alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@128:  *
alpar@209:  * This file is a part of LEMON, a generic C++ optimization library.
alpar@128:  *
alpar@128:  * Copyright (C) 2003-2008
alpar@128:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@128:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@128:  *
alpar@128:  * Permission to use, modify and distribute this software is granted
alpar@128:  * provided that this copyright notice appears in all copies. For
alpar@128:  * precise terms see the accompanying LICENSE file.
alpar@128:  *
alpar@128:  * This software is provided "AS IS" with no warranty of any kind,
alpar@128:  * express or implied, and with no claim as to its suitability for any
alpar@128:  * purpose.
alpar@128:  *
alpar@128:  */
alpar@128: 
alpar@128: #ifndef LEMON_GRAPH_TO_EPS_H
alpar@128: #define LEMON_GRAPH_TO_EPS_H
alpar@128: 
alpar@128: #include<iostream>
alpar@128: #include<fstream>
alpar@128: #include<sstream>
alpar@128: #include<algorithm>
alpar@128: #include<vector>
alpar@128: 
deba@134: #ifndef WIN32
deba@134: #include<sys/time.h>
alpar@128: #include<ctime>
deba@134: #else
alpar@143: #define WIN32_LEAN_AND_MEAN
alpar@143: #define NOMINMAX
deba@134: #include<windows.h>
deba@134: #endif
alpar@128: 
alpar@128: #include<lemon/math.h>
deba@220: #include<lemon/core.h>
alpar@128: #include<lemon/dim2.h>
alpar@128: #include<lemon/maps.h>
alpar@128: #include<lemon/color.h>
alpar@128: #include<lemon/bits/bezier.h>
alpar@128: 
alpar@128: 
alpar@128: ///\ingroup eps_io
alpar@128: ///\file
alpar@133: ///\brief A well configurable tool for visualizing graphs
alpar@128: 
alpar@128: namespace lemon {
alpar@128: 
alpar@131:   namespace _graph_to_eps_bits {
alpar@131:     template<class MT>
alpar@131:     class _NegY {
alpar@131:     public:
alpar@131:       typedef typename MT::Key Key;
alpar@131:       typedef typename MT::Value Value;
alpar@131:       const MT &map;
alpar@131:       int yscale;
alpar@131:       _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
alpar@131:       Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
alpar@131:     };
alpar@131:   }
alpar@209: 
alpar@128: ///Default traits class of \ref GraphToEps
alpar@128: 
kpeter@206: ///Default traits class of \ref GraphToEps.
alpar@128: ///
alpar@128: ///\c G is the type of the underlying graph.
alpar@128: template<class G>
alpar@128: struct DefaultGraphToEpsTraits
alpar@128: {
alpar@128:   typedef G Graph;
alpar@128:   typedef typename Graph::Node Node;
alpar@128:   typedef typename Graph::NodeIt NodeIt;
alpar@128:   typedef typename Graph::Arc Arc;
alpar@128:   typedef typename Graph::ArcIt ArcIt;
alpar@128:   typedef typename Graph::InArcIt InArcIt;
alpar@128:   typedef typename Graph::OutArcIt OutArcIt;
alpar@209: 
alpar@128: 
alpar@128:   const Graph &g;
alpar@128: 
alpar@128:   std::ostream& os;
alpar@209: 
alpar@128:   typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
alpar@128:   CoordsMapType _coords;
alpar@128:   ConstMap<typename Graph::Node,double > _nodeSizes;
alpar@128:   ConstMap<typename Graph::Node,int > _nodeShapes;
alpar@128: 
alpar@128:   ConstMap<typename Graph::Node,Color > _nodeColors;
alpar@128:   ConstMap<typename Graph::Arc,Color > _arcColors;
alpar@128: 
alpar@128:   ConstMap<typename Graph::Arc,double > _arcWidths;
alpar@128: 
alpar@128:   double _arcWidthScale;
alpar@209: 
alpar@128:   double _nodeScale;
alpar@128:   double _xBorder, _yBorder;
alpar@128:   double _scale;
alpar@128:   double _nodeBorderQuotient;
alpar@209: 
alpar@128:   bool _drawArrows;
alpar@128:   double _arrowLength, _arrowWidth;
alpar@209: 
alpar@128:   bool _showNodes, _showArcs;
alpar@128: 
alpar@128:   bool _enableParallel;
alpar@128:   double _parArcDist;
alpar@128: 
alpar@128:   bool _showNodeText;
alpar@209:   ConstMap<typename Graph::Node,bool > _nodeTexts;
alpar@128:   double _nodeTextSize;
alpar@128: 
alpar@128:   bool _showNodePsText;
alpar@209:   ConstMap<typename Graph::Node,bool > _nodePsTexts;
alpar@128:   char *_nodePsTextsPreamble;
alpar@209: 
alpar@128:   bool _undirected;
alpar@128: 
alpar@128:   bool _pleaseRemoveOsStream;
alpar@128: 
alpar@128:   bool _scaleToA4;
alpar@128: 
alpar@128:   std::string _title;
alpar@128:   std::string _copyright;
alpar@128: 
alpar@209:   enum NodeTextColorType
alpar@128:     { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
alpar@128:   ConstMap<typename Graph::Node,Color > _nodeTextColors;
alpar@128: 
alpar@128:   bool _autoNodeScale;
alpar@128:   bool _autoArcWidthScale;
alpar@128: 
alpar@128:   bool _absoluteNodeSizes;
alpar@128:   bool _absoluteArcWidths;
alpar@128: 
alpar@128:   bool _negY;
alpar@128: 
alpar@128:   bool _preScale;
alpar@128:   ///Constructor
alpar@128: 
alpar@128:   ///Constructor
kpeter@206:   ///\param _g  Reference to the graph to be printed.
kpeter@206:   ///\param _os Reference to the output stream.
alpar@210:   ///\param _os Reference to the output stream.
alpar@210:   ///By default it is <tt>std::cout</tt>.
alpar@128:   ///\param _pros If it is \c true, then the \c ostream referenced by \c _os
alpar@128:   ///will be explicitly deallocated by the destructor.
alpar@128:   DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout,
alpar@209:                           bool _pros=false) :
alpar@128:     g(_g), os(_os),
alpar@132:     _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
alpar@128:     _nodeColors(WHITE), _arcColors(BLACK),
alpar@128:     _arcWidths(1.0), _arcWidthScale(0.003),
alpar@132:     _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
alpar@128:     _nodeBorderQuotient(.1),
alpar@128:     _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
alpar@128:     _showNodes(true), _showArcs(true),
alpar@128:     _enableParallel(false), _parArcDist(1),
alpar@128:     _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
alpar@128:     _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
alpar@131:     _undirected(lemon::UndirectedTagIndicator<G>::value),
alpar@128:     _pleaseRemoveOsStream(_pros), _scaleToA4(false),
alpar@128:     _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
alpar@128:     _autoNodeScale(false),
alpar@128:     _autoArcWidthScale(false),
alpar@128:     _absoluteNodeSizes(false),
alpar@128:     _absoluteArcWidths(false),
alpar@128:     _negY(false),
alpar@128:     _preScale(true)
alpar@128:   {}
alpar@128: };
alpar@128: 
alpar@133: ///Auxiliary class to implement the named parameters of \ref graphToEps()
alpar@128: 
kpeter@206: ///Auxiliary class to implement the named parameters of \ref graphToEps().
kpeter@206: ///
kpeter@206: ///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
alpar@209: template<class T> class GraphToEps : public T
alpar@128: {
alpar@128:   // Can't believe it is required by the C++ standard
alpar@128:   using T::g;
alpar@128:   using T::os;
alpar@128: 
alpar@128:   using T::_coords;
alpar@128:   using T::_nodeSizes;
alpar@128:   using T::_nodeShapes;
alpar@128:   using T::_nodeColors;
alpar@128:   using T::_arcColors;
alpar@128:   using T::_arcWidths;
alpar@128: 
alpar@128:   using T::_arcWidthScale;
alpar@128:   using T::_nodeScale;
alpar@128:   using T::_xBorder;
alpar@128:   using T::_yBorder;
alpar@128:   using T::_scale;
alpar@128:   using T::_nodeBorderQuotient;
alpar@209: 
alpar@128:   using T::_drawArrows;
alpar@128:   using T::_arrowLength;
alpar@128:   using T::_arrowWidth;
alpar@209: 
alpar@128:   using T::_showNodes;
alpar@128:   using T::_showArcs;
alpar@128: 
alpar@128:   using T::_enableParallel;
alpar@128:   using T::_parArcDist;
alpar@128: 
alpar@128:   using T::_showNodeText;
alpar@209:   using T::_nodeTexts;
alpar@128:   using T::_nodeTextSize;
alpar@128: 
alpar@128:   using T::_showNodePsText;
alpar@209:   using T::_nodePsTexts;
alpar@128:   using T::_nodePsTextsPreamble;
alpar@209: 
alpar@128:   using T::_undirected;
alpar@128: 
alpar@128:   using T::_pleaseRemoveOsStream;
alpar@128: 
alpar@128:   using T::_scaleToA4;
alpar@128: 
alpar@128:   using T::_title;
alpar@128:   using T::_copyright;
alpar@128: 
alpar@128:   using T::NodeTextColorType;
alpar@128:   using T::CUST_COL;
alpar@128:   using T::DIST_COL;
alpar@128:   using T::DIST_BW;
alpar@128:   using T::_nodeTextColorType;
alpar@128:   using T::_nodeTextColors;
alpar@128: 
alpar@128:   using T::_autoNodeScale;
alpar@128:   using T::_autoArcWidthScale;
alpar@128: 
alpar@128:   using T::_absoluteNodeSizes;
alpar@128:   using T::_absoluteArcWidths;
alpar@128: 
alpar@128: 
alpar@128:   using T::_negY;
alpar@128:   using T::_preScale;
alpar@128: 
alpar@128:   // dradnats ++C eht yb deriuqer si ti eveileb t'naC
alpar@128: 
alpar@128:   typedef typename T::Graph Graph;
alpar@128:   typedef typename Graph::Node Node;
alpar@128:   typedef typename Graph::NodeIt NodeIt;
alpar@128:   typedef typename Graph::Arc Arc;
alpar@128:   typedef typename Graph::ArcIt ArcIt;
alpar@128:   typedef typename Graph::InArcIt InArcIt;
alpar@128:   typedef typename Graph::OutArcIt OutArcIt;
alpar@128: 
alpar@128:   static const int INTERPOL_PREC;
alpar@128:   static const double A4HEIGHT;
alpar@128:   static const double A4WIDTH;
alpar@128:   static const double A4BORDER;
alpar@128: 
alpar@128:   bool dontPrint;
alpar@128: 
alpar@128: public:
alpar@128:   ///Node shapes
alpar@128: 
kpeter@206:   ///Node shapes.
alpar@128:   ///
alpar@209:   enum NodeShapes {
alpar@128:     /// = 0
alpar@128:     ///\image html nodeshape_0.png
alpar@128:     ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
alpar@209:     CIRCLE=0,
alpar@128:     /// = 1
alpar@128:     ///\image html nodeshape_1.png
alpar@128:     ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
alpar@128:     ///
alpar@209:     SQUARE=1,
alpar@128:     /// = 2
alpar@128:     ///\image html nodeshape_2.png
alpar@128:     ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
alpar@128:     ///
alpar@128:     DIAMOND=2,
alpar@128:     /// = 3
alpar@128:     ///\image html nodeshape_3.png
alpar@128:     ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm
alpar@128:     ///
alpar@128:     MALE=3,
alpar@128:     /// = 4
alpar@128:     ///\image html nodeshape_4.png
alpar@128:     ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm
alpar@128:     ///
alpar@128:     FEMALE=4
alpar@128:   };
alpar@128: 
alpar@128: private:
alpar@128:   class arcLess {
alpar@128:     const Graph &g;
alpar@128:   public:
alpar@128:     arcLess(const Graph &_g) : g(_g) {}
alpar@209:     bool operator()(Arc a,Arc b) const
alpar@128:     {
alpar@128:       Node ai=std::min(g.source(a),g.target(a));
alpar@128:       Node aa=std::max(g.source(a),g.target(a));
alpar@128:       Node bi=std::min(g.source(b),g.target(b));
alpar@128:       Node ba=std::max(g.source(b),g.target(b));
alpar@128:       return ai<bi ||
alpar@209:         (ai==bi && (aa < ba ||
alpar@209:                     (aa==ba && ai==g.source(a) && bi==g.target(b))));
alpar@128:     }
alpar@128:   };
alpar@128:   bool isParallel(Arc e,Arc f) const
alpar@128:   {
alpar@128:     return (g.source(e)==g.source(f)&&
alpar@209:             g.target(e)==g.target(f)) ||
alpar@128:       (g.source(e)==g.target(f)&&
alpar@128:        g.target(e)==g.source(f));
alpar@128:   }
alpar@128:   template<class TT>
alpar@209:   static std::string psOut(const dim2::Point<TT> &p)
alpar@128:     {
alpar@209:       std::ostringstream os;
alpar@128:       os << p.x << ' ' << p.y;
alpar@128:       return os.str();
alpar@128:     }
alpar@209:   static std::string psOut(const Color &c)
alpar@128:     {
alpar@209:       std::ostringstream os;
alpar@128:       os << c.red() << ' ' << c.green() << ' ' << c.blue();
alpar@128:       return os.str();
alpar@128:     }
alpar@209: 
alpar@128: public:
alpar@128:   GraphToEps(const T &t) : T(t), dontPrint(false) {};
alpar@209: 
alpar@128:   template<class X> struct CoordsTraits : public T {
alpar@128:   typedef X CoordsMapType;
alpar@128:     const X &_coords;
alpar@128:     CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the node coordinates
alpar@128: 
alpar@128:   ///Sets the map of the node coordinates.
kpeter@206:   ///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
alpar@209:   ///\ref dim2::Point "dim2::Point<int>" values.
alpar@128:   template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
alpar@128:     dontPrint=true;
alpar@128:     return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct NodeSizesTraits : public T {
alpar@128:     const X &_nodeSizes;
alpar@128:     NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the node sizes
alpar@128: 
kpeter@206:   ///Sets the map of the node sizes.
alpar@209:   ///\param x must be a node map with \c double (or convertible) values.
alpar@128:   template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct NodeShapesTraits : public T {
alpar@128:     const X &_nodeShapes;
alpar@128:     NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the node shapes
alpar@128: 
alpar@128:   ///Sets the map of the node shapes.
alpar@133:   ///The available shape values
alpar@128:   ///can be found in \ref NodeShapes "enum NodeShapes".
alpar@209:   ///\param x must be a node map with \c int (or convertible) values.
alpar@128:   ///\sa NodeShapes
alpar@128:   template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct NodeTextsTraits : public T {
alpar@128:     const X &_nodeTexts;
alpar@128:     NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
alpar@128:   };
alpar@128:   ///Sets the text printed on the nodes
alpar@128: 
kpeter@206:   ///Sets the text printed on the nodes.
alpar@128:   ///\param x must be a node map with type that can be pushed to a standard
alpar@209:   ///\c ostream.
alpar@128:   template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     _showNodeText=true;
alpar@128:     return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct NodePsTextsTraits : public T {
alpar@128:     const X &_nodePsTexts;
alpar@128:     NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
alpar@128:   };
alpar@128:   ///Inserts a PostScript block to the nodes
alpar@128: 
alpar@128:   ///With this command it is possible to insert a verbatim PostScript
alpar@128:   ///block to the nodes.
kpeter@206:   ///The PS current point will be moved to the center of the node before
alpar@128:   ///the PostScript block inserted.
alpar@128:   ///
alpar@128:   ///Before and after the block a newline character is inserted so you
alpar@128:   ///don't have to bother with the separators.
alpar@128:   ///
alpar@128:   ///\param x must be a node map with type that can be pushed to a standard
kpeter@206:   ///\c ostream.
alpar@128:   ///
alpar@128:   ///\sa nodePsTextsPreamble()
alpar@128:   template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     _showNodePsText=true;
alpar@128:     return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct ArcWidthsTraits : public T {
alpar@128:     const X &_arcWidths;
alpar@128:     ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the arc widths
alpar@128: 
kpeter@206:   ///Sets the map of the arc widths.
alpar@209:   ///\param x must be an arc map with \c double (or convertible) values.
alpar@128:   template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
alpar@128:   }
alpar@128: 
alpar@128:   template<class X> struct NodeColorsTraits : public T {
alpar@128:     const X &_nodeColors;
alpar@128:     NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the node colors
alpar@128: 
kpeter@206:   ///Sets the map of the node colors.
alpar@128:   ///\param x must be a node map with \ref Color values.
alpar@128:   ///
alpar@128:   ///\sa Palette
alpar@128:   template<class X> GraphToEps<NodeColorsTraits<X> >
alpar@128:   nodeColors(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct NodeTextColorsTraits : public T {
alpar@128:     const X &_nodeTextColors;
alpar@128:     NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the node text colors
alpar@128: 
kpeter@206:   ///Sets the map of the node text colors.
alpar@209:   ///\param x must be a node map with \ref Color values.
alpar@128:   ///
alpar@128:   ///\sa Palette
alpar@128:   template<class X> GraphToEps<NodeTextColorsTraits<X> >
alpar@128:   nodeTextColors(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     _nodeTextColorType=CUST_COL;
alpar@128:     return GraphToEps<NodeTextColorsTraits<X> >
alpar@128:       (NodeTextColorsTraits<X>(*this,x));
alpar@128:   }
alpar@128:   template<class X> struct ArcColorsTraits : public T {
alpar@128:     const X &_arcColors;
alpar@128:     ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
alpar@128:   };
alpar@128:   ///Sets the map of the arc colors
alpar@128: 
kpeter@206:   ///Sets the map of the arc colors.
alpar@209:   ///\param x must be an arc map with \ref Color values.
alpar@128:   ///
alpar@128:   ///\sa Palette
alpar@128:   template<class X> GraphToEps<ArcColorsTraits<X> >
alpar@128:   arcColors(const X &x)
alpar@128:   {
alpar@128:     dontPrint=true;
alpar@128:     return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
alpar@128:   }
alpar@128:   ///Sets a global scale factor for node sizes
alpar@128: 
alpar@128:   ///Sets a global scale factor for node sizes.
alpar@209:   ///
alpar@128:   /// If nodeSizes() is not given, this function simply sets the node
alpar@128:   /// sizes to \c d.  If nodeSizes() is given, but
alpar@128:   /// autoNodeScale() is not, then the node size given by
alpar@128:   /// nodeSizes() will be multiplied by the value \c d.
alpar@128:   /// If both nodeSizes() and autoNodeScale() are used, then the
alpar@128:   /// node sizes will be scaled in such a way that the greatest size will be
alpar@128:   /// equal to \c d.
alpar@128:   /// \sa nodeSizes()
alpar@128:   /// \sa autoNodeScale()
alpar@132:   GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
kpeter@206:   ///Turns on/off the automatic node size scaling.
alpar@128: 
kpeter@206:   ///Turns on/off the automatic node size scaling.
alpar@128:   ///
alpar@128:   ///\sa nodeScale()
alpar@128:   ///
alpar@128:   GraphToEps<T> &autoNodeScale(bool b=true) {
alpar@128:     _autoNodeScale=b;return *this;
alpar@128:   }
alpar@128: 
kpeter@206:   ///Turns on/off the absolutematic node size scaling.
alpar@128: 
kpeter@206:   ///Turns on/off the absolutematic node size scaling.
alpar@128:   ///
alpar@128:   ///\sa nodeScale()
alpar@128:   ///
alpar@128:   GraphToEps<T> &absoluteNodeSizes(bool b=true) {
alpar@128:     _absoluteNodeSizes=b;return *this;
alpar@128:   }
alpar@128: 
alpar@128:   ///Negates the Y coordinates.
alpar@128:   GraphToEps<T> &negateY(bool b=true) {
alpar@128:     _negY=b;return *this;
alpar@128:   }
alpar@128: 
alpar@133:   ///Turn on/off pre-scaling
alpar@128: 
alpar@128:   ///By default graphToEps() rescales the whole image in order to avoid
alpar@128:   ///very big or very small bounding boxes.
alpar@128:   ///
alpar@128:   ///This (p)rescaling can be turned off with this function.
alpar@128:   ///
alpar@128:   GraphToEps<T> &preScale(bool b=true) {
alpar@128:     _preScale=b;return *this;
alpar@128:   }
alpar@128: 
alpar@128:   ///Sets a global scale factor for arc widths
alpar@128: 
alpar@128:   /// Sets a global scale factor for arc widths.
alpar@128:   ///
alpar@128:   /// If arcWidths() is not given, this function simply sets the arc
alpar@128:   /// widths to \c d.  If arcWidths() is given, but
alpar@128:   /// autoArcWidthScale() is not, then the arc withs given by
alpar@128:   /// arcWidths() will be multiplied by the value \c d.
alpar@128:   /// If both arcWidths() and autoArcWidthScale() are used, then the
alpar@128:   /// arc withs will be scaled in such a way that the greatest width will be
alpar@128:   /// equal to \c d.
alpar@132:   GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
alpar@128:   ///Turns on/off the automatic arc width scaling.
alpar@128: 
alpar@128:   ///Turns on/off the automatic arc width scaling.
alpar@128:   ///
alpar@128:   ///\sa arcWidthScale()
alpar@128:   ///
alpar@128:   GraphToEps<T> &autoArcWidthScale(bool b=true) {
alpar@128:     _autoArcWidthScale=b;return *this;
alpar@128:   }
alpar@128:   ///Turns on/off the absolutematic arc width scaling.
alpar@128: 
alpar@128:   ///Turns on/off the absolutematic arc width scaling.
alpar@128:   ///
alpar@128:   ///\sa arcWidthScale()
alpar@128:   ///
alpar@128:   GraphToEps<T> &absoluteArcWidths(bool b=true) {
alpar@128:     _absoluteArcWidths=b;return *this;
alpar@128:   }
alpar@128:   ///Sets a global scale factor for the whole picture
alpar@128:   GraphToEps<T> &scale(double d) {_scale=d;return *this;}
alpar@128:   ///Sets the width of the border around the picture
alpar@133:   GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
alpar@128:   ///Sets the width of the border around the picture
alpar@128:   GraphToEps<T> &border(double x, double y) {
alpar@128:     _xBorder=x;_yBorder=y;return *this;
alpar@128:   }
alpar@128:   ///Sets whether to draw arrows
alpar@128:   GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
alpar@128:   ///Sets the length of the arrowheads
alpar@133:   GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
alpar@128:   ///Sets the width of the arrowheads
alpar@133:   GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
alpar@209: 
alpar@128:   ///Scales the drawing to fit to A4 page
alpar@128:   GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
alpar@209: 
alpar@128:   ///Enables parallel arcs
alpar@128:   GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
alpar@209: 
kpeter@206:   ///Sets the distance between parallel arcs
alpar@128:   GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
alpar@209: 
alpar@128:   ///Hides the arcs
alpar@128:   GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
alpar@128:   ///Hides the nodes
alpar@128:   GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
alpar@209: 
alpar@128:   ///Sets the size of the node texts
alpar@128:   GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
alpar@128: 
alpar@128:   ///Sets the color of the node texts to be different from the node color
alpar@128: 
alpar@128:   ///Sets the color of the node texts to be as different from the node color
kpeter@206:   ///as it is possible.
alpar@128:   GraphToEps<T> &distantColorNodeTexts()
alpar@128:   {_nodeTextColorType=DIST_COL;return *this;}
alpar@128:   ///Sets the color of the node texts to be black or white and always visible.
alpar@128: 
alpar@128:   ///Sets the color of the node texts to be black or white according to
kpeter@206:   ///which is more different from the node color.
alpar@128:   GraphToEps<T> &distantBWNodeTexts()
alpar@128:   {_nodeTextColorType=DIST_BW;return *this;}
alpar@128: 
alpar@128:   ///Gives a preamble block for node Postscript block.
alpar@209: 
alpar@128:   ///Gives a preamble block for node Postscript block.
alpar@128:   ///
alpar@128:   ///\sa nodePsTexts()
alpar@128:   GraphToEps<T> & nodePsTextsPreamble(const char *str) {
alpar@128:     _nodePsTextsPreamble=str ;return *this;
alpar@128:   }
kpeter@206:   ///Sets whether the graph is undirected
alpar@128: 
kpeter@206:   ///Sets whether the graph is undirected.
alpar@128:   ///
alpar@133:   ///This setting is the default for undirected graphs.
alpar@133:   ///
alpar@133:   ///\sa directed()
alpar@133:    GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
alpar@128: 
kpeter@206:   ///Sets whether the graph is directed
alpar@128: 
kpeter@206:   ///Sets whether the graph is directed.
alpar@128:   ///Use it to show the edges as a pair of directed ones.
alpar@133:   ///
alpar@133:   ///This setting is the default for digraphs.
alpar@133:   ///
alpar@133:   ///\sa undirected()
alpar@131:   GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
alpar@209: 
alpar@128:   ///Sets the title.
alpar@128: 
alpar@128:   ///Sets the title of the generated image,
alpar@128:   ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
alpar@128:   ///the EPS file.
alpar@128:   GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
alpar@128:   ///Sets the copyright statement.
alpar@128: 
alpar@128:   ///Sets the copyright statement of the generated image,
alpar@128:   ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
alpar@128:   ///the EPS file.
alpar@128:   GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
alpar@128: 
alpar@128: protected:
alpar@209:   bool isInsideNode(dim2::Point<double> p, double r,int t)
alpar@128:   {
alpar@128:     switch(t) {
alpar@128:     case CIRCLE:
alpar@128:     case MALE:
alpar@128:     case FEMALE:
alpar@128:       return p.normSquare()<=r*r;
alpar@128:     case SQUARE:
alpar@128:       return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
alpar@128:     case DIAMOND:
alpar@128:       return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
alpar@128:     }
alpar@128:     return false;
alpar@128:   }
alpar@128: 
alpar@128: public:
alpar@128:   ~GraphToEps() { }
alpar@209: 
alpar@128:   ///Draws the graph.
alpar@128: 
alpar@128:   ///Like other functions using
alpar@128:   ///\ref named-templ-func-param "named template parameters",
alpar@133:   ///this function calls the algorithm itself, i.e. in this case
alpar@128:   ///it draws the graph.
alpar@128:   void run() {
alpar@133:     //\todo better 'epsilon' would be nice here.
alpar@128:     const double EPSILON=1e-9;
alpar@128:     if(dontPrint) return;
alpar@209: 
alpar@131:     _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
alpar@131:       mycoords(_coords,_negY);
alpar@128: 
alpar@128:     os << "%!PS-Adobe-2.0 EPSF-2.0\n";
alpar@128:     if(_title.size()>0) os << "%%Title: " << _title << '\n';
alpar@128:      if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
alpar@128:     os << "%%Creator: LEMON, graphToEps()\n";
deba@134: 
alpar@209:     {
alpar@209: #ifndef WIN32
alpar@128:       timeval tv;
alpar@128:       gettimeofday(&tv, 0);
deba@134: 
deba@134:       char cbuf[26];
alpar@128:       ctime_r(&tv.tv_sec,cbuf);
alpar@128:       os << "%%CreationDate: " << cbuf;
deba@134: #else
deba@134:       SYSTEMTIME time;
deba@134:       char buf1[11], buf2[9], buf3[5];
alpar@209: 
deba@134:       GetSystemTime(&time);
alpar@209:       if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time,
alpar@209:                         "ddd MMM dd", buf1, 11) &&
alpar@209:           GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time,
alpar@209:                         "HH':'mm':'ss", buf2, 9) &&
alpar@209:           GetDateFormat(LOCALE_USER_DEFAULT, 0, &time,
alpar@209:                                 "yyyy", buf3, 5)) {
alpar@209:         os << "%%CreationDate: " << buf1 << ' '
alpar@209:            << buf2 << ' ' << buf3 << std::endl;
alpar@209:       }
deba@134: #endif
alpar@128:     }
alpar@128: 
alpar@128:     if (_autoArcWidthScale) {
alpar@128:       double max_w=0;
alpar@128:       for(ArcIt e(g);e!=INVALID;++e)
alpar@209:         max_w=std::max(double(_arcWidths[e]),max_w);
kpeter@206:       //\todo better 'epsilon' would be nice here.
alpar@128:       if(max_w>EPSILON) {
alpar@209:         _arcWidthScale/=max_w;
alpar@128:       }
alpar@128:     }
alpar@128: 
alpar@128:     if (_autoNodeScale) {
alpar@128:       double max_s=0;
alpar@128:       for(NodeIt n(g);n!=INVALID;++n)
alpar@209:         max_s=std::max(double(_nodeSizes[n]),max_s);
kpeter@206:       //\todo better 'epsilon' would be nice here.
alpar@128:       if(max_s>EPSILON) {
alpar@209:         _nodeScale/=max_s;
alpar@128:       }
alpar@128:     }
alpar@128: 
alpar@128:     double diag_len = 1;
alpar@128:     if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
alpar@128:       dim2::BoundingBox<double> bb;
alpar@128:       for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]);
alpar@128:       if (bb.empty()) {
alpar@209:         bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0));
alpar@128:       }
alpar@128:       diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare());
alpar@128:       if(diag_len<EPSILON) diag_len = 1;
alpar@128:       if(!_absoluteNodeSizes) _nodeScale*=diag_len;
alpar@128:       if(!_absoluteArcWidths) _arcWidthScale*=diag_len;
alpar@128:     }
alpar@209: 
alpar@128:     dim2::BoundingBox<double> bb;
alpar@128:     for(NodeIt n(g);n!=INVALID;++n) {
alpar@128:       double ns=_nodeSizes[n]*_nodeScale;
alpar@128:       dim2::Point<double> p(ns,ns);
alpar@128:       switch(_nodeShapes[n]) {
alpar@128:       case CIRCLE:
alpar@128:       case SQUARE:
alpar@128:       case DIAMOND:
alpar@209:         bb.add(p+mycoords[n]);
alpar@209:         bb.add(-p+mycoords[n]);
alpar@209:         break;
alpar@128:       case MALE:
alpar@209:         bb.add(-p+mycoords[n]);
alpar@209:         bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]);
alpar@209:         break;
alpar@128:       case FEMALE:
alpar@209:         bb.add(p+mycoords[n]);
alpar@209:         bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]);
alpar@209:         break;
alpar@128:       }
alpar@128:     }
alpar@128:     if (bb.empty()) {
alpar@128:       bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0));
alpar@128:     }
alpar@209: 
alpar@128:     if(_scaleToA4)
alpar@128:       os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n";
alpar@128:     else {
alpar@128:       if(_preScale) {
alpar@209:         //Rescale so that BoundingBox won't be neither to big nor too small.
alpar@209:         while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10;
alpar@209:         while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10;
alpar@128:       }
alpar@209: 
alpar@128:       os << "%%BoundingBox: "
alpar@209:          << int(floor(bb.left()   * _scale - _xBorder)) << ' '
alpar@209:          << int(floor(bb.bottom() * _scale - _yBorder)) << ' '
alpar@209:          << int(ceil(bb.right()  * _scale + _xBorder)) << ' '
alpar@209:          << int(ceil(bb.top()    * _scale + _yBorder)) << '\n';
alpar@128:     }
alpar@209: 
alpar@128:     os << "%%EndComments\n";
alpar@209: 
alpar@128:     //x1 y1 x2 y2 x3 y3 cr cg cb w
alpar@128:     os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
alpar@128:        << "      4 2 roll 1 index 1 index curveto stroke } bind def\n";
alpar@210:     os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
alpar@210:        << " bind def\n";
alpar@128:     //x y r
alpar@210:     os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
alpar@210:        << " bind def\n";
alpar@128:     //x y r
alpar@128:     os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
alpar@128:        << "      2 index 1 index sub 2 index 2 index add lineto\n"
alpar@128:        << "      2 index 1 index sub 2 index 2 index sub lineto\n"
alpar@128:        << "      2 index 1 index add 2 index 2 index sub lineto\n"
alpar@128:        << "      closepath pop pop pop} bind def\n";
alpar@128:     //x y r
alpar@128:     os << "/di { newpath 2 index 1 index add 2 index moveto\n"
alpar@128:        << "      2 index             2 index 2 index add lineto\n"
alpar@128:        << "      2 index 1 index sub 2 index             lineto\n"
alpar@128:        << "      2 index             2 index 2 index sub lineto\n"
alpar@128:        << "      closepath pop pop pop} bind def\n";
alpar@128:     // x y r cr cg cb
alpar@128:     os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
alpar@128:        << "     setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
alpar@128:        << "   } bind def\n";
alpar@128:     os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
alpar@128:        << "     setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n"
alpar@128:        << "   } bind def\n";
alpar@128:     os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
alpar@128:        << "     setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n"
alpar@128:        << "   } bind def\n";
alpar@128:     os << "/nfemale { 0 0 0 setrgbcolor 3 index "
alpar@128:        << _nodeBorderQuotient/(1+_nodeBorderQuotient)
alpar@128:        << " 1.5 mul mul setlinewidth\n"
alpar@128:        << "  newpath 5 index 5 index moveto "
alpar@128:        << "5 index 5 index 5 index 3.01 mul sub\n"
alpar@210:        << "  lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub"
alpar@210:        << " moveto\n"
alpar@210:        << "  5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto "
alpar@210:        << "stroke\n"
alpar@128:        << "  5 index 5 index 5 index c fill\n"
alpar@128:        << "  setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
alpar@128:        << "  } bind def\n";
alpar@128:     os << "/nmale {\n"
alpar@128:        << "  0 0 0 setrgbcolor 3 index "
alpar@128:        << _nodeBorderQuotient/(1+_nodeBorderQuotient)
alpar@128:        <<" 1.5 mul mul setlinewidth\n"
alpar@128:        << "  newpath 5 index 5 index moveto\n"
alpar@128:        << "  5 index 4 index 1 mul 1.5 mul add\n"
alpar@128:        << "  5 index 5 index 3 sqrt 1.5 mul mul add\n"
alpar@128:        << "  1 index 1 index lineto\n"
alpar@128:        << "  1 index 1 index 7 index sub moveto\n"
alpar@128:        << "  1 index 1 index lineto\n"
alpar@210:        << "  exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub"
alpar@210:        << " lineto\n"
alpar@128:        << "  stroke\n"
alpar@128:        << "  5 index 5 index 5 index c fill\n"
alpar@128:        << "  setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n"
alpar@128:        << "  } bind def\n";
alpar@209: 
alpar@128: 
alpar@128:     os << "/arrl " << _arrowLength << " def\n";
alpar@128:     os << "/arrw " << _arrowWidth << " def\n";
alpar@128:     // l dx_norm dy_norm
alpar@128:     os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
alpar@128:     //len w dx_norm dy_norm x1 y1 cr cg cb
alpar@210:     os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
alpar@210:        << "exch def\n"
alpar@128:        << "       /w exch def /len exch def\n"
alpar@210:       //<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke"
alpar@128:        << "       newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n"
alpar@128:        << "       len w sub arrl sub dx dy lrl\n"
alpar@128:        << "       arrw dy dx neg lrl\n"
alpar@128:        << "       dx arrl w add mul dy w 2 div arrw add mul sub\n"
alpar@128:        << "       dy arrl w add mul dx w 2 div arrw add mul add rlineto\n"
alpar@128:        << "       dx arrl w add mul neg dy w 2 div arrw add mul sub\n"
alpar@128:        << "       dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n"
alpar@128:        << "       arrw dy dx neg lrl\n"
alpar@128:        << "       len w sub arrl sub neg dx dy lrl\n"
alpar@128:        << "       closepath fill } bind def\n";
alpar@128:     os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
alpar@128:        << "         neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n";
alpar@128: 
alpar@128:     os << "\ngsave\n";
alpar@128:     if(_scaleToA4)
alpar@128:       if(bb.height()>bb.width()) {
alpar@209:         double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(),
alpar@209:                   (A4WIDTH-2*A4BORDER)/bb.width());
alpar@209:         os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' '
alpar@209:            << ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER
alpar@209:            << " translate\n"
alpar@209:            << sc << " dup scale\n"
alpar@209:            << -bb.left() << ' ' << -bb.bottom() << " translate\n";
alpar@128:       }
alpar@128:       else {
alpar@209:         //\todo Verify centering
alpar@209:         double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(),
alpar@209:                   (A4WIDTH-2*A4BORDER)/bb.height());
alpar@209:         os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' '
alpar@209:            << ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER
alpar@209:            << " translate\n"
alpar@209:            << sc << " dup scale\n90 rotate\n"
alpar@209:            << -bb.left() << ' ' << -bb.top() << " translate\n";
alpar@209:         }
alpar@128:     else if(_scale!=1.0) os << _scale << " dup scale\n";
alpar@209: 
alpar@128:     if(_showArcs) {
alpar@209:       os << "%Arcs:\ngsave\n";
alpar@128:       if(_enableParallel) {
alpar@209:         std::vector<Arc> el;
alpar@209:         for(ArcIt e(g);e!=INVALID;++e)
alpar@209:           if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
alpar@209:              &&g.source(e)!=g.target(e))
alpar@209:             el.push_back(e);
alpar@209:         std::sort(el.begin(),el.end(),arcLess(g));
alpar@128: 
alpar@209:         typename std::vector<Arc>::iterator j;
alpar@209:         for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
alpar@209:           for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ;
alpar@128: 
alpar@209:           double sw=0;
alpar@209:           for(typename std::vector<Arc>::iterator e=i;e!=j;++e)
alpar@209:             sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist;
alpar@209:           sw-=_parArcDist;
alpar@209:           sw/=-2.0;
alpar@209:           dim2::Point<double>
alpar@209:             dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]);
alpar@209:           double l=std::sqrt(dvec.normSquare());
alpar@209:           //\todo better 'epsilon' would be nice here.
alpar@209:           dim2::Point<double> d(dvec/std::max(l,EPSILON));
kpeter@212:           dim2::Point<double> m;
alpar@210: //           m=dim2::Point<double>(mycoords[g.target(*i)]+
alpar@210: //                                 mycoords[g.source(*i)])/2.0;
alpar@128: 
alpar@209: //            m=dim2::Point<double>(mycoords[g.source(*i)])+
alpar@209: //             dvec*(double(_nodeSizes[g.source(*i)])/
alpar@209: //                (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)]));
alpar@128: 
kpeter@212:           m=dim2::Point<double>(mycoords[g.source(*i)])+
alpar@209:             d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0;
alpar@209: 
alpar@209:           for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
alpar@209:             sw+=_arcWidths[*e]*_arcWidthScale/2.0;
alpar@209:             dim2::Point<double> mm=m+rot90(d)*sw/.75;
alpar@209:             if(_drawArrows) {
alpar@209:               int node_shape;
alpar@209:               dim2::Point<double> s=mycoords[g.source(*e)];
alpar@209:               dim2::Point<double> t=mycoords[g.target(*e)];
alpar@209:               double rn=_nodeSizes[g.target(*e)]*_nodeScale;
alpar@209:               node_shape=_nodeShapes[g.target(*e)];
alpar@209:               dim2::Bezier3 bez(s,mm,mm,t);
alpar@209:               double t1=0,t2=1;
alpar@209:               for(int ii=0;ii<INTERPOL_PREC;++ii)
alpar@209:                 if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2;
alpar@209:                 else t1=(t1+t2)/2;
alpar@209:               dim2::Point<double> apoint=bez((t1+t2)/2);
alpar@209:               rn = _arrowLength+_arcWidths[*e]*_arcWidthScale;
alpar@209:               rn*=rn;
alpar@209:               t2=(t1+t2)/2;t1=0;
alpar@209:               for(int ii=0;ii<INTERPOL_PREC;++ii)
alpar@209:                 if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2;
alpar@209:                 else t2=(t1+t2)/2;
alpar@209:               dim2::Point<double> linend=bez((t1+t2)/2);
alpar@209:               bez=bez.before((t1+t2)/2);
alpar@209: //               rn=_nodeSizes[g.source(*e)]*_nodeScale;
alpar@209: //               node_shape=_nodeShapes[g.source(*e)];
alpar@209: //               t1=0;t2=1;
alpar@209: //               for(int i=0;i<INTERPOL_PREC;++i)
alpar@210: //                 if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape))
alpar@210: //                   t1=(t1+t2)/2;
alpar@209: //                 else t2=(t1+t2)/2;
alpar@209: //               bez=bez.after((t1+t2)/2);
alpar@209:               os << _arcWidths[*e]*_arcWidthScale << " setlinewidth "
alpar@209:                  << _arcColors[*e].red() << ' '
alpar@209:                  << _arcColors[*e].green() << ' '
alpar@209:                  << _arcColors[*e].blue() << " setrgbcolor newpath\n"
alpar@209:                  << bez.p1.x << ' ' <<  bez.p1.y << " moveto\n"
alpar@209:                  << bez.p2.x << ' ' << bez.p2.y << ' '
alpar@209:                  << bez.p3.x << ' ' << bez.p3.y << ' '
alpar@209:                  << bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n";
alpar@209:               dim2::Point<double> dd(rot90(linend-apoint));
alpar@209:               dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/
alpar@209:                 std::sqrt(dd.normSquare());
alpar@209:               os << "newpath " << psOut(apoint) << " moveto "
alpar@209:                  << psOut(linend+dd) << " lineto "
alpar@209:                  << psOut(linend-dd) << " lineto closepath fill\n";
alpar@209:             }
alpar@209:             else {
alpar@209:               os << mycoords[g.source(*e)].x << ' '
alpar@209:                  << mycoords[g.source(*e)].y << ' '
alpar@209:                  << mm.x << ' ' << mm.y << ' '
alpar@209:                  << mycoords[g.target(*e)].x << ' '
alpar@209:                  << mycoords[g.target(*e)].y << ' '
alpar@209:                  << _arcColors[*e].red() << ' '
alpar@209:                  << _arcColors[*e].green() << ' '
alpar@209:                  << _arcColors[*e].blue() << ' '
alpar@209:                  << _arcWidths[*e]*_arcWidthScale << " lb\n";
alpar@209:             }
alpar@209:             sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist;
alpar@209:           }
alpar@209:         }
alpar@128:       }
alpar@128:       else for(ArcIt e(g);e!=INVALID;++e)
alpar@209:         if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
alpar@209:            &&g.source(e)!=g.target(e)) {
alpar@209:           if(_drawArrows) {
alpar@209:             dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]);
alpar@209:             double rn=_nodeSizes[g.target(e)]*_nodeScale;
alpar@209:             int node_shape=_nodeShapes[g.target(e)];
alpar@209:             double t1=0,t2=1;
alpar@209:             for(int i=0;i<INTERPOL_PREC;++i)
alpar@209:               if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2;
alpar@209:               else t2=(t1+t2)/2;
alpar@209:             double l=std::sqrt(d.normSquare());
alpar@209:             d/=l;
alpar@209: 
alpar@209:             os << l*(1-(t1+t2)/2) << ' '
alpar@209:                << _arcWidths[e]*_arcWidthScale << ' '
alpar@209:                << d.x << ' ' << d.y << ' '
alpar@209:                << mycoords[g.source(e)].x << ' '
alpar@209:                << mycoords[g.source(e)].y << ' '
alpar@209:                << _arcColors[e].red() << ' '
alpar@209:                << _arcColors[e].green() << ' '
alpar@209:                << _arcColors[e].blue() << " arr\n";
alpar@209:           }
alpar@209:           else os << mycoords[g.source(e)].x << ' '
alpar@209:                   << mycoords[g.source(e)].y << ' '
alpar@209:                   << mycoords[g.target(e)].x << ' '
alpar@209:                   << mycoords[g.target(e)].y << ' '
alpar@209:                   << _arcColors[e].red() << ' '
alpar@209:                   << _arcColors[e].green() << ' '
alpar@209:                   << _arcColors[e].blue() << ' '
alpar@209:                   << _arcWidths[e]*_arcWidthScale << " l\n";
alpar@209:         }
alpar@128:       os << "grestore\n";
alpar@128:     }
alpar@128:     if(_showNodes) {
alpar@128:       os << "%Nodes:\ngsave\n";
alpar@128:       for(NodeIt n(g);n!=INVALID;++n) {
alpar@209:         os << mycoords[n].x << ' ' << mycoords[n].y << ' '
alpar@209:            << _nodeSizes[n]*_nodeScale << ' '
alpar@209:            << _nodeColors[n].red() << ' '
alpar@209:            << _nodeColors[n].green() << ' '
alpar@209:            << _nodeColors[n].blue() << ' ';
alpar@209:         switch(_nodeShapes[n]) {
alpar@209:         case CIRCLE:
alpar@209:           os<< "nc";break;
alpar@209:         case SQUARE:
alpar@209:           os<< "nsq";break;
alpar@209:         case DIAMOND:
alpar@209:           os<< "ndi";break;
alpar@209:         case MALE:
alpar@209:           os<< "nmale";break;
alpar@209:         case FEMALE:
alpar@209:           os<< "nfemale";break;
alpar@209:         }
alpar@209:         os<<'\n';
alpar@128:       }
alpar@128:       os << "grestore\n";
alpar@128:     }
alpar@128:     if(_showNodeText) {
alpar@128:       os << "%Node texts:\ngsave\n";
alpar@128:       os << "/fosi " << _nodeTextSize << " def\n";
alpar@128:       os << "(Helvetica) findfont fosi scalefont setfont\n";
alpar@128:       for(NodeIt n(g);n!=INVALID;++n) {
alpar@209:         switch(_nodeTextColorType) {
alpar@209:         case DIST_COL:
alpar@209:           os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n";
alpar@209:           break;
alpar@209:         case DIST_BW:
alpar@209:           os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n";
alpar@209:           break;
alpar@209:         case CUST_COL:
alpar@209:           os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n";
alpar@209:           break;
alpar@209:         default:
alpar@209:           os << "0 0 0 setrgbcolor\n";
alpar@209:         }
alpar@209:         os << mycoords[n].x << ' ' << mycoords[n].y
alpar@209:            << " (" << _nodeTexts[n] << ") cshow\n";
alpar@128:       }
alpar@128:       os << "grestore\n";
alpar@128:     }
alpar@128:     if(_showNodePsText) {
alpar@128:       os << "%Node PS blocks:\ngsave\n";
alpar@128:       for(NodeIt n(g);n!=INVALID;++n)
alpar@209:         os << mycoords[n].x << ' ' << mycoords[n].y
alpar@209:            << " moveto\n" << _nodePsTexts[n] << "\n";
alpar@128:       os << "grestore\n";
alpar@128:     }
alpar@209: 
alpar@128:     os << "grestore\nshowpage\n";
alpar@128: 
alpar@128:     //CleanUp:
alpar@128:     if(_pleaseRemoveOsStream) {delete &os;}
alpar@130:   }
alpar@130: 
alpar@130:   ///\name Aliases
alpar@130:   ///These are just some aliases to other parameter setting functions.
alpar@130: 
alpar@130:   ///@{
alpar@130: 
alpar@130:   ///An alias for arcWidths()
alpar@130:   template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x)
alpar@130:   {
alpar@130:     return arcWidths(x);
alpar@130:   }
alpar@130: 
alpar@130:   ///An alias for arcColors()
alpar@130:   template<class X> GraphToEps<ArcColorsTraits<X> >
alpar@130:   edgeColors(const X &x)
alpar@130:   {
alpar@130:     return arcColors(x);
alpar@130:   }
alpar@130: 
alpar@130:   ///An alias for arcWidthScale()
alpar@130:   GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);}
alpar@130: 
alpar@130:   ///An alias for autoArcWidthScale()
alpar@130:   GraphToEps<T> &autoEdgeWidthScale(bool b=true)
alpar@130:   {
alpar@130:     return autoArcWidthScale(b);
alpar@130:   }
alpar@209: 
alpar@130:   ///An alias for absoluteArcWidths()
alpar@130:   GraphToEps<T> &absoluteEdgeWidths(bool b=true)
alpar@130:   {
alpar@130:     return absoluteArcWidths(b);
alpar@130:   }
alpar@209: 
alpar@130:   ///An alias for parArcDist()
alpar@130:   GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);}
alpar@209: 
alpar@130:   ///An alias for hideArcs()
alpar@130:   GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);}
alpar@130: 
alpar@130:   ///@}
alpar@128: };
alpar@128: 
alpar@128: template<class T>
alpar@128: const int GraphToEps<T>::INTERPOL_PREC = 20;
alpar@128: template<class T>
alpar@128: const double GraphToEps<T>::A4HEIGHT = 841.8897637795276;
alpar@128: template<class T>
alpar@128: const double GraphToEps<T>::A4WIDTH  = 595.275590551181;
alpar@128: template<class T>
alpar@128: const double GraphToEps<T>::A4BORDER = 15;
alpar@128: 
alpar@128: 
alpar@128: ///Generates an EPS file from a graph
alpar@128: 
alpar@128: ///\ingroup eps_io
alpar@128: ///Generates an EPS file from a graph.
kpeter@206: ///\param g Reference to the graph to be printed.
kpeter@206: ///\param os Reference to the output stream.
kpeter@206: ///By default it is <tt>std::cout</tt>.
alpar@128: ///
alpar@128: ///This function also has a lot of
alpar@128: ///\ref named-templ-func-param "named parameters",
alpar@128: ///they are declared as the members of class \ref GraphToEps. The following
alpar@128: ///example shows how to use these parameters.
alpar@128: ///\code
alpar@128: /// graphToEps(g,os).scale(10).coords(coords)
alpar@128: ///              .nodeScale(2).nodeSizes(sizes)
alpar@128: ///              .arcWidthScale(.4).run();
alpar@128: ///\endcode
kpeter@206: ///
kpeter@206: ///For more detailed examples see the \ref graph_to_eps_demo.cc demo file.
kpeter@206: ///
alpar@128: ///\warning Don't forget to put the \ref GraphToEps::run() "run()"
alpar@128: ///to the end of the parameter list.
alpar@128: ///\sa GraphToEps
alpar@128: ///\sa graphToEps(G &g, const char *file_name)
alpar@128: template<class G>
alpar@209: GraphToEps<DefaultGraphToEpsTraits<G> >
alpar@128: graphToEps(G &g, std::ostream& os=std::cout)
alpar@128: {
alpar@209:   return
alpar@128:     GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os));
alpar@128: }
alpar@209: 
alpar@128: ///Generates an EPS file from a graph
alpar@128: 
alpar@128: ///\ingroup eps_io
alpar@128: ///This function does the same as
alpar@128: ///\ref graphToEps(G &g,std::ostream& os)
alpar@128: ///but it writes its output into the file \c file_name
alpar@128: ///instead of a stream.
alpar@128: ///\sa graphToEps(G &g, std::ostream& os)
alpar@128: template<class G>
alpar@209: GraphToEps<DefaultGraphToEpsTraits<G> >
alpar@128: graphToEps(G &g,const char *file_name)
alpar@128: {
alpar@128:   return GraphToEps<DefaultGraphToEpsTraits<G> >
alpar@128:     (DefaultGraphToEpsTraits<G>(g,*new std::ofstream(file_name),true));
alpar@128: }
alpar@128: 
alpar@128: ///Generates an EPS file from a graph
alpar@128: 
alpar@128: ///\ingroup eps_io
alpar@128: ///This function does the same as
alpar@128: ///\ref graphToEps(G &g,std::ostream& os)
alpar@128: ///but it writes its output into the file \c file_name
alpar@128: ///instead of a stream.
alpar@128: ///\sa graphToEps(G &g, std::ostream& os)
alpar@128: template<class G>
alpar@209: GraphToEps<DefaultGraphToEpsTraits<G> >
alpar@128: graphToEps(G &g,const std::string& file_name)
alpar@128: {
alpar@128:   return GraphToEps<DefaultGraphToEpsTraits<G> >
alpar@128:     (DefaultGraphToEpsTraits<G>(g,*new std::ofstream(file_name.c_str()),true));
alpar@128: }
alpar@128: 
alpar@128: } //END OF NAMESPACE LEMON
alpar@128: 
alpar@128: #endif // LEMON_GRAPH_TO_EPS_H