_HEAP. deba@681: void clear() { deba@683: _data.clear(); _minimum = 0; _num = 0; deba@681: } deba@681: deba@681: /// \brief \c item gets to the heap with priority \c value independently deba@681: /// if \c item was already there. deba@681: /// deba@681: /// This method calls \ref push(\c item, \c value) if \c item is not deba@681: /// stored in the heap and it calls \ref decrease(\c item, \c value) or deba@681: /// \ref increase(\c item, \c value) otherwise. deba@681: void set (const Item& item, const Prio& value) { deba@683: int i=_iim[item]; deba@683: if ( i >= 0 && _data[i].in ) { deba@683: if ( _comp(value, _data[i].prio) ) decrease(item, value); deba@683: if ( _comp(_data[i].prio, value) ) increase(item, value); deba@681: } else push(item, value); deba@681: } deba@681: deba@681: /// \brief Adds \c item to the heap with priority \c value. deba@681: /// deba@681: /// Adds \c item to the heap with priority \c value. deba@681: /// \pre \c item must not be stored in the heap. deba@681: void push (const Item& item, const Prio& value) { deba@683: int i=_iim[item]; deba@681: if ( i < 0 ) { deba@683: int s=_data.size(); deba@683: _iim.set( item, s ); deba@683: Store st; deba@681: st.name=item; deba@683: _data.push_back(st); deba@681: i=s; deba@681: } else { deba@683: _data[i].parent=_data[i].child=-1; deba@683: _data[i].degree=0; deba@683: _data[i].in=true; deba@683: _data[i].marked=false; deba@681: } deba@681: deba@683: if ( _num ) { deba@683: _data[_data[_minimum].right_neighbor].left_neighbor=i; deba@683: _data[i].right_neighbor=_data[_minimum].right_neighbor; deba@683: _data[_minimum].right_neighbor=i; deba@683: _data[i].left_neighbor=_minimum; deba@683: if ( _comp( value, _data[_minimum].prio) ) _minimum=i; deba@681: } else { deba@683: _data[i].right_neighbor=_data[i].left_neighbor=i; deba@683: _minimum=i; deba@681: } deba@683: _data[i].prio=value; deba@683: ++_num; deba@681: } deba@681: deba@681: /// \brief Returns the item with minimum priority relative to \c Compare. deba@681: /// deba@681: /// This method returns the item with minimum priority relative to \c deba@681: /// Compare. deba@681: /// \pre The heap must be nonempty. deba@683: Item top() const { return _data[_minimum].name; } deba@681: deba@681: /// \brief Returns the minimum priority relative to \c Compare. deba@681: /// deba@681: /// It returns the minimum priority relative to \c Compare. deba@681: /// \pre The heap must be nonempty. deba@683: const Prio& prio() const { return _data[_minimum].prio; } deba@681: deba@681: /// \brief Returns the priority of \c item. deba@681: /// deba@681: /// It returns the priority of \c item. deba@681: /// \pre \c item must be in the heap. deba@681: const Prio& operator[](const Item& item) const { deba@683: return _data[_iim[item]].prio; deba@681: } deba@681: deba@681: /// \brief Deletes the item with minimum priority relative to \c Compare. deba@681: /// deba@681: /// This method deletes the item with minimum priority relative to \c deba@681: /// Compare from the heap. deba@681: /// \pre The heap must be non-empty. deba@681: void pop() { deba@681: /*The first case is that there are only one root.*/ deba@683: if ( _data[_minimum].left_neighbor==_minimum ) { deba@683: _data[_minimum].in=false; deba@683: if ( _data[_minimum].degree!=0 ) { deba@683: makeroot(_data[_minimum].child); deba@683: _minimum=_data[_minimum].child; deba@681: balance(); deba@681: } deba@681: } else { deba@683: int right=_data[_minimum].right_neighbor; deba@683: unlace(_minimum); deba@683: _data[_minimum].in=false; deba@683: if ( _data[_minimum].degree > 0 ) { deba@683: int left=_data[_minimum].left_neighbor; deba@683: int child=_data[_minimum].child; deba@683: int last_child=_data[child].left_neighbor; deba@681: deba@681: makeroot(child); deba@681: deba@683: _data[left].right_neighbor=child; deba@683: _data[child].left_neighbor=left; deba@683: _data[right].left_neighbor=last_child; deba@683: _data[last_child].right_neighbor=right; deba@681: } deba@683: _minimum=right; deba@681: balance(); deba@681: } // the case where there are more roots deba@683: --_num; deba@681: } deba@681: deba@681: /// \brief Deletes \c item from the heap. deba@681: /// deba@681: /// This method deletes \c item from the heap, if \c item was already deba@681: /// stored in the heap. It is quite inefficient in Fibonacci heaps. deba@681: void erase (const Item& item) { deba@683: int i=_iim[item]; deba@681: deba@683: if ( i >= 0 && _data[i].in ) { deba@683: if ( _data[i].parent!=-1 ) { deba@683: int p=_data[i].parent; deba@681: cut(i,p); deba@681: cascade(p); deba@681: } deba@683: _minimum=i; //As if its prio would be -infinity deba@681: pop(); deba@681: } deba@681: } deba@681: deba@681: /// \brief Decreases the priority of \c item to \c value. deba@681: /// deba@681: /// This method decreases the priority of \c item to \c value. deba@681: /// \pre \c item must be stored in the heap with priority at least \c deba@681: /// value relative to \c Compare. deba@681: void decrease (Item item, const Prio& value) { deba@683: int i=_iim[item]; deba@683: _data[i].prio=value; deba@683: int p=_data[i].parent; deba@681: deba@683: if ( p!=-1 && _comp(value, _data[p].prio) ) { deba@681: cut(i,p); deba@681: cascade(p); deba@681: } deba@683: if ( _comp(value, _data[_minimum].prio) ) _minimum=i; deba@681: } deba@681: deba@681: /// \brief Increases the priority of \c item to \c value. deba@681: /// deba@681: /// This method sets the priority of \c item to \c value. Though deba@681: /// there is no precondition on the priority of \c item, this deba@681: /// method should be used only if it is indeed necessary to increase deba@681: /// (relative to \c Compare) the priority of \c item, because this deba@681: /// method is inefficient. deba@681: void increase (Item item, const Prio& value) { deba@681: erase(item); deba@681: push(item, value); deba@681: } deba@681: deba@681: deba@681: /// \brief Returns if \c item is in, has already been in, or has never deba@681: /// been in the heap. deba@681: /// deba@681: /// This method returns PRE_HEAP if \c item has never been in the deba@681: /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP deba@681: /// otherwise. In the latter case it is possible that \c item will deba@681: /// get back to the heap again. deba@681: State state(const Item &item) const { deba@683: int i=_iim[item]; deba@681: if( i>=0 ) { deba@683: if ( _data[i].in ) i=0; deba@681: else i=-2; deba@681: } deba@681: return State(i); deba@681: } deba@681: deba@681: /// \brief Sets the state of the \c item in the heap. deba@681: /// deba@681: /// Sets the state of the \c item in the heap. It can be used to deba@681: /// manually clear the heap when it is important to achive the deba@683: /// better time _complexity. deba@681: /// \param i The item. deba@681: /// \param st The state. It should not be \c IN_HEAP. deba@681: void state(const Item& i, State st) { deba@681: switch (st) { deba@681: case POST_HEAP: deba@681: case PRE_HEAP: deba@681: if (state(i) == IN_HEAP) { deba@681: erase(i); deba@681: } deba@683: _iim[i] = st; deba@681: break; deba@681: case IN_HEAP: deba@681: break; deba@681: } deba@681: } deba@681: deba@681: private: deba@681: deba@681: void balance() { deba@681: deba@683: int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; deba@681: deba@681: std::vector A(maxdeg,-1); deba@681: deba@681: /* deba@681: *Recall that now minimum does not point to the minimum prio element. deba@681: *We set minimum to this during balance(). deba@681: */ deba@683: int anchor=_data[_minimum].left_neighbor; deba@683: int next=_minimum; deba@681: bool end=false; deba@681: deba@681: do { deba@681: int active=next; deba@681: if ( anchor==active ) end=true; deba@683: int d=_data[active].degree; deba@683: next=_data[active].right_neighbor; deba@681: deba@681: while (A[d]!=-1) { deba@683: if( _comp(_data[active].prio, _data[A[d]].prio) ) { deba@681: fuse(active,A[d]); deba@681: } else { deba@681: fuse(A[d],active); deba@681: active=A[d]; deba@681: } deba@681: A[d]=-1; deba@681: ++d; deba@681: } deba@681: A[d]=active; deba@681: } while ( !end ); deba@681: deba@681: deba@683: while ( _data[_minimum].parent >=0 ) deba@683: _minimum=_data[_minimum].parent; deba@683: int s=_minimum; deba@683: int m=_minimum; deba@681: do { deba@683: if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; deba@683: s=_data[s].right_neighbor; deba@681: } while ( s != m ); deba@681: } deba@681: deba@681: void makeroot(int c) { deba@681: int s=c; deba@681: do { deba@683: _data[s].parent=-1; deba@683: s=_data[s].right_neighbor; deba@681: } while ( s != c ); deba@681: } deba@681: deba@681: void cut(int a, int b) { deba@681: /* deba@681: *Replacing a from the children of b. deba@681: */ deba@683: --_data[b].degree; deba@681: deba@683: if ( _data[b].degree !=0 ) { deba@683: int child=_data[b].child; deba@681: if ( child==a ) deba@683: _data[b].child=_data[child].right_neighbor; deba@681: unlace(a); deba@681: } deba@681: deba@681: deba@681: /*Lacing a to the roots.*/ deba@683: int right=_data[_minimum].right_neighbor; deba@683: _data[_minimum].right_neighbor=a; deba@683: _data[a].left_neighbor=_minimum; deba@683: _data[a].right_neighbor=right; deba@683: _data[right].left_neighbor=a; deba@681: deba@683: _data[a].parent=-1; deba@683: _data[a].marked=false; deba@681: } deba@681: deba@681: void cascade(int a) { deba@683: if ( _data[a].parent!=-1 ) { deba@683: int p=_data[a].parent; deba@681: deba@683: if ( _data[a].marked==false ) _data[a].marked=true; deba@681: else { deba@681: cut(a,p); deba@681: cascade(p); deba@681: } deba@681: } deba@681: } deba@681: deba@681: void fuse(int a, int b) { deba@681: unlace(b); deba@681: deba@681: /*Lacing b under a.*/ deba@683: _data[b].parent=a; deba@681: deba@683: if (_data[a].degree==0) { deba@683: _data[b].left_neighbor=b; deba@683: _data[b].right_neighbor=b; deba@683: _data[a].child=b; deba@681: } else { deba@683: int child=_data[a].child; deba@683: int last_child=_data[child].left_neighbor; deba@683: _data[child].left_neighbor=b; deba@683: _data[b].right_neighbor=child; deba@683: _data[last_child].right_neighbor=b; deba@683: _data[b].left_neighbor=last_child; deba@681: } deba@681: deba@683: ++_data[a].degree; deba@681: deba@683: _data[b].marked=false; deba@681: } deba@681: deba@681: /* deba@681: *It is invoked only if a has siblings. deba@681: */ deba@681: void unlace(int a) { deba@683: int leftn=_data[a].left_neighbor; deba@683: int rightn=_data[a].right_neighbor; deba@683: _data[leftn].right_neighbor=rightn; deba@683: _data[rightn].left_neighbor=leftn; deba@681: } deba@681: deba@681: deba@683: class Store { deba@681: friend class FibHeap; deba@681: deba@681: Item name; deba@681: int parent; deba@681: int left_neighbor; deba@681: int right_neighbor; deba@681: int child; deba@681: int degree; deba@681: bool marked; deba@681: bool in; deba@681: Prio prio; deba@681: deba@683: Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} deba@681: }; deba@681: }; deba@681: deba@681: } //namespace lemon deba@681: deba@681: #endif //LEMON_FIB_HEAP_H deba@681: