alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@25:  *
alpar@209:  * This file is a part of LEMON, a generic C++ optimization library.
alpar@25:  *
alpar@440:  * Copyright (C) 2003-2009
alpar@25:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@25:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@25:  *
alpar@25:  * Permission to use, modify and distribute this software is granted
alpar@25:  * provided that this copyright notice appears in all copies. For
alpar@25:  * precise terms see the accompanying LICENSE file.
alpar@25:  *
alpar@25:  * This software is provided "AS IS" with no warranty of any kind,
alpar@25:  * express or implied, and with no claim as to its suitability for any
alpar@25:  * purpose.
alpar@25:  *
alpar@25:  */
alpar@25: 
alpar@25: #ifndef LEMON_MAPS_H
alpar@25: #define LEMON_MAPS_H
alpar@25: 
alpar@25: #include <iterator>
alpar@25: #include <functional>
alpar@25: #include <vector>
alpar@25: 
deba@220: #include <lemon/core.h>
alpar@25: 
alpar@25: ///\file
alpar@25: ///\ingroup maps
alpar@25: ///\brief Miscellaneous property maps
kpeter@80: 
alpar@25: #include <map>
alpar@25: 
alpar@25: namespace lemon {
alpar@25: 
alpar@25:   /// \addtogroup maps
alpar@25:   /// @{
alpar@25: 
alpar@25:   /// Base class of maps.
alpar@25: 
kpeter@80:   /// Base class of maps. It provides the necessary type definitions
kpeter@80:   /// required by the map %concepts.
kpeter@80:   template<typename K, typename V>
alpar@25:   class MapBase {
alpar@25:   public:
kpeter@313:     /// \brief The key type of the map.
alpar@25:     typedef K Key;
kpeter@80:     /// \brief The value type of the map.
kpeter@80:     /// (The type of objects associated with the keys).
kpeter@80:     typedef V Value;
alpar@25:   };
alpar@25: 
kpeter@80: 
alpar@25:   /// Null map. (a.k.a. DoNothingMap)
alpar@25: 
kpeter@29:   /// This map can be used if you have to provide a map only for
kpeter@80:   /// its type definitions, or if you have to provide a writable map,
kpeter@80:   /// but data written to it is not required (i.e. it will be sent to
kpeter@29:   /// <tt>/dev/null</tt>).
kpeter@80:   /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
kpeter@80:   ///
kpeter@80:   /// \sa ConstMap
kpeter@80:   template<typename K, typename V>
kpeter@80:   class NullMap : public MapBase<K, V> {
alpar@25:   public:
kpeter@80:     typedef MapBase<K, V> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
kpeter@80: 
alpar@25:     /// Gives back a default constructed element.
kpeter@80:     Value operator[](const Key&) const { return Value(); }
alpar@25:     /// Absorbs the value.
kpeter@80:     void set(const Key&, const Value&) {}
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c NullMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NullMap class.
kpeter@80:   /// \relates NullMap
kpeter@80:   template <typename K, typename V>
alpar@25:   NullMap<K, V> nullMap() {
alpar@25:     return NullMap<K, V>();
alpar@25:   }
alpar@25: 
alpar@25: 
alpar@25:   /// Constant map.
alpar@25: 
kpeter@82:   /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82:   /// value to each key.
kpeter@80:   ///
kpeter@301:   /// In other aspects it is equivalent to \c NullMap.
kpeter@80:   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80:   /// concept, but it absorbs the data written to it.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the constMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa NullMap
kpeter@80:   /// \sa IdentityMap
kpeter@80:   template<typename K, typename V>
kpeter@80:   class ConstMap : public MapBase<K, V> {
alpar@25:   private:
kpeter@80:     V _value;
alpar@25:   public:
kpeter@80:     typedef MapBase<K, V> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
alpar@25:     /// Default constructor
alpar@25: 
kpeter@29:     /// Default constructor.
kpeter@80:     /// The value of the map will be default constructed.
alpar@25:     ConstMap() {}
kpeter@80: 
kpeter@29:     /// Constructor with specified initial value
alpar@25: 
kpeter@29:     /// Constructor with specified initial value.
kpeter@123:     /// \param v The initial value of the map.
kpeter@80:     ConstMap(const Value &v) : _value(v) {}
alpar@25: 
kpeter@80:     /// Gives back the specified value.
kpeter@80:     Value operator[](const Key&) const { return _value; }
alpar@25: 
kpeter@80:     /// Absorbs the value.
kpeter@80:     void set(const Key&, const Value&) {}
kpeter@80: 
kpeter@80:     /// Sets the value that is assigned to each key.
kpeter@80:     void setAll(const Value &v) {
kpeter@80:       _value = v;
kpeter@80:     }
kpeter@80: 
kpeter@80:     template<typename V1>
kpeter@80:     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ConstMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ConstMap class.
kpeter@80:   /// \relates ConstMap
kpeter@80:   template<typename K, typename V>
alpar@25:   inline ConstMap<K, V> constMap(const V &v) {
alpar@25:     return ConstMap<K, V>(v);
alpar@25:   }
alpar@25: 
kpeter@123:   template<typename K, typename V>
kpeter@123:   inline ConstMap<K, V> constMap() {
kpeter@123:     return ConstMap<K, V>();
kpeter@123:   }
kpeter@123: 
alpar@25: 
alpar@25:   template<typename T, T v>
kpeter@80:   struct Const {};
alpar@25: 
alpar@25:   /// Constant map with inlined constant value.
alpar@25: 
kpeter@82:   /// This \ref concepts::ReadMap "readable map" assigns a specified
kpeter@82:   /// value to each key.
kpeter@80:   ///
kpeter@301:   /// In other aspects it is equivalent to \c NullMap.
kpeter@80:   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@80:   /// concept, but it absorbs the data written to it.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the constMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa NullMap
kpeter@80:   /// \sa IdentityMap
alpar@25:   template<typename K, typename V, V v>
alpar@25:   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
alpar@25:   public:
alpar@25:     typedef MapBase<K, V> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     ConstMap() {}
kpeter@80: 
kpeter@80:     /// Gives back the specified value.
kpeter@80:     Value operator[](const Key&) const { return v; }
kpeter@80: 
kpeter@80:     /// Absorbs the value.
kpeter@80:     void set(const Key&, const Value&) {}
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ConstMap class with inlined constant value
kpeter@301: 
kpeter@301:   /// This function just returns a \c ConstMap class with inlined
kpeter@80:   /// constant value.
kpeter@80:   /// \relates ConstMap
kpeter@80:   template<typename K, typename V, V v>
alpar@25:   inline ConstMap<K, Const<V, v> > constMap() {
alpar@25:     return ConstMap<K, Const<V, v> >();
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@82:   /// Identity map.
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" gives back the given
kpeter@82:   /// key as value without any modification.
kpeter@80:   ///
kpeter@80:   /// \sa ConstMap
kpeter@80:   template <typename T>
kpeter@80:   class IdentityMap : public MapBase<T, T> {
kpeter@80:   public:
kpeter@80:     typedef MapBase<T, T> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
kpeter@80: 
kpeter@80:     /// Gives back the given value without any modification.
kpeter@82:     Value operator[](const Key &k) const {
kpeter@82:       return k;
kpeter@80:     }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns an \c IdentityMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c IdentityMap class.
kpeter@80:   /// \relates IdentityMap
kpeter@80:   template<typename T>
kpeter@80:   inline IdentityMap<T> identityMap() {
kpeter@80:     return IdentityMap<T>();
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// \brief Map for storing values for integer keys from the range
kpeter@80:   /// <tt>[0..size-1]</tt>.
kpeter@80:   ///
kpeter@80:   /// This map is essentially a wrapper for \c std::vector. It assigns
kpeter@80:   /// values to integer keys from the range <tt>[0..size-1]</tt>.
kpeter@80:   /// It can be used with some data structures, for example
kpeter@301:   /// \c UnionFind, \c BinHeap, when the used items are small
kpeter@80:   /// integers. This map conforms the \ref concepts::ReferenceMap
kpeter@80:   /// "ReferenceMap" concept.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the rangeMap()
kpeter@80:   /// function.
kpeter@80:   template <typename V>
kpeter@80:   class RangeMap : public MapBase<int, V> {
kpeter@80:     template <typename V1>
kpeter@80:     friend class RangeMap;
kpeter@80:   private:
kpeter@80: 
kpeter@80:     typedef std::vector<V> Vector;
kpeter@80:     Vector _vector;
kpeter@80: 
alpar@25:   public:
alpar@25: 
kpeter@80:     typedef MapBase<int, V> Parent;
kpeter@80:     /// Key type
kpeter@45:     typedef typename Parent::Key Key;
kpeter@80:     /// Value type
kpeter@45:     typedef typename Parent::Value Value;
kpeter@80:     /// Reference type
kpeter@80:     typedef typename Vector::reference Reference;
kpeter@80:     /// Const reference type
kpeter@80:     typedef typename Vector::const_reference ConstReference;
kpeter@80: 
kpeter@80:     typedef True ReferenceMapTag;
kpeter@80: 
kpeter@80:   public:
kpeter@80: 
kpeter@80:     /// Constructor with specified default value.
kpeter@80:     RangeMap(int size = 0, const Value &value = Value())
kpeter@80:       : _vector(size, value) {}
kpeter@80: 
kpeter@80:     /// Constructs the map from an appropriate \c std::vector.
kpeter@80:     template <typename V1>
kpeter@80:     RangeMap(const std::vector<V1>& vector)
kpeter@80:       : _vector(vector.begin(), vector.end()) {}
kpeter@80: 
kpeter@301:     /// Constructs the map from another \c RangeMap.
kpeter@80:     template <typename V1>
kpeter@80:     RangeMap(const RangeMap<V1> &c)
kpeter@80:       : _vector(c._vector.begin(), c._vector.end()) {}
kpeter@80: 
kpeter@80:     /// Returns the size of the map.
kpeter@80:     int size() {
kpeter@80:       return _vector.size();
kpeter@80:     }
kpeter@80: 
kpeter@80:     /// Resizes the map.
kpeter@80: 
kpeter@80:     /// Resizes the underlying \c std::vector container, so changes the
kpeter@80:     /// keyset of the map.
kpeter@80:     /// \param size The new size of the map. The new keyset will be the
kpeter@80:     /// range <tt>[0..size-1]</tt>.
kpeter@80:     /// \param value The default value to assign to the new keys.
kpeter@80:     void resize(int size, const Value &value = Value()) {
kpeter@80:       _vector.resize(size, value);
kpeter@80:     }
kpeter@80: 
kpeter@80:   private:
kpeter@80: 
kpeter@80:     RangeMap& operator=(const RangeMap&);
kpeter@80: 
kpeter@80:   public:
kpeter@80: 
kpeter@80:     ///\e
kpeter@80:     Reference operator[](const Key &k) {
kpeter@80:       return _vector[k];
kpeter@80:     }
kpeter@80: 
kpeter@80:     ///\e
kpeter@80:     ConstReference operator[](const Key &k) const {
kpeter@80:       return _vector[k];
kpeter@80:     }
kpeter@80: 
kpeter@80:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) {
kpeter@80:       _vector[k] = v;
kpeter@80:     }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c RangeMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c RangeMap class.
kpeter@80:   /// \relates RangeMap
kpeter@80:   template<typename V>
kpeter@80:   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
kpeter@80:     return RangeMap<V>(size, value);
kpeter@80:   }
kpeter@80: 
kpeter@301:   /// \brief Returns a \c RangeMap class created from an appropriate
kpeter@80:   /// \c std::vector
kpeter@80: 
kpeter@301:   /// This function just returns a \c RangeMap class created from an
kpeter@80:   /// appropriate \c std::vector.
kpeter@80:   /// \relates RangeMap
kpeter@80:   template<typename V>
kpeter@80:   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
kpeter@80:     return RangeMap<V>(vector);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Map type based on \c std::map
kpeter@80: 
kpeter@80:   /// This map is essentially a wrapper for \c std::map with addition
kpeter@80:   /// that you can specify a default value for the keys that are not
kpeter@80:   /// stored actually. This value can be different from the default
kpeter@80:   /// contructed value (i.e. \c %Value()).
kpeter@80:   /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
kpeter@80:   /// concept.
kpeter@80:   ///
kpeter@80:   /// This map is useful if a default value should be assigned to most of
kpeter@80:   /// the keys and different values should be assigned only to a few
kpeter@80:   /// keys (i.e. the map is "sparse").
kpeter@80:   /// The name of this type also refers to this important usage.
kpeter@80:   ///
kpeter@80:   /// Apart form that this map can be used in many other cases since it
kpeter@80:   /// is based on \c std::map, which is a general associative container.
kpeter@80:   /// However keep in mind that it is usually not as efficient as other
kpeter@80:   /// maps.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the sparseMap()
kpeter@80:   /// function.
kpeter@80:   template <typename K, typename V, typename Compare = std::less<K> >
kpeter@80:   class SparseMap : public MapBase<K, V> {
kpeter@80:     template <typename K1, typename V1, typename C1>
kpeter@80:     friend class SparseMap;
kpeter@80:   public:
kpeter@80: 
kpeter@80:     typedef MapBase<K, V> Parent;
kpeter@80:     /// Key type
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     /// Value type
kpeter@80:     typedef typename Parent::Value Value;
kpeter@80:     /// Reference type
kpeter@80:     typedef Value& Reference;
kpeter@80:     /// Const reference type
kpeter@80:     typedef const Value& ConstReference;
alpar@25: 
kpeter@45:     typedef True ReferenceMapTag;
kpeter@45: 
alpar@25:   private:
kpeter@80: 
kpeter@80:     typedef std::map<K, V, Compare> Map;
kpeter@80:     Map _map;
alpar@25:     Value _value;
alpar@25: 
alpar@25:   public:
alpar@25: 
kpeter@80:     /// \brief Constructor with specified default value.
kpeter@80:     SparseMap(const Value &value = Value()) : _value(value) {}
kpeter@80:     /// \brief Constructs the map from an appropriate \c std::map, and
kpeter@47:     /// explicitly specifies a default value.
kpeter@80:     template <typename V1, typename Comp1>
kpeter@80:     SparseMap(const std::map<Key, V1, Comp1> &map,
kpeter@80:               const Value &value = Value())
alpar@25:       : _map(map.begin(), map.end()), _value(value) {}
kpeter@80: 
kpeter@301:     /// \brief Constructs the map from another \c SparseMap.
kpeter@80:     template<typename V1, typename Comp1>
kpeter@80:     SparseMap(const SparseMap<Key, V1, Comp1> &c)
alpar@25:       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
alpar@25: 
alpar@25:   private:
alpar@25: 
kpeter@80:     SparseMap& operator=(const SparseMap&);
alpar@25: 
alpar@25:   public:
alpar@25: 
alpar@25:     ///\e
alpar@25:     Reference operator[](const Key &k) {
alpar@25:       typename Map::iterator it = _map.lower_bound(k);
alpar@25:       if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209:         return it->second;
alpar@25:       else
alpar@209:         return _map.insert(it, std::make_pair(k, _value))->second;
alpar@25:     }
alpar@25: 
kpeter@80:     ///\e
alpar@25:     ConstReference operator[](const Key &k) const {
alpar@25:       typename Map::const_iterator it = _map.find(k);
alpar@25:       if (it != _map.end())
alpar@209:         return it->second;
alpar@25:       else
alpar@209:         return _value;
alpar@25:     }
alpar@25: 
kpeter@80:     ///\e
kpeter@80:     void set(const Key &k, const Value &v) {
alpar@25:       typename Map::iterator it = _map.lower_bound(k);
alpar@25:       if (it != _map.end() && !_map.key_comp()(k, it->first))
alpar@209:         it->second = v;
alpar@25:       else
alpar@209:         _map.insert(it, std::make_pair(k, v));
alpar@25:     }
alpar@25: 
kpeter@80:     ///\e
kpeter@80:     void setAll(const Value &v) {
kpeter@80:       _value = v;
alpar@25:       _map.clear();
kpeter@80:     }
kpeter@80:   };
alpar@25: 
kpeter@301:   /// Returns a \c SparseMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c SparseMap class with specified
kpeter@80:   /// default value.
kpeter@80:   /// \relates SparseMap
kpeter@80:   template<typename K, typename V, typename Compare>
kpeter@80:   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
kpeter@80:     return SparseMap<K, V, Compare>(value);
kpeter@54:   }
kpeter@45: 
kpeter@80:   template<typename K, typename V>
kpeter@80:   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
kpeter@80:     return SparseMap<K, V, std::less<K> >(value);
kpeter@45:   }
alpar@25: 
kpeter@301:   /// \brief Returns a \c SparseMap class created from an appropriate
kpeter@80:   /// \c std::map
alpar@25: 
kpeter@301:   /// This function just returns a \c SparseMap class created from an
kpeter@80:   /// appropriate \c std::map.
kpeter@80:   /// \relates SparseMap
kpeter@80:   template<typename K, typename V, typename Compare>
kpeter@80:   inline SparseMap<K, V, Compare>
kpeter@80:     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
kpeter@80:   {
kpeter@80:     return SparseMap<K, V, Compare>(map, value);
kpeter@45:   }
alpar@25: 
alpar@25:   /// @}
alpar@25: 
alpar@25:   /// \addtogroup map_adaptors
alpar@25:   /// @{
alpar@25: 
kpeter@80:   /// Composition of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the
kpeter@80:   /// composition of two given maps. That is to say, if \c m1 is of
kpeter@80:   /// type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   ComposeMap<M1, M2> cm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
alpar@25:   ///
kpeter@80:   /// The \c Key type of the map is inherited from \c M2 and the
kpeter@80:   /// \c Value type is from \c M1.
kpeter@80:   /// \c M2::Value must be convertible to \c M1::Key.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the composeMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa CombineMap
kpeter@80:   template <typename M1, typename M2>
kpeter@80:   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
alpar@25:   public:
kpeter@80:     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80: 
alpar@25:     /// \e
kpeter@80:     typename MapTraits<M1>::ConstReturnValue
kpeter@80:     operator[](const Key &k) const { return _m1[_m2[k]]; }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ComposeMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ComposeMap class.
kpeter@80:   ///
kpeter@80:   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
kpeter@80:   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
kpeter@80:   /// will be equal to <tt>m1[m2[x]]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates ComposeMap
kpeter@80:   template <typename M1, typename M2>
kpeter@80:   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
kpeter@80:     return ComposeMap<M1, M2>(m1, m2);
alpar@25:   }
alpar@25: 
kpeter@80: 
kpeter@80:   /// Combination of two maps using an STL (binary) functor.
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
kpeter@80:   /// binary functor and returns the combination of the two given maps
kpeter@80:   /// using the functor.
kpeter@80:   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
kpeter@80:   /// and \c f is of \c F, then for
kpeter@80:   /// \code
kpeter@80:   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
alpar@26:   ///
kpeter@80:   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
kpeter@80:   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
kpeter@80:   /// \c M2::Value and \c M1::Value must be convertible to the
kpeter@80:   /// corresponding input parameter of \c F and the return type of \c F
kpeter@80:   /// must be convertible to \c V.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the combineMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ComposeMap
kpeter@80:   template<typename M1, typename M2, typename F,
alpar@209:            typename V = typename F::result_type>
kpeter@80:   class CombineMap : public MapBase<typename M1::Key, V> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:     F _f;
alpar@25:   public:
kpeter@80:     typedef MapBase<typename M1::Key, V> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
kpeter@80:       : _m1(m1), _m2(m2), _f(f) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
kpeter@80:   };
alpar@25: 
kpeter@301:   /// Returns a \c CombineMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c CombineMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then
kpeter@80:   /// \code
kpeter@80:   ///   combineMap(m1,m2,std::plus<double>())
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   addMap(m1,m2)
kpeter@80:   /// \endcode
kpeter@80:   ///
kpeter@80:   /// This function is specialized for adaptable binary function
kpeter@80:   /// classes and C++ functions.
kpeter@80:   ///
kpeter@80:   /// \relates CombineMap
kpeter@80:   template<typename M1, typename M2, typename F, typename V>
kpeter@80:   inline CombineMap<M1, M2, F, V>
kpeter@80:   combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80:     return CombineMap<M1, M2, F, V>(m1,m2,f);
alpar@25:   }
alpar@25: 
kpeter@80:   template<typename M1, typename M2, typename F>
kpeter@80:   inline CombineMap<M1, M2, F, typename F::result_type>
kpeter@80:   combineMap(const M1 &m1, const M2 &m2, const F &f) {
kpeter@80:     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
kpeter@80:   }
alpar@25: 
kpeter@80:   template<typename M1, typename M2, typename K1, typename K2, typename V>
kpeter@80:   inline CombineMap<M1, M2, V (*)(K1, K2), V>
kpeter@80:   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
kpeter@80:     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Converts an STL style (unary) functor to a map
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the value
kpeter@80:   /// of a given functor. Actually, it just wraps the functor and
kpeter@80:   /// provides the \c Key and \c Value typedefs.
alpar@26:   ///
kpeter@80:   /// Template parameters \c K and \c V will become its \c Key and
kpeter@80:   /// \c Value. In most cases they have to be given explicitly because
kpeter@80:   /// a functor typically does not provide \c argument_type and
kpeter@80:   /// \c result_type typedefs.
kpeter@80:   /// Parameter \c F is the type of the used functor.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the functorToMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa MapToFunctor
kpeter@80:   template<typename F,
alpar@209:            typename K = typename F::argument_type,
alpar@209:            typename V = typename F::result_type>
kpeter@80:   class FunctorToMap : public MapBase<K, V> {
kpeter@123:     F _f;
kpeter@80:   public:
kpeter@80:     typedef MapBase<K, V> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     FunctorToMap(const F &f = F()) : _f(f) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _f(k); }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c FunctorToMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c FunctorToMap class.
kpeter@80:   ///
kpeter@80:   /// This function is specialized for adaptable binary function
kpeter@80:   /// classes and C++ functions.
kpeter@80:   ///
kpeter@80:   /// \relates FunctorToMap
kpeter@80:   template<typename K, typename V, typename F>
kpeter@80:   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
kpeter@80:     return FunctorToMap<F, K, V>(f);
kpeter@80:   }
kpeter@80: 
kpeter@80:   template <typename F>
kpeter@80:   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
kpeter@80:     functorToMap(const F &f)
kpeter@80:   {
kpeter@80:     return FunctorToMap<F, typename F::argument_type,
kpeter@80:       typename F::result_type>(f);
kpeter@80:   }
kpeter@80: 
kpeter@80:   template <typename K, typename V>
kpeter@80:   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
kpeter@80:     return FunctorToMap<V (*)(K), K, V>(f);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Converts a map to an STL style (unary) functor
kpeter@80: 
kpeter@80:   /// This class converts a map to an STL style (unary) functor.
kpeter@80:   /// That is it provides an <tt>operator()</tt> to read its values.
kpeter@80:   ///
kpeter@80:   /// For the sake of convenience it also works as a usual
kpeter@80:   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
kpeter@80:   /// and the \c Key and \c Value typedefs also exist.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the mapToFunctor()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   ///\sa FunctorToMap
kpeter@80:   template <typename M>
kpeter@80:   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     typedef typename Parent::Key argument_type;
kpeter@80:     typedef typename Parent::Value result_type;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     MapToFunctor(const M &m) : _m(m) {}
kpeter@80:     /// \e
kpeter@80:     Value operator()(const Key &k) const { return _m[k]; }
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]; }
alpar@25:   };
kpeter@45: 
kpeter@301:   /// Returns a \c MapToFunctor class
kpeter@301: 
kpeter@301:   /// This function just returns a \c MapToFunctor class.
kpeter@80:   /// \relates MapToFunctor
kpeter@45:   template<typename M>
kpeter@80:   inline MapToFunctor<M> mapToFunctor(const M &m) {
kpeter@80:     return MapToFunctor<M>(m);
kpeter@45:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// \brief Map adaptor to convert the \c Value type of a map to
kpeter@80:   /// another type using the default conversion.
kpeter@80: 
kpeter@80:   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
kpeter@80:   /// "readable map" to another type using the default conversion.
kpeter@80:   /// The \c Key type of it is inherited from \c M and the \c Value
kpeter@80:   /// type is \c V.
kpeter@80:   /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
alpar@26:   ///
kpeter@80:   /// The simplest way of using this map is through the convertMap()
kpeter@80:   /// function.
kpeter@80:   template <typename M, typename V>
kpeter@80:   class ConvertMap : public MapBase<typename M::Key, V> {
kpeter@80:     const M &_m;
kpeter@80:   public:
kpeter@80:     typedef MapBase<typename M::Key, V> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The underlying map.
kpeter@80:     ConvertMap(const M &m) : _m(m) {}
kpeter@80: 
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c ConvertMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ConvertMap class.
kpeter@80:   /// \relates ConvertMap
kpeter@80:   template<typename V, typename M>
kpeter@80:   inline ConvertMap<M, V> convertMap(const M &map) {
kpeter@80:     return ConvertMap<M, V>(map);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Applies all map setting operations to two maps
kpeter@80: 
kpeter@80:   /// This map has two \ref concepts::WriteMap "writable map" parameters
kpeter@80:   /// and each write request will be passed to both of them.
kpeter@80:   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
kpeter@80:   /// operations will return the corresponding values of \c M1.
kpeter@29:   ///
kpeter@80:   /// The \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible from those
kpeter@80:   /// of \c M1.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the forkMap()
kpeter@80:   /// function.
kpeter@80:   template<typename  M1, typename M2>
kpeter@80:   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     M1 &_m1;
kpeter@80:     M2 &_m2;
kpeter@80:   public:
kpeter@80:     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80:     /// Returns the value associated with the given key in the first map.
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]; }
kpeter@80:     /// Sets the value associated with the given key in both maps.
kpeter@80:     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c ForkMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ForkMap class.
kpeter@80:   /// \relates ForkMap
kpeter@80:   template <typename M1, typename M2>
kpeter@80:   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
kpeter@80:     return ForkMap<M1,M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Sum of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the sum
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
kpeter@80:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   AddMap<M1,M2> am(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the addMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa SubMap, MulMap, DivMap
kpeter@80:   /// \sa ShiftMap, ShiftWriteMap
kpeter@80:   template<typename M1, typename M2>
alpar@25:   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns an \c AddMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c AddMap class.
alpar@25:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]+m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates AddMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
alpar@25:     return AddMap<M1, M2>(m1,m2);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Difference of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the difference
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
alpar@25:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   SubMap<M1,M2> sm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the subMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa AddMap, MulMap, DivMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:   public:
kpeter@80:     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c SubMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c SubMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]-m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates SubMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
kpeter@80:     return SubMap<M1, M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Product of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the product
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
kpeter@80:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   MulMap<M1,M2> mm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the mulMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa AddMap, SubMap, DivMap
kpeter@80:   /// \sa ScaleMap, ScaleWriteMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:   public:
kpeter@80:     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c MulMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c MulMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]*m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates MulMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
kpeter@80:     return MulMap<M1, M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Quotient of two maps
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the quotient
kpeter@80:   /// of the values of the two given maps.
kpeter@80:   /// Its \c Key and \c Value types are inherited from \c M1.
kpeter@80:   /// The \c Key and \c Value of \c M2 must be convertible to those of
kpeter@80:   /// \c M1.
kpeter@80:   ///
kpeter@80:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@80:   /// \code
kpeter@80:   ///   DivMap<M1,M2> dm(m1,m2);
kpeter@80:   /// \endcode
kpeter@80:   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the divMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa AddMap, SubMap, MulMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
kpeter@80:     const M1 &_m1;
kpeter@80:     const M2 &_m2;
kpeter@80:   public:
kpeter@80:     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
kpeter@80:     typedef typename Parent::Key Key;
kpeter@80:     typedef typename Parent::Value Value;
kpeter@80: 
kpeter@80:     /// Constructor
kpeter@80:     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
kpeter@80:   };
kpeter@80: 
kpeter@301:   /// Returns a \c DivMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c DivMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m1 and \c m2 are both maps with \c double
kpeter@80:   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
kpeter@80:   /// <tt>m1[x]/m2[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates DivMap
kpeter@80:   template<typename M1, typename M2>
kpeter@80:   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
kpeter@80:     return DivMap<M1, M2>(m1,m2);
kpeter@80:   }
kpeter@80: 
kpeter@80: 
kpeter@80:   /// Shifts a map with a constant.
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the sum of
kpeter@80:   /// the given map and a constant value (i.e. it shifts the map with
kpeter@80:   /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80:   ///
kpeter@80:   /// Actually,
kpeter@80:   /// \code
kpeter@80:   ///   ShiftMap<M> sh(m,v);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80:   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
kpeter@80:   /// \endcode
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the shiftMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ShiftWriteMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
kpeter@80:     C _v;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Shifts a map with a constant (read-write version).
alpar@25: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
kpeter@80:   /// of the given map and a constant value (i.e. it shifts the map with
kpeter@80:   /// the constant). Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// It makes also possible to write the map.
alpar@25:   ///
kpeter@80:   /// The simplest way of using this map is through the shiftWriteMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ShiftMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     M &_m;
kpeter@80:     C _v;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
alpar@25:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _m[k]+_v; }
alpar@25:     /// \e
kpeter@80:     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ShiftMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ShiftMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>m[x]+v</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates ShiftMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
alpar@25:     return ShiftMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
kpeter@301:   /// Returns a \c ShiftWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ShiftWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>m[x]+v</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates ShiftWriteMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
alpar@25:     return ShiftWriteMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Scales a map with a constant.
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the value of
kpeter@80:   /// the given map multiplied from the left side with a constant value.
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
alpar@26:   ///
kpeter@80:   /// Actually,
kpeter@80:   /// \code
kpeter@80:   ///   ScaleMap<M> sc(m,v);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ConstMap<M::Key, M::Value> cm(v);
kpeter@80:   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
kpeter@80:   /// \endcode
alpar@25:   ///
kpeter@80:   /// The simplest way of using this map is through the scaleMap()
kpeter@80:   /// function.
alpar@25:   ///
kpeter@80:   /// \sa ScaleWriteMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
kpeter@80:     C _v;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
alpar@25:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Scales a map with a constant (read-write version).
alpar@25: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
kpeter@80:   /// the given map multiplied from the left side with a constant value.
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// It can also be used as write map if the \c / operator is defined
kpeter@80:   /// between \c Value and \c C and the given multiplier is not zero.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the scaleWriteMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa ScaleMap
kpeter@80:   template<typename M, typename C = typename M::Value>
alpar@25:   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     M &_m;
kpeter@80:     C _v;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
alpar@25: 
kpeter@80:     /// Constructor.
kpeter@80:     /// \param m The undelying map.
kpeter@80:     /// \param v The constant value.
kpeter@80:     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
alpar@25:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return _v*_m[k]; }
alpar@25:     /// \e
kpeter@80:     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c ScaleMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ScaleMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>v*m[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates ScaleMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
alpar@25:     return ScaleMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
kpeter@301:   /// Returns a \c ScaleWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c ScaleWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values and \c v is
kpeter@80:   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
kpeter@80:   /// <tt>v*m[x]</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates ScaleWriteMap
kpeter@80:   template<typename M, typename C>
kpeter@80:   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
alpar@25:     return ScaleWriteMap<M, C>(m,v);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Negative of a map
alpar@25: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the negative
kpeter@80:   /// of the values of the given map (using the unary \c - operator).
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
alpar@25:   ///
kpeter@80:   /// If M::Value is \c int, \c double etc., then
kpeter@80:   /// \code
kpeter@80:   ///   NegMap<M> neg(m);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ScaleMap<M> neg(m,-1);
kpeter@80:   /// \endcode
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the negMap()
kpeter@80:   /// function.
kpeter@29:   ///
kpeter@80:   /// \sa NegWriteMap
kpeter@80:   template<typename M>
alpar@25:   class NegMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M& _m;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     NegMap(const M &m) : _m(m) {}
alpar@25:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return -_m[k]; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Negative of a map (read-write version)
kpeter@80: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80:   /// negative of the values of the given map (using the unary \c -
kpeter@80:   /// operator).
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// It makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// If M::Value is \c int, \c double etc., then
kpeter@80:   /// \code
kpeter@80:   ///   NegWriteMap<M> neg(m);
kpeter@80:   /// \endcode
kpeter@80:   /// is equivalent to
kpeter@80:   /// \code
kpeter@80:   ///   ScaleWriteMap<M> neg(m,-1);
kpeter@80:   /// \endcode
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the negWriteMap()
kpeter@80:   /// function.
kpeter@29:   ///
kpeter@29:   /// \sa NegMap
kpeter@80:   template<typename M>
alpar@25:   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     M &_m;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     NegWriteMap(M &m) : _m(m) {}
alpar@25:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return -_m[k]; }
alpar@25:     /// \e
kpeter@80:     void set(const Key &k, const Value &v) { _m.set(k, -v); }
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns a \c NegMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NegMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values, then
kpeter@80:   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates NegMap
kpeter@80:   template <typename M>
alpar@25:   inline NegMap<M> negMap(const M &m) {
alpar@25:     return NegMap<M>(m);
alpar@25:   }
alpar@25: 
kpeter@301:   /// Returns a \c NegWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NegWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values, then
kpeter@80:   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates NegWriteMap
kpeter@80:   template <typename M>
kpeter@80:   inline NegWriteMap<M> negWriteMap(M &m) {
alpar@25:     return NegWriteMap<M>(m);
alpar@25:   }
alpar@25: 
alpar@25: 
kpeter@80:   /// Absolute value of a map
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the absolute
kpeter@80:   /// value of the values of the given map.
kpeter@80:   /// Its \c Key and \c Value are inherited from \c M.
kpeter@80:   /// \c Value must be comparable to \c 0 and the unary \c -
kpeter@80:   /// operator must be defined for it, of course.
kpeter@80:   ///
kpeter@80:   /// The simplest way of using this map is through the absMap()
kpeter@80:   /// function.
kpeter@80:   template<typename M>
alpar@25:   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
kpeter@80:     const M &_m;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, typename M::Value> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
kpeter@80:     /// Constructor
kpeter@80:     AbsMap(const M &m) : _m(m) {}
alpar@25:     /// \e
kpeter@80:     Value operator[](const Key &k) const {
kpeter@80:       Value tmp = _m[k];
alpar@25:       return tmp >= 0 ? tmp : -tmp;
alpar@25:     }
alpar@25: 
alpar@25:   };
alpar@25: 
kpeter@301:   /// Returns an \c AbsMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c AbsMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c double values, then
kpeter@80:   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
kpeter@80:   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
kpeter@80:   /// negative.
kpeter@80:   ///
kpeter@80:   /// \relates AbsMap
kpeter@80:   template<typename M>
alpar@25:   inline AbsMap<M> absMap(const M &m) {
alpar@25:     return AbsMap<M>(m);
alpar@25:   }
alpar@25: 
kpeter@82:   /// @}
alpar@209: 
kpeter@82:   // Logical maps and map adaptors:
kpeter@82: 
kpeter@82:   /// \addtogroup maps
kpeter@82:   /// @{
kpeter@82: 
kpeter@82:   /// Constant \c true map.
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82:   /// each key.
kpeter@82:   ///
kpeter@82:   /// Note that
kpeter@82:   /// \code
kpeter@82:   ///   TrueMap<K> tm;
kpeter@82:   /// \endcode
kpeter@82:   /// is equivalent to
kpeter@82:   /// \code
kpeter@82:   ///   ConstMap<K,bool> tm(true);
kpeter@82:   /// \endcode
kpeter@82:   ///
kpeter@82:   /// \sa FalseMap
kpeter@82:   /// \sa ConstMap
kpeter@82:   template <typename K>
kpeter@82:   class TrueMap : public MapBase<K, bool> {
kpeter@82:   public:
kpeter@82:     typedef MapBase<K, bool> Parent;
kpeter@82:     typedef typename Parent::Key Key;
kpeter@82:     typedef typename Parent::Value Value;
kpeter@82: 
kpeter@82:     /// Gives back \c true.
kpeter@82:     Value operator[](const Key&) const { return true; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns a \c TrueMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c TrueMap class.
kpeter@82:   /// \relates TrueMap
kpeter@82:   template<typename K>
kpeter@82:   inline TrueMap<K> trueMap() {
kpeter@82:     return TrueMap<K>();
kpeter@82:   }
kpeter@82: 
kpeter@82: 
kpeter@82:   /// Constant \c false map.
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
kpeter@82:   /// each key.
kpeter@82:   ///
kpeter@82:   /// Note that
kpeter@82:   /// \code
kpeter@82:   ///   FalseMap<K> fm;
kpeter@82:   /// \endcode
kpeter@82:   /// is equivalent to
kpeter@82:   /// \code
kpeter@82:   ///   ConstMap<K,bool> fm(false);
kpeter@82:   /// \endcode
kpeter@82:   ///
kpeter@82:   /// \sa TrueMap
kpeter@82:   /// \sa ConstMap
kpeter@82:   template <typename K>
kpeter@82:   class FalseMap : public MapBase<K, bool> {
kpeter@82:   public:
kpeter@82:     typedef MapBase<K, bool> Parent;
kpeter@82:     typedef typename Parent::Key Key;
kpeter@82:     typedef typename Parent::Value Value;
kpeter@82: 
kpeter@82:     /// Gives back \c false.
kpeter@82:     Value operator[](const Key&) const { return false; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns a \c FalseMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c FalseMap class.
kpeter@82:   /// \relates FalseMap
kpeter@82:   template<typename K>
kpeter@82:   inline FalseMap<K> falseMap() {
kpeter@82:     return FalseMap<K>();
kpeter@82:   }
kpeter@82: 
kpeter@82:   /// @}
kpeter@82: 
kpeter@82:   /// \addtogroup map_adaptors
kpeter@82:   /// @{
kpeter@82: 
kpeter@82:   /// Logical 'and' of two maps
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82:   /// 'and' of the values of the two given maps.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   AndMap<M1,M2> am(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the andMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa OrMap
kpeter@82:   /// \sa NotMap, NotWriteMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class AndMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@82:     typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82:     typedef typename Parent::Key Key;
kpeter@82:     typedef typename Parent::Value Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82:     /// \e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c AndMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c AndMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82:   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]&&m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates AndMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return AndMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
kpeter@82: 
kpeter@82:   /// Logical 'or' of two maps
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@82:   /// 'or' of the values of the two given maps.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   OrMap<M1,M2> om(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the orMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa AndMap
kpeter@82:   /// \sa NotMap, NotWriteMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class OrMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@82:     typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82:     typedef typename Parent::Key Key;
kpeter@82:     typedef typename Parent::Value Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82:     /// \e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c OrMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c OrMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
kpeter@82:   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]||m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates OrMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return OrMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
alpar@25: 
kpeter@80:   /// Logical 'not' of a map
kpeter@80: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" returns the logical
kpeter@80:   /// negation of the values of the given map.
kpeter@80:   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
alpar@25:   ///
kpeter@80:   /// The simplest way of using this map is through the notMap()
kpeter@80:   /// function.
alpar@25:   ///
kpeter@80:   /// \sa NotWriteMap
kpeter@80:   template <typename M>
alpar@25:   class NotMap : public MapBase<typename M::Key, bool> {
kpeter@80:     const M &_m;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, bool> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
alpar@25:     /// Constructor
kpeter@80:     NotMap(const M &m) : _m(m) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return !_m[k]; }
alpar@25:   };
alpar@25: 
kpeter@80:   /// Logical 'not' of a map (read-write version)
kpeter@80: 
kpeter@80:   /// This \ref concepts::ReadWriteMap "read-write map" returns the
kpeter@80:   /// logical negation of the values of the given map.
kpeter@80:   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
kpeter@80:   /// It makes also possible to write the map. When a value is set,
kpeter@80:   /// the opposite value is set to the original map.
kpeter@29:   ///
kpeter@80:   /// The simplest way of using this map is through the notWriteMap()
kpeter@80:   /// function.
kpeter@80:   ///
kpeter@80:   /// \sa NotMap
kpeter@80:   template <typename M>
alpar@25:   class NotWriteMap : public MapBase<typename M::Key, bool> {
kpeter@80:     M &_m;
alpar@25:   public:
alpar@25:     typedef MapBase<typename M::Key, bool> Parent;
alpar@25:     typedef typename Parent::Key Key;
alpar@25:     typedef typename Parent::Value Value;
alpar@25: 
alpar@25:     /// Constructor
kpeter@80:     NotWriteMap(M &m) : _m(m) {}
kpeter@80:     /// \e
kpeter@80:     Value operator[](const Key &k) const { return !_m[k]; }
kpeter@80:     /// \e
kpeter@80:     void set(const Key &k, bool v) { _m.set(k, !v); }
alpar@25:   };
kpeter@80: 
kpeter@301:   /// Returns a \c NotMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NotMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c bool values, then
kpeter@80:   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80:   ///
kpeter@80:   /// \relates NotMap
kpeter@80:   template <typename M>
alpar@25:   inline NotMap<M> notMap(const M &m) {
alpar@25:     return NotMap<M>(m);
alpar@25:   }
kpeter@80: 
kpeter@301:   /// Returns a \c NotWriteMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c NotWriteMap class.
kpeter@80:   ///
kpeter@80:   /// For example, if \c m is a map with \c bool values, then
kpeter@80:   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
kpeter@80:   /// Moreover it makes also possible to write the map.
kpeter@80:   ///
kpeter@80:   /// \relates NotWriteMap
kpeter@80:   template <typename M>
kpeter@80:   inline NotWriteMap<M> notWriteMap(M &m) {
alpar@25:     return NotWriteMap<M>(m);
alpar@25:   }
alpar@25: 
kpeter@82: 
kpeter@82:   /// Combination of two maps using the \c == operator
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82:   /// the keys for which the corresponding values of the two maps are
kpeter@82:   /// equal.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   EqualMap<M1,M2> em(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the equalMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa LessMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class EqualMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@82:     typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82:     typedef typename Parent::Key Key;
kpeter@82:     typedef typename Parent::Value Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82:     /// \e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c EqualMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c EqualMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82:   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]==m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates EqualMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return EqualMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
kpeter@82: 
kpeter@82:   /// Combination of two maps using the \c < operator
kpeter@82: 
kpeter@82:   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
kpeter@82:   /// the keys for which the corresponding value of the first map is
kpeter@82:   /// less then the value of the second map.
kpeter@82:   /// Its \c Key type is inherited from \c M1 and its \c Value type is
kpeter@82:   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
kpeter@82:   ///
kpeter@82:   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
kpeter@82:   /// \code
kpeter@82:   ///   LessMap<M1,M2> lm(m1,m2);
kpeter@82:   /// \endcode
kpeter@82:   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// The simplest way of using this map is through the lessMap()
kpeter@82:   /// function.
kpeter@82:   ///
kpeter@82:   /// \sa EqualMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   class LessMap : public MapBase<typename M1::Key, bool> {
kpeter@82:     const M1 &_m1;
kpeter@82:     const M2 &_m2;
kpeter@82:   public:
kpeter@82:     typedef MapBase<typename M1::Key, bool> Parent;
kpeter@82:     typedef typename Parent::Key Key;
kpeter@82:     typedef typename Parent::Value Value;
kpeter@82: 
kpeter@82:     /// Constructor
kpeter@82:     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
kpeter@82:     /// \e
kpeter@82:     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
kpeter@82:   };
kpeter@82: 
kpeter@301:   /// Returns an \c LessMap class
kpeter@301: 
kpeter@301:   /// This function just returns an \c LessMap class.
kpeter@82:   ///
kpeter@82:   /// For example, if \c m1 and \c m2 are maps with keys and values of
kpeter@82:   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
kpeter@82:   /// <tt>m1[x]<m2[x]</tt>.
kpeter@82:   ///
kpeter@82:   /// \relates LessMap
kpeter@82:   template<typename M1, typename M2>
kpeter@82:   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
kpeter@82:     return LessMap<M1, M2>(m1,m2);
kpeter@82:   }
kpeter@82: 
alpar@104:   namespace _maps_bits {
alpar@104: 
alpar@104:     template <typename _Iterator, typename Enable = void>
alpar@104:     struct IteratorTraits {
alpar@104:       typedef typename std::iterator_traits<_Iterator>::value_type Value;
alpar@104:     };
alpar@104: 
alpar@104:     template <typename _Iterator>
alpar@104:     struct IteratorTraits<_Iterator,
alpar@104:       typename exists<typename _Iterator::container_type>::type>
alpar@104:     {
alpar@104:       typedef typename _Iterator::container_type::value_type Value;
alpar@104:     };
alpar@104: 
alpar@104:   }
alpar@104: 
kpeter@314:   /// @}
kpeter@314: 
kpeter@314:   /// \addtogroup maps
kpeter@314:   /// @{
kpeter@314: 
alpar@104:   /// \brief Writable bool map for logging each \c true assigned element
alpar@104:   ///
kpeter@159:   /// A \ref concepts::WriteMap "writable" bool map for logging
alpar@104:   /// each \c true assigned element, i.e it copies subsequently each
alpar@104:   /// keys set to \c true to the given iterator.
kpeter@159:   /// The most important usage of it is storing certain nodes or arcs
kpeter@159:   /// that were marked \c true by an algorithm.
alpar@104:   ///
kpeter@159:   /// There are several algorithms that provide solutions through bool
kpeter@159:   /// maps and most of them assign \c true at most once for each key.
kpeter@159:   /// In these cases it is a natural request to store each \c true
kpeter@159:   /// assigned elements (in order of the assignment), which can be
kpeter@167:   /// easily done with LoggerBoolMap.
kpeter@159:   ///
kpeter@167:   /// The simplest way of using this map is through the loggerBoolMap()
kpeter@159:   /// function.
kpeter@159:   ///
kpeter@159:   /// \tparam It The type of the iterator.
kpeter@159:   /// \tparam Ke The key type of the map. The default value set
kpeter@159:   /// according to the iterator type should work in most cases.
alpar@104:   ///
alpar@104:   /// \note The container of the iterator must contain enough space
kpeter@159:   /// for the elements or the iterator should be an inserter iterator.
kpeter@159: #ifdef DOXYGEN
kpeter@159:   template <typename It, typename Ke>
kpeter@159: #else
alpar@104:   template <typename It,
alpar@209:             typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
kpeter@159: #endif
kpeter@167:   class LoggerBoolMap {
alpar@104:   public:
alpar@104:     typedef It Iterator;
alpar@104: 
alpar@104:     typedef Ke Key;
alpar@104:     typedef bool Value;
alpar@104: 
alpar@104:     /// Constructor
kpeter@167:     LoggerBoolMap(Iterator it)
alpar@104:       : _begin(it), _end(it) {}
alpar@104: 
alpar@104:     /// Gives back the given iterator set for the first key
alpar@104:     Iterator begin() const {
alpar@104:       return _begin;
alpar@104:     }
alpar@104: 
alpar@104:     /// Gives back the the 'after the last' iterator
alpar@104:     Iterator end() const {
alpar@104:       return _end;
alpar@104:     }
alpar@104: 
alpar@104:     /// The set function of the map
kpeter@159:     void set(const Key& key, Value value) {
alpar@104:       if (value) {
alpar@209:         *_end++ = key;
alpar@104:       }
alpar@104:     }
alpar@104: 
alpar@104:   private:
alpar@104:     Iterator _begin;
kpeter@159:     Iterator _end;
alpar@104:   };
alpar@209: 
kpeter@301:   /// Returns a \c LoggerBoolMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c LoggerBoolMap class.
kpeter@159:   ///
kpeter@159:   /// The most important usage of it is storing certain nodes or arcs
kpeter@159:   /// that were marked \c true by an algorithm.
kpeter@159:   /// For example it makes easier to store the nodes in the processing
kpeter@159:   /// order of Dfs algorithm, as the following examples show.
kpeter@159:   /// \code
kpeter@159:   ///   std::vector<Node> v;
kpeter@167:   ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
kpeter@159:   /// \endcode
kpeter@159:   /// \code
kpeter@159:   ///   std::vector<Node> v(countNodes(g));
kpeter@167:   ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
kpeter@159:   /// \endcode
kpeter@159:   ///
kpeter@159:   /// \note The container of the iterator must contain enough space
kpeter@159:   /// for the elements or the iterator should be an inserter iterator.
kpeter@159:   ///
kpeter@167:   /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
kpeter@159:   /// it cannot be used when a readable map is needed, for example as
kpeter@301:   /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
kpeter@159:   ///
kpeter@167:   /// \relates LoggerBoolMap
kpeter@159:   template<typename Iterator>
kpeter@167:   inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
kpeter@167:     return LoggerBoolMap<Iterator>(it);
kpeter@159:   }
alpar@104: 
kpeter@314:   /// @}
kpeter@314: 
kpeter@314:   /// \addtogroup graph_maps
kpeter@314:   /// @{
kpeter@314: 
deba@220:   /// Provides an immutable and unique id for each item in the graph.
deba@220: 
deba@220:   /// The IdMap class provides a unique and immutable id for each item of the
deba@220:   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
deba@220:   /// different items (nodes) get different ids <li>\b immutable: the id of an
deba@220:   /// item (node) does not change (even if you delete other nodes).  </ul>
deba@220:   /// Through this map you get access (i.e. can read) the inner id values of
deba@220:   /// the items stored in the graph. This map can be inverted with its member
deba@220:   /// class \c InverseMap or with the \c operator() member.
deba@220:   ///
deba@220:   template <typename _Graph, typename _Item>
deba@220:   class IdMap {
deba@220:   public:
deba@220:     typedef _Graph Graph;
deba@220:     typedef int Value;
deba@220:     typedef _Item Item;
deba@220:     typedef _Item Key;
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
deba@220:     /// Constructor of the map.
deba@220:     explicit IdMap(const Graph& graph) : _graph(&graph) {}
deba@220: 
deba@220:     /// \brief Gives back the \e id of the item.
deba@220:     ///
deba@220:     /// Gives back the immutable and unique \e id of the item.
deba@220:     int operator[](const Item& item) const { return _graph->id(item);}
deba@220: 
deba@220:     /// \brief Gives back the item by its id.
deba@220:     ///
deba@220:     /// Gives back the item by its id.
deba@220:     Item operator()(int id) { return _graph->fromId(id, Item()); }
deba@220: 
deba@220:   private:
deba@220:     const Graph* _graph;
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief The class represents the inverse of its owner (IdMap).
deba@220:     ///
deba@220:     /// The class represents the inverse of its owner (IdMap).
deba@220:     /// \see inverse()
deba@220:     class InverseMap {
deba@220:     public:
deba@220: 
deba@220:       /// \brief Constructor.
deba@220:       ///
deba@220:       /// Constructor for creating an id-to-item map.
deba@220:       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
deba@220: 
deba@220:       /// \brief Constructor.
deba@220:       ///
deba@220:       /// Constructor for creating an id-to-item map.
deba@220:       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
deba@220: 
deba@220:       /// \brief Gives back the given item from its id.
deba@220:       ///
deba@220:       /// Gives back the given item from its id.
deba@220:       ///
deba@220:       Item operator[](int id) const { return _graph->fromId(id, Item());}
deba@220: 
deba@220:     private:
deba@220:       const Graph* _graph;
deba@220:     };
deba@220: 
deba@220:     /// \brief Gives back the inverse of the map.
deba@220:     ///
deba@220:     /// Gives back the inverse of the IdMap.
deba@220:     InverseMap inverse() const { return InverseMap(*_graph);}
deba@220: 
deba@220:   };
deba@220: 
deba@220: 
deba@220:   /// \brief General invertable graph-map type.
deba@220: 
deba@220:   /// This type provides simple invertable graph-maps.
deba@220:   /// The InvertableMap wraps an arbitrary ReadWriteMap
deba@220:   /// and if a key is set to a new value then store it
deba@220:   /// in the inverse map.
deba@220:   ///
deba@220:   /// The values of the map can be accessed
deba@220:   /// with stl compatible forward iterator.
deba@220:   ///
deba@220:   /// \tparam _Graph The graph type.
deba@220:   /// \tparam _Item The item type of the graph.
deba@220:   /// \tparam _Value The value type of the map.
deba@220:   ///
deba@220:   /// \see IterableValueMap
deba@220:   template <typename _Graph, typename _Item, typename _Value>
deba@220:   class InvertableMap
deba@220:     : protected ItemSetTraits<_Graph, _Item>::template Map<_Value>::Type {
deba@220:   private:
deba@220: 
deba@220:     typedef typename ItemSetTraits<_Graph, _Item>::
deba@220:     template Map<_Value>::Type Map;
deba@220:     typedef _Graph Graph;
deba@220: 
deba@220:     typedef std::map<_Value, _Item> Container;
deba@220:     Container _inv_map;
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// The key type of InvertableMap (Node, Arc, Edge).
deba@220:     typedef typename Map::Key Key;
deba@220:     /// The value type of the InvertableMap.
deba@220:     typedef typename Map::Value Value;
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
deba@220:     /// Construct a new InvertableMap for the graph.
deba@220:     ///
deba@220:     explicit InvertableMap(const Graph& graph) : Map(graph) {}
deba@220: 
deba@220:     /// \brief Forward iterator for values.
deba@220:     ///
deba@220:     /// This iterator is an stl compatible forward
deba@220:     /// iterator on the values of the map. The values can
deba@220:     /// be accessed in the [beginValue, endValue) range.
deba@220:     ///
deba@220:     class ValueIterator
deba@220:       : public std::iterator<std::forward_iterator_tag, Value> {
deba@220:       friend class InvertableMap;
deba@220:     private:
deba@220:       ValueIterator(typename Container::const_iterator _it)
deba@220:         : it(_it) {}
deba@220:     public:
deba@220: 
deba@220:       ValueIterator() {}
deba@220: 
deba@220:       ValueIterator& operator++() { ++it; return *this; }
deba@220:       ValueIterator operator++(int) {
deba@220:         ValueIterator tmp(*this);
deba@220:         operator++();
deba@220:         return tmp;
deba@220:       }
deba@220: 
deba@220:       const Value& operator*() const { return it->first; }
deba@220:       const Value* operator->() const { return &(it->first); }
deba@220: 
deba@220:       bool operator==(ValueIterator jt) const { return it == jt.it; }
deba@220:       bool operator!=(ValueIterator jt) const { return it != jt.it; }
deba@220: 
deba@220:     private:
deba@220:       typename Container::const_iterator it;
deba@220:     };
deba@220: 
deba@220:     /// \brief Returns an iterator to the first value.
deba@220:     ///
deba@220:     /// Returns an stl compatible iterator to the
deba@220:     /// first value of the map. The values of the
deba@220:     /// map can be accessed in the [beginValue, endValue)
deba@220:     /// range.
deba@220:     ValueIterator beginValue() const {
deba@220:       return ValueIterator(_inv_map.begin());
deba@220:     }
deba@220: 
deba@220:     /// \brief Returns an iterator after the last value.
deba@220:     ///
deba@220:     /// Returns an stl compatible iterator after the
deba@220:     /// last value of the map. The values of the
deba@220:     /// map can be accessed in the [beginValue, endValue)
deba@220:     /// range.
deba@220:     ValueIterator endValue() const {
deba@220:       return ValueIterator(_inv_map.end());
deba@220:     }
deba@220: 
deba@220:     /// \brief The setter function of the map.
deba@220:     ///
deba@220:     /// Sets the mapped value.
deba@220:     void set(const Key& key, const Value& val) {
deba@220:       Value oldval = Map::operator[](key);
deba@220:       typename Container::iterator it = _inv_map.find(oldval);
deba@220:       if (it != _inv_map.end() && it->second == key) {
deba@220:         _inv_map.erase(it);
deba@220:       }
deba@220:       _inv_map.insert(make_pair(val, key));
deba@220:       Map::set(key, val);
deba@220:     }
deba@220: 
deba@220:     /// \brief The getter function of the map.
deba@220:     ///
deba@220:     /// It gives back the value associated with the key.
deba@220:     typename MapTraits<Map>::ConstReturnValue
deba@220:     operator[](const Key& key) const {
deba@220:       return Map::operator[](key);
deba@220:     }
deba@220: 
deba@220:     /// \brief Gives back the item by its value.
deba@220:     ///
deba@220:     /// Gives back the item by its value.
deba@220:     Key operator()(const Value& key) const {
deba@220:       typename Container::const_iterator it = _inv_map.find(key);
deba@220:       return it != _inv_map.end() ? it->second : INVALID;
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
deba@220:     /// \brief Erase the key from the map.
deba@220:     ///
deba@220:     /// Erase the key to the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const Key& key) {
deba@220:       Value val = Map::operator[](key);
deba@220:       typename Container::iterator it = _inv_map.find(val);
deba@220:       if (it != _inv_map.end() && it->second == key) {
deba@220:         _inv_map.erase(it);
deba@220:       }
deba@220:       Map::erase(key);
deba@220:     }
deba@220: 
deba@220:     /// \brief Erase more keys from the map.
deba@220:     ///
deba@220:     /// Erase more keys from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const std::vector<Key>& keys) {
deba@220:       for (int i = 0; i < int(keys.size()); ++i) {
deba@220:         Value val = Map::operator[](keys[i]);
deba@220:         typename Container::iterator it = _inv_map.find(val);
deba@220:         if (it != _inv_map.end() && it->second == keys[i]) {
deba@220:           _inv_map.erase(it);
deba@220:         }
deba@220:       }
deba@220:       Map::erase(keys);
deba@220:     }
deba@220: 
deba@220:     /// \brief Clear the keys from the map and inverse map.
deba@220:     ///
deba@220:     /// Clear the keys from the map and inverse map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void clear() {
deba@220:       _inv_map.clear();
deba@220:       Map::clear();
deba@220:     }
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief The inverse map type.
deba@220:     ///
deba@220:     /// The inverse of this map. The subscript operator of the map
deba@220:     /// gives back always the item what was last assigned to the value.
deba@220:     class InverseMap {
deba@220:     public:
deba@220:       /// \brief Constructor of the InverseMap.
deba@220:       ///
deba@220:       /// Constructor of the InverseMap.
deba@220:       explicit InverseMap(const InvertableMap& inverted)
deba@220:         : _inverted(inverted) {}
deba@220: 
deba@220:       /// The value type of the InverseMap.
deba@220:       typedef typename InvertableMap::Key Value;
deba@220:       /// The key type of the InverseMap.
deba@220:       typedef typename InvertableMap::Value Key;
deba@220: 
deba@220:       /// \brief Subscript operator.
deba@220:       ///
deba@220:       /// Subscript operator. It gives back always the item
deba@220:       /// what was last assigned to the value.
deba@220:       Value operator[](const Key& key) const {
deba@220:         return _inverted(key);
deba@220:       }
deba@220: 
deba@220:     private:
deba@220:       const InvertableMap& _inverted;
deba@220:     };
deba@220: 
deba@220:     /// \brief It gives back the just readable inverse map.
deba@220:     ///
deba@220:     /// It gives back the just readable inverse map.
deba@220:     InverseMap inverse() const {
deba@220:       return InverseMap(*this);
deba@220:     }
deba@220: 
deba@220:   };
deba@220: 
deba@220:   /// \brief Provides a mutable, continuous and unique descriptor for each
deba@220:   /// item in the graph.
deba@220:   ///
deba@220:   /// The DescriptorMap class provides a unique and continuous (but mutable)
deba@220:   /// descriptor (id) for each item of the same type (e.g. node) in the
deba@220:   /// graph. This id is <ul><li>\b unique: different items (nodes) get
deba@220:   /// different ids <li>\b continuous: the range of the ids is the set of
deba@220:   /// integers between 0 and \c n-1, where \c n is the number of the items of
deba@220:   /// this type (e.g. nodes) (so the id of a node can change if you delete an
deba@220:   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
deba@220:   /// with its member class \c InverseMap, or with the \c operator() member.
deba@220:   ///
deba@220:   /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
deba@220:   /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or
deba@220:   /// Edge.
deba@220:   template <typename _Graph, typename _Item>
deba@220:   class DescriptorMap
deba@220:     : protected ItemSetTraits<_Graph, _Item>::template Map<int>::Type {
deba@220: 
deba@220:     typedef _Item Item;
deba@220:     typedef typename ItemSetTraits<_Graph, _Item>::template Map<int>::Type Map;
deba@220: 
deba@220:   public:
deba@220:     /// The graph class of DescriptorMap.
deba@220:     typedef _Graph Graph;
deba@220: 
deba@220:     /// The key type of DescriptorMap (Node, Arc, Edge).
deba@220:     typedef typename Map::Key Key;
deba@220:     /// The value type of DescriptorMap.
deba@220:     typedef typename Map::Value Value;
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
deba@220:     /// Constructor for descriptor map.
deba@220:     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
deba@220:       Item it;
deba@220:       const typename Map::Notifier* nf = Map::notifier();
deba@220:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:         Map::set(it, _inv_map.size());
deba@220:         _inv_map.push_back(it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
deba@220:     /// \brief Add a new key to the map.
deba@220:     ///
deba@220:     /// Add a new key to the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void add(const Item& item) {
deba@220:       Map::add(item);
deba@220:       Map::set(item, _inv_map.size());
deba@220:       _inv_map.push_back(item);
deba@220:     }
deba@220: 
deba@220:     /// \brief Add more new keys to the map.
deba@220:     ///
deba@220:     /// Add more new keys to the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void add(const std::vector<Item>& items) {
deba@220:       Map::add(items);
deba@220:       for (int i = 0; i < int(items.size()); ++i) {
deba@220:         Map::set(items[i], _inv_map.size());
deba@220:         _inv_map.push_back(items[i]);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     /// \brief Erase the key from the map.
deba@220:     ///
deba@220:     /// Erase the key from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const Item& item) {
deba@220:       Map::set(_inv_map.back(), Map::operator[](item));
deba@220:       _inv_map[Map::operator[](item)] = _inv_map.back();
deba@220:       _inv_map.pop_back();
deba@220:       Map::erase(item);
deba@220:     }
deba@220: 
deba@220:     /// \brief Erase more keys from the map.
deba@220:     ///
deba@220:     /// Erase more keys from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void erase(const std::vector<Item>& items) {
deba@220:       for (int i = 0; i < int(items.size()); ++i) {
deba@220:         Map::set(_inv_map.back(), Map::operator[](items[i]));
deba@220:         _inv_map[Map::operator[](items[i])] = _inv_map.back();
deba@220:         _inv_map.pop_back();
deba@220:       }
deba@220:       Map::erase(items);
deba@220:     }
deba@220: 
deba@220:     /// \brief Build the unique map.
deba@220:     ///
deba@220:     /// Build the unique map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void build() {
deba@220:       Map::build();
deba@220:       Item it;
deba@220:       const typename Map::Notifier* nf = Map::notifier();
deba@220:       for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:         Map::set(it, _inv_map.size());
deba@220:         _inv_map.push_back(it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     /// \brief Clear the keys from the map.
deba@220:     ///
deba@220:     /// Clear the keys from the map. It is called by the
deba@220:     /// \c AlterationNotifier.
deba@220:     virtual void clear() {
deba@220:       _inv_map.clear();
deba@220:       Map::clear();
deba@220:     }
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief Returns the maximal value plus one.
deba@220:     ///
deba@220:     /// Returns the maximal value plus one in the map.
deba@220:     unsigned int size() const {
deba@220:       return _inv_map.size();
deba@220:     }
deba@220: 
deba@220:     /// \brief Swaps the position of the two items in the map.
deba@220:     ///
deba@220:     /// Swaps the position of the two items in the map.
deba@220:     void swap(const Item& p, const Item& q) {
deba@220:       int pi = Map::operator[](p);
deba@220:       int qi = Map::operator[](q);
deba@220:       Map::set(p, qi);
deba@220:       _inv_map[qi] = p;
deba@220:       Map::set(q, pi);
deba@220:       _inv_map[pi] = q;
deba@220:     }
deba@220: 
deba@220:     /// \brief Gives back the \e descriptor of the item.
deba@220:     ///
deba@220:     /// Gives back the mutable and unique \e descriptor of the map.
deba@220:     int operator[](const Item& item) const {
deba@220:       return Map::operator[](item);
deba@220:     }
deba@220: 
deba@220:     /// \brief Gives back the item by its descriptor.
deba@220:     ///
deba@220:     /// Gives back th item by its descriptor.
deba@220:     Item operator()(int id) const {
deba@220:       return _inv_map[id];
deba@220:     }
deba@220: 
deba@220:   private:
deba@220: 
deba@220:     typedef std::vector<Item> Container;
deba@220:     Container _inv_map;
deba@220: 
deba@220:   public:
deba@220:     /// \brief The inverse map type of DescriptorMap.
deba@220:     ///
deba@220:     /// The inverse map type of DescriptorMap.
deba@220:     class InverseMap {
deba@220:     public:
deba@220:       /// \brief Constructor of the InverseMap.
deba@220:       ///
deba@220:       /// Constructor of the InverseMap.
deba@220:       explicit InverseMap(const DescriptorMap& inverted)
deba@220:         : _inverted(inverted) {}
deba@220: 
deba@220: 
deba@220:       /// The value type of the InverseMap.
deba@220:       typedef typename DescriptorMap::Key Value;
deba@220:       /// The key type of the InverseMap.
deba@220:       typedef typename DescriptorMap::Value Key;
deba@220: 
deba@220:       /// \brief Subscript operator.
deba@220:       ///
deba@220:       /// Subscript operator. It gives back the item
deba@220:       /// that the descriptor belongs to currently.
deba@220:       Value operator[](const Key& key) const {
deba@220:         return _inverted(key);
deba@220:       }
deba@220: 
deba@220:       /// \brief Size of the map.
deba@220:       ///
deba@220:       /// Returns the size of the map.
deba@220:       unsigned int size() const {
deba@220:         return _inverted.size();
deba@220:       }
deba@220: 
deba@220:     private:
deba@220:       const DescriptorMap& _inverted;
deba@220:     };
deba@220: 
deba@220:     /// \brief Gives back the inverse of the map.
deba@220:     ///
deba@220:     /// Gives back the inverse of the map.
deba@220:     const InverseMap inverse() const {
deba@220:       return InverseMap(*this);
deba@220:     }
deba@220:   };
deba@220: 
deba@220:   /// \brief Returns the source of the given arc.
deba@220:   ///
deba@220:   /// The SourceMap gives back the source Node of the given arc.
deba@220:   /// \see TargetMap
deba@220:   template <typename Digraph>
deba@220:   class SourceMap {
deba@220:   public:
deba@220: 
deba@220:     typedef typename Digraph::Node Value;
deba@220:     typedef typename Digraph::Arc Key;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
deba@220:     /// Constructor
kpeter@313:     /// \param digraph The digraph that the map belongs to.
deba@220:     explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
deba@220: 
deba@220:     /// \brief The subscript operator.
deba@220:     ///
deba@220:     /// The subscript operator.
deba@220:     /// \param arc The arc
deba@220:     /// \return The source of the arc
deba@220:     Value operator[](const Key& arc) const {
deba@220:       return _digraph.source(arc);
deba@220:     }
deba@220: 
deba@220:   private:
deba@220:     const Digraph& _digraph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c SourceMap class.
deba@220:   ///
kpeter@301:   /// This function just returns an \c SourceMap class.
deba@220:   /// \relates SourceMap
deba@220:   template <typename Digraph>
deba@220:   inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
deba@220:     return SourceMap<Digraph>(digraph);
deba@220:   }
deba@220: 
deba@220:   /// \brief Returns the target of the given arc.
deba@220:   ///
deba@220:   /// The TargetMap gives back the target Node of the given arc.
deba@220:   /// \see SourceMap
deba@220:   template <typename Digraph>
deba@220:   class TargetMap {
deba@220:   public:
deba@220: 
deba@220:     typedef typename Digraph::Node Value;
deba@220:     typedef typename Digraph::Arc Key;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
deba@220:     /// Constructor
kpeter@313:     /// \param digraph The digraph that the map belongs to.
deba@220:     explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
deba@220: 
deba@220:     /// \brief The subscript operator.
deba@220:     ///
deba@220:     /// The subscript operator.
deba@220:     /// \param e The arc
deba@220:     /// \return The target of the arc
deba@220:     Value operator[](const Key& e) const {
deba@220:       return _digraph.target(e);
deba@220:     }
deba@220: 
deba@220:   private:
deba@220:     const Digraph& _digraph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c TargetMap class.
deba@220:   ///
kpeter@301:   /// This function just returns a \c TargetMap class.
deba@220:   /// \relates TargetMap
deba@220:   template <typename Digraph>
deba@220:   inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
deba@220:     return TargetMap<Digraph>(digraph);
deba@220:   }
deba@220: 
deba@220:   /// \brief Returns the "forward" directed arc view of an edge.
deba@220:   ///
deba@220:   /// Returns the "forward" directed arc view of an edge.
deba@220:   /// \see BackwardMap
deba@220:   template <typename Graph>
deba@220:   class ForwardMap {
deba@220:   public:
deba@220: 
deba@220:     typedef typename Graph::Arc Value;
deba@220:     typedef typename Graph::Edge Key;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
deba@220:     /// Constructor
kpeter@313:     /// \param graph The graph that the map belongs to.
deba@220:     explicit ForwardMap(const Graph& graph) : _graph(graph) {}
deba@220: 
deba@220:     /// \brief The subscript operator.
deba@220:     ///
deba@220:     /// The subscript operator.
deba@220:     /// \param key An edge
deba@220:     /// \return The "forward" directed arc view of edge
deba@220:     Value operator[](const Key& key) const {
deba@220:       return _graph.direct(key, true);
deba@220:     }
deba@220: 
deba@220:   private:
deba@220:     const Graph& _graph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c ForwardMap class.
deba@220:   ///
kpeter@301:   /// This function just returns an \c ForwardMap class.
deba@220:   /// \relates ForwardMap
deba@220:   template <typename Graph>
deba@220:   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
deba@220:     return ForwardMap<Graph>(graph);
deba@220:   }
deba@220: 
deba@220:   /// \brief Returns the "backward" directed arc view of an edge.
deba@220:   ///
deba@220:   /// Returns the "backward" directed arc view of an edge.
deba@220:   /// \see ForwardMap
deba@220:   template <typename Graph>
deba@220:   class BackwardMap {
deba@220:   public:
deba@220: 
deba@220:     typedef typename Graph::Arc Value;
deba@220:     typedef typename Graph::Edge Key;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
deba@220:     /// Constructor
kpeter@313:     /// \param graph The graph that the map belongs to.
deba@220:     explicit BackwardMap(const Graph& graph) : _graph(graph) {}
deba@220: 
deba@220:     /// \brief The subscript operator.
deba@220:     ///
deba@220:     /// The subscript operator.
deba@220:     /// \param key An edge
deba@220:     /// \return The "backward" directed arc view of edge
deba@220:     Value operator[](const Key& key) const {
deba@220:       return _graph.direct(key, false);
deba@220:     }
deba@220: 
deba@220:   private:
deba@220:     const Graph& _graph;
deba@220:   };
deba@220: 
kpeter@301:   /// \brief Returns a \c BackwardMap class
kpeter@301: 
kpeter@301:   /// This function just returns a \c BackwardMap class.
deba@220:   /// \relates BackwardMap
deba@220:   template <typename Graph>
deba@220:   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
deba@220:     return BackwardMap<Graph>(graph);
deba@220:   }
deba@220: 
deba@220:   /// \brief Potential difference map
deba@220:   ///
deba@220:   /// If there is an potential map on the nodes then we
deba@220:   /// can get an arc map as we get the substraction of the
deba@220:   /// values of the target and source.
deba@220:   template <typename Digraph, typename NodeMap>
deba@220:   class PotentialDifferenceMap {
deba@220:   public:
deba@220:     typedef typename Digraph::Arc Key;
deba@220:     typedef typename NodeMap::Value Value;
deba@220: 
deba@220:     /// \brief Constructor
deba@220:     ///
deba@220:     /// Contructor of the map
deba@220:     explicit PotentialDifferenceMap(const Digraph& digraph,
deba@220:                                     const NodeMap& potential)
deba@220:       : _digraph(digraph), _potential(potential) {}
deba@220: 
deba@220:     /// \brief Const subscription operator
deba@220:     ///
deba@220:     /// Const subscription operator
deba@220:     Value operator[](const Key& arc) const {
deba@220:       return _potential[_digraph.target(arc)] -
deba@220:         _potential[_digraph.source(arc)];
deba@220:     }
deba@220: 
deba@220:   private:
deba@220:     const Digraph& _digraph;
deba@220:     const NodeMap& _potential;
deba@220:   };
deba@220: 
deba@220:   /// \brief Returns a PotentialDifferenceMap.
deba@220:   ///
deba@220:   /// This function just returns a PotentialDifferenceMap.
deba@220:   /// \relates PotentialDifferenceMap
deba@220:   template <typename Digraph, typename NodeMap>
deba@220:   PotentialDifferenceMap<Digraph, NodeMap>
deba@220:   potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
deba@220:     return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
deba@220:   }
deba@220: 
deba@220:   /// \brief Map of the node in-degrees.
deba@220:   ///
deba@220:   /// This map returns the in-degree of a node. Once it is constructed,
deba@220:   /// the degrees are stored in a standard NodeMap, so each query is done
deba@220:   /// in constant time. On the other hand, the values are updated automatically
deba@220:   /// whenever the digraph changes.
deba@220:   ///
deba@220:   /// \warning Besides addNode() and addArc(), a digraph structure may provide
deba@220:   /// alternative ways to modify the digraph. The correct behavior of InDegMap
deba@220:   /// is not guarantied if these additional features are used. For example
deba@220:   /// the functions \ref ListDigraph::changeSource() "changeSource()",
deba@220:   /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220:   /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220:   /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220:   ///
deba@220:   /// \sa OutDegMap
deba@220: 
deba@220:   template <typename _Digraph>
deba@220:   class InDegMap
deba@220:     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
deba@220:       ::ItemNotifier::ObserverBase {
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     typedef _Digraph Digraph;
deba@220:     typedef int Value;
deba@220:     typedef typename Digraph::Node Key;
deba@220: 
deba@220:     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220:     ::ItemNotifier::ObserverBase Parent;
deba@220: 
deba@220:   private:
deba@220: 
deba@220:     class AutoNodeMap
deba@220:       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220:     public:
deba@220: 
deba@220:       typedef typename ItemSetTraits<Digraph, Key>::
deba@220:       template Map<int>::Type Parent;
deba@220: 
deba@220:       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220: 
deba@220:       virtual void add(const Key& key) {
deba@220:         Parent::add(key);
deba@220:         Parent::set(key, 0);
deba@220:       }
deba@220: 
deba@220:       virtual void add(const std::vector<Key>& keys) {
deba@220:         Parent::add(keys);
deba@220:         for (int i = 0; i < int(keys.size()); ++i) {
deba@220:           Parent::set(keys[i], 0);
deba@220:         }
deba@220:       }
deba@220: 
deba@220:       virtual void build() {
deba@220:         Parent::build();
deba@220:         Key it;
deba@220:         typename Parent::Notifier* nf = Parent::notifier();
deba@220:         for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:           Parent::set(it, 0);
deba@220:         }
deba@220:       }
deba@220:     };
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
deba@220:     /// Constructor for creating in-degree map.
deba@220:     explicit InDegMap(const Digraph& digraph)
deba@220:       : _digraph(digraph), _deg(digraph) {
deba@220:       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220: 
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countInArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     /// Gives back the in-degree of a Node.
deba@220:     int operator[](const Key& key) const {
deba@220:       return _deg[key];
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
deba@220:     typedef typename Digraph::Arc Arc;
deba@220: 
deba@220:     virtual void add(const Arc& arc) {
deba@220:       ++_deg[_digraph.target(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void add(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         ++_deg[_digraph.target(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const Arc& arc) {
deba@220:       --_deg[_digraph.target(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         --_deg[_digraph.target(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void build() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countInArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void clear() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = 0;
deba@220:       }
deba@220:     }
deba@220:   private:
deba@220: 
deba@220:     const Digraph& _digraph;
deba@220:     AutoNodeMap _deg;
deba@220:   };
deba@220: 
deba@220:   /// \brief Map of the node out-degrees.
deba@220:   ///
deba@220:   /// This map returns the out-degree of a node. Once it is constructed,
deba@220:   /// the degrees are stored in a standard NodeMap, so each query is done
deba@220:   /// in constant time. On the other hand, the values are updated automatically
deba@220:   /// whenever the digraph changes.
deba@220:   ///
deba@220:   /// \warning Besides addNode() and addArc(), a digraph structure may provide
deba@220:   /// alternative ways to modify the digraph. The correct behavior of OutDegMap
deba@220:   /// is not guarantied if these additional features are used. For example
deba@220:   /// the functions \ref ListDigraph::changeSource() "changeSource()",
deba@220:   /// \ref ListDigraph::changeTarget() "changeTarget()" and
deba@220:   /// \ref ListDigraph::reverseArc() "reverseArc()"
deba@220:   /// of \ref ListDigraph will \e not update the degree values correctly.
deba@220:   ///
deba@220:   /// \sa InDegMap
deba@220: 
deba@220:   template <typename _Digraph>
deba@220:   class OutDegMap
deba@220:     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
deba@220:       ::ItemNotifier::ObserverBase {
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     typedef _Digraph Digraph;
deba@220:     typedef int Value;
deba@220:     typedef typename Digraph::Node Key;
deba@220: 
deba@220:     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
deba@220:     ::ItemNotifier::ObserverBase Parent;
deba@220: 
deba@220:   private:
deba@220: 
deba@220:     class AutoNodeMap
deba@220:       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
deba@220:     public:
deba@220: 
deba@220:       typedef typename ItemSetTraits<Digraph, Key>::
deba@220:       template Map<int>::Type Parent;
deba@220: 
deba@220:       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
deba@220: 
deba@220:       virtual void add(const Key& key) {
deba@220:         Parent::add(key);
deba@220:         Parent::set(key, 0);
deba@220:       }
deba@220:       virtual void add(const std::vector<Key>& keys) {
deba@220:         Parent::add(keys);
deba@220:         for (int i = 0; i < int(keys.size()); ++i) {
deba@220:           Parent::set(keys[i], 0);
deba@220:         }
deba@220:       }
deba@220:       virtual void build() {
deba@220:         Parent::build();
deba@220:         Key it;
deba@220:         typename Parent::Notifier* nf = Parent::notifier();
deba@220:         for (nf->first(it); it != INVALID; nf->next(it)) {
deba@220:           Parent::set(it, 0);
deba@220:         }
deba@220:       }
deba@220:     };
deba@220: 
deba@220:   public:
deba@220: 
deba@220:     /// \brief Constructor.
deba@220:     ///
deba@220:     /// Constructor for creating out-degree map.
deba@220:     explicit OutDegMap(const Digraph& digraph)
deba@220:       : _digraph(digraph), _deg(digraph) {
deba@220:       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
deba@220: 
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countOutArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     /// Gives back the out-degree of a Node.
deba@220:     int operator[](const Key& key) const {
deba@220:       return _deg[key];
deba@220:     }
deba@220: 
deba@220:   protected:
deba@220: 
deba@220:     typedef typename Digraph::Arc Arc;
deba@220: 
deba@220:     virtual void add(const Arc& arc) {
deba@220:       ++_deg[_digraph.source(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void add(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         ++_deg[_digraph.source(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const Arc& arc) {
deba@220:       --_deg[_digraph.source(arc)];
deba@220:     }
deba@220: 
deba@220:     virtual void erase(const std::vector<Arc>& arcs) {
deba@220:       for (int i = 0; i < int(arcs.size()); ++i) {
deba@220:         --_deg[_digraph.source(arcs[i])];
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void build() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = countOutArcs(_digraph, it);
deba@220:       }
deba@220:     }
deba@220: 
deba@220:     virtual void clear() {
deba@220:       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
deba@220:         _deg[it] = 0;
deba@220:       }
deba@220:     }
deba@220:   private:
deba@220: 
deba@220:     const Digraph& _digraph;
deba@220:     AutoNodeMap _deg;
deba@220:   };
deba@220: 
alpar@25:   /// @}
alpar@25: }
alpar@25: 
alpar@25: #endif // LEMON_MAPS_H