kpeter@601: /* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@601:  *
kpeter@601:  * This file is a part of LEMON, a generic C++ optimization library.
kpeter@601:  *
kpeter@601:  * Copyright (C) 2003-2009
kpeter@601:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@601:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@601:  *
kpeter@601:  * Permission to use, modify and distribute this software is granted
kpeter@601:  * provided that this copyright notice appears in all copies. For
kpeter@601:  * precise terms see the accompanying LICENSE file.
kpeter@601:  *
kpeter@601:  * This software is provided "AS IS" with no warranty of any kind,
kpeter@601:  * express or implied, and with no claim as to its suitability for any
kpeter@601:  * purpose.
kpeter@601:  *
kpeter@601:  */
kpeter@601: 
kpeter@601: #include <iostream>
kpeter@601: #include <fstream>
kpeter@640: #include <limits>
kpeter@601: 
kpeter@601: #include <lemon/list_graph.h>
kpeter@601: #include <lemon/lgf_reader.h>
kpeter@601: 
kpeter@601: #include <lemon/network_simplex.h>
kpeter@819: #include <lemon/capacity_scaling.h>
kpeter@819: #include <lemon/cost_scaling.h>
kpeter@819: #include <lemon/cycle_canceling.h>
kpeter@601: 
kpeter@601: #include <lemon/concepts/digraph.h>
kpeter@819: #include <lemon/concepts/heap.h>
kpeter@601: #include <lemon/concept_check.h>
kpeter@601: 
kpeter@601: #include "test_tools.h"
kpeter@601: 
kpeter@601: using namespace lemon;
kpeter@601: 
kpeter@818: // Test networks
kpeter@601: char test_lgf[] =
kpeter@601:   "@nodes\n"
kpeter@640:   "label  sup1 sup2 sup3 sup4 sup5 sup6\n"
kpeter@640:   "    1    20   27    0   30   20   30\n"
kpeter@640:   "    2    -4    0    0    0   -8   -3\n"
kpeter@640:   "    3     0    0    0    0    0    0\n"
kpeter@640:   "    4     0    0    0    0    0    0\n"
kpeter@640:   "    5     9    0    0    0    6   11\n"
kpeter@640:   "    6    -6    0    0    0   -5   -6\n"
kpeter@640:   "    7     0    0    0    0    0    0\n"
kpeter@640:   "    8     0    0    0    0    0    3\n"
kpeter@640:   "    9     3    0    0    0    0    0\n"
kpeter@640:   "   10    -2    0    0    0   -7   -2\n"
kpeter@640:   "   11     0    0    0    0  -10    0\n"
kpeter@640:   "   12   -20  -27    0  -30  -30  -20\n"
kpeter@640:   "\n"                
kpeter@601:   "@arcs\n"
kpeter@640:   "       cost  cap low1 low2 low3\n"
kpeter@640:   " 1  2    70   11    0    8    8\n"
kpeter@640:   " 1  3   150    3    0    1    0\n"
kpeter@640:   " 1  4    80   15    0    2    2\n"
kpeter@640:   " 2  8    80   12    0    0    0\n"
kpeter@640:   " 3  5   140    5    0    3    1\n"
kpeter@640:   " 4  6    60   10    0    1    0\n"
kpeter@640:   " 4  7    80    2    0    0    0\n"
kpeter@640:   " 4  8   110    3    0    0    0\n"
kpeter@640:   " 5  7    60   14    0    0    0\n"
kpeter@640:   " 5 11   120   12    0    0    0\n"
kpeter@640:   " 6  3     0    3    0    0    0\n"
kpeter@640:   " 6  9   140    4    0    0    0\n"
kpeter@640:   " 6 10    90    8    0    0    0\n"
kpeter@640:   " 7  1    30    5    0    0   -5\n"
kpeter@640:   " 8 12    60   16    0    4    3\n"
kpeter@640:   " 9 12    50    6    0    0    0\n"
kpeter@640:   "10 12    70   13    0    5    2\n"
kpeter@640:   "10  2   100    7    0    0    0\n"
kpeter@640:   "10  7    60   10    0    0   -3\n"
kpeter@640:   "11 10    20   14    0    6  -20\n"
kpeter@640:   "12 11    30   10    0    0  -10\n"
kpeter@601:   "\n"
kpeter@601:   "@attributes\n"
kpeter@601:   "source 1\n"
kpeter@601:   "target 12\n";
kpeter@601: 
kpeter@818: char test_neg1_lgf[] =
kpeter@818:   "@nodes\n"
kpeter@818:   "label   sup\n"
kpeter@818:   "    1   100\n"
kpeter@818:   "    2     0\n"
kpeter@818:   "    3     0\n"
kpeter@818:   "    4  -100\n"
kpeter@818:   "    5     0\n"
kpeter@818:   "    6     0\n"
kpeter@818:   "    7     0\n"
kpeter@818:   "@arcs\n"
kpeter@818:   "      cost   low1   low2\n"
kpeter@818:   "1 2    100      0      0\n"
kpeter@818:   "1 3     30      0      0\n"
kpeter@818:   "2 4     20      0      0\n"
kpeter@818:   "3 4     80      0      0\n"
kpeter@818:   "3 2     50      0      0\n"
kpeter@818:   "5 3     10      0      0\n"
kpeter@818:   "5 6     80      0   1000\n"
kpeter@818:   "6 7     30      0  -1000\n"
kpeter@818:   "7 5   -120      0      0\n";
kpeter@818:   
kpeter@818: char test_neg2_lgf[] =
kpeter@818:   "@nodes\n"
kpeter@818:   "label   sup\n"
kpeter@818:   "    1   100\n"
kpeter@818:   "    2  -300\n"
kpeter@818:   "@arcs\n"
kpeter@818:   "      cost\n"
kpeter@818:   "1 2     -1\n";
kpeter@818: 
kpeter@818: 
kpeter@818: // Test data
kpeter@818: typedef ListDigraph Digraph;
kpeter@818: DIGRAPH_TYPEDEFS(ListDigraph);
kpeter@818: 
kpeter@818: Digraph gr;
kpeter@818: Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
kpeter@818: Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
kpeter@818: ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
kpeter@818: Node v, w;
kpeter@818: 
kpeter@818: Digraph neg1_gr;
kpeter@818: Digraph::ArcMap<int> neg1_c(neg1_gr), neg1_l1(neg1_gr), neg1_l2(neg1_gr);
kpeter@818: ConstMap<Arc, int> neg1_u1(std::numeric_limits<int>::max()), neg1_u2(5000);
kpeter@818: Digraph::NodeMap<int> neg1_s(neg1_gr);
kpeter@818: 
kpeter@818: Digraph neg2_gr;
kpeter@818: Digraph::ArcMap<int> neg2_c(neg2_gr);
kpeter@818: ConstMap<Arc, int> neg2_l(0), neg2_u(1000);
kpeter@818: Digraph::NodeMap<int> neg2_s(neg2_gr);
kpeter@818: 
kpeter@601: 
kpeter@640: enum SupplyType {
kpeter@609:   EQ,
kpeter@609:   GEQ,
kpeter@609:   LEQ
kpeter@609: };
kpeter@609: 
kpeter@818: 
kpeter@601: // Check the interface of an MCF algorithm
kpeter@642: template <typename GR, typename Value, typename Cost>
kpeter@601: class McfClassConcept
kpeter@601: {
kpeter@601: public:
kpeter@601: 
kpeter@601:   template <typename MCF>
kpeter@601:   struct Constraints {
kpeter@601:     void constraints() {
kpeter@601:       checkConcept<concepts::Digraph, GR>();
kpeter@669:       
kpeter@669:       const Constraints& me = *this;
kpeter@601: 
kpeter@669:       MCF mcf(me.g);
kpeter@642:       const MCF& const_mcf = mcf;
kpeter@601: 
kpeter@606:       b = mcf.reset()
kpeter@669:              .lowerMap(me.lower)
kpeter@669:              .upperMap(me.upper)
kpeter@669:              .costMap(me.cost)
kpeter@669:              .supplyMap(me.sup)
kpeter@669:              .stSupply(me.n, me.n, me.k)
kpeter@605:              .run();
kpeter@605: 
kpeter@640:       c = const_mcf.totalCost();
kpeter@642:       x = const_mcf.template totalCost<double>();
kpeter@669:       v = const_mcf.flow(me.a);
kpeter@669:       c = const_mcf.potential(me.n);
kpeter@642:       const_mcf.flowMap(fm);
kpeter@642:       const_mcf.potentialMap(pm);
kpeter@601:     }
kpeter@601: 
kpeter@601:     typedef typename GR::Node Node;
kpeter@601:     typedef typename GR::Arc Arc;
kpeter@642:     typedef concepts::ReadMap<Node, Value> NM;
kpeter@642:     typedef concepts::ReadMap<Arc, Value> VAM;
kpeter@607:     typedef concepts::ReadMap<Arc, Cost> CAM;
kpeter@642:     typedef concepts::WriteMap<Arc, Value> FlowMap;
kpeter@642:     typedef concepts::WriteMap<Node, Cost> PotMap;
kpeter@669:   
kpeter@669:     GR g;
kpeter@669:     VAM lower;
kpeter@669:     VAM upper;
kpeter@669:     CAM cost;
kpeter@669:     NM sup;
kpeter@669:     Node n;
kpeter@669:     Arc a;
kpeter@669:     Value k;
kpeter@601: 
kpeter@642:     FlowMap fm;
kpeter@642:     PotMap pm;
kpeter@605:     bool b;
kpeter@642:     double x;
kpeter@642:     typename MCF::Value v;
kpeter@642:     typename MCF::Cost c;
kpeter@601:   };
kpeter@601: 
kpeter@601: };
kpeter@601: 
kpeter@601: 
kpeter@601: // Check the feasibility of the given flow (primal soluiton)
kpeter@601: template < typename GR, typename LM, typename UM,
kpeter@601:            typename SM, typename FM >
kpeter@601: bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
kpeter@609:                 const SM& supply, const FM& flow,
kpeter@640:                 SupplyType type = EQ )
kpeter@601: {
kpeter@601:   TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@601: 
kpeter@601:   for (ArcIt e(gr); e != INVALID; ++e) {
kpeter@601:     if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
kpeter@601:   }
kpeter@601: 
kpeter@601:   for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@601:     typename SM::Value sum = 0;
kpeter@601:     for (OutArcIt e(gr, n); e != INVALID; ++e)
kpeter@601:       sum += flow[e];
kpeter@601:     for (InArcIt e(gr, n); e != INVALID; ++e)
kpeter@601:       sum -= flow[e];
kpeter@609:     bool b = (type ==  EQ && sum == supply[n]) ||
kpeter@609:              (type == GEQ && sum >= supply[n]) ||
kpeter@609:              (type == LEQ && sum <= supply[n]);
kpeter@609:     if (!b) return false;
kpeter@601:   }
kpeter@601: 
kpeter@601:   return true;
kpeter@601: }
kpeter@601: 
kpeter@601: // Check the feasibility of the given potentials (dual soluiton)
kpeter@605: // using the "Complementary Slackness" optimality condition
kpeter@601: template < typename GR, typename LM, typename UM,
kpeter@609:            typename CM, typename SM, typename FM, typename PM >
kpeter@601: bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
kpeter@609:                      const CM& cost, const SM& supply, const FM& flow, 
kpeter@664:                      const PM& pi, SupplyType type )
kpeter@601: {
kpeter@601:   TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@601: 
kpeter@601:   bool opt = true;
kpeter@601:   for (ArcIt e(gr); opt && e != INVALID; ++e) {
kpeter@601:     typename CM::Value red_cost =
kpeter@601:       cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
kpeter@601:     opt = red_cost == 0 ||
kpeter@601:           (red_cost > 0 && flow[e] == lower[e]) ||
kpeter@601:           (red_cost < 0 && flow[e] == upper[e]);
kpeter@601:   }
kpeter@609:   
kpeter@609:   for (NodeIt n(gr); opt && n != INVALID; ++n) {
kpeter@609:     typename SM::Value sum = 0;
kpeter@609:     for (OutArcIt e(gr, n); e != INVALID; ++e)
kpeter@609:       sum += flow[e];
kpeter@609:     for (InArcIt e(gr, n); e != INVALID; ++e)
kpeter@609:       sum -= flow[e];
kpeter@664:     if (type != LEQ) {
kpeter@664:       opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
kpeter@664:     } else {
kpeter@664:       opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
kpeter@664:     }
kpeter@609:   }
kpeter@609:   
kpeter@601:   return opt;
kpeter@601: }
kpeter@601: 
kpeter@664: // Check whether the dual cost is equal to the primal cost
kpeter@664: template < typename GR, typename LM, typename UM,
kpeter@664:            typename CM, typename SM, typename PM >
kpeter@664: bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
kpeter@664:                     const CM& cost, const SM& supply, const PM& pi,
kpeter@664:                     typename CM::Value total )
kpeter@664: {
kpeter@664:   TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@664: 
kpeter@664:   typename CM::Value dual_cost = 0;
kpeter@664:   SM red_supply(gr);
kpeter@664:   for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@664:     red_supply[n] = supply[n];
kpeter@664:   }
kpeter@664:   for (ArcIt a(gr); a != INVALID; ++a) {
kpeter@664:     if (lower[a] != 0) {
kpeter@664:       dual_cost += lower[a] * cost[a];
kpeter@664:       red_supply[gr.source(a)] -= lower[a];
kpeter@664:       red_supply[gr.target(a)] += lower[a];
kpeter@664:     }
kpeter@664:   }
kpeter@664:   
kpeter@664:   for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@664:     dual_cost -= red_supply[n] * pi[n];
kpeter@664:   }
kpeter@664:   for (ArcIt a(gr); a != INVALID; ++a) {
kpeter@664:     typename CM::Value red_cost =
kpeter@664:       cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
kpeter@664:     dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
kpeter@664:   }
kpeter@664:   
kpeter@664:   return dual_cost == total;
kpeter@664: }
kpeter@664: 
kpeter@601: // Run a minimum cost flow algorithm and check the results
kpeter@601: template < typename MCF, typename GR,
kpeter@601:            typename LM, typename UM,
kpeter@640:            typename CM, typename SM,
kpeter@640:            typename PT >
kpeter@640: void checkMcf( const MCF& mcf, PT mcf_result,
kpeter@601:                const GR& gr, const LM& lower, const UM& upper,
kpeter@601:                const CM& cost, const SM& supply,
kpeter@640:                PT result, bool optimal, typename CM::Value total,
kpeter@609:                const std::string &test_id = "",
kpeter@640:                SupplyType type = EQ )
kpeter@601: {
kpeter@601:   check(mcf_result == result, "Wrong result " + test_id);
kpeter@640:   if (optimal) {
kpeter@642:     typename GR::template ArcMap<typename SM::Value> flow(gr);
kpeter@642:     typename GR::template NodeMap<typename CM::Value> pi(gr);
kpeter@642:     mcf.flowMap(flow);
kpeter@642:     mcf.potentialMap(pi);
kpeter@642:     check(checkFlow(gr, lower, upper, supply, flow, type),
kpeter@601:           "The flow is not feasible " + test_id);
kpeter@601:     check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
kpeter@664:     check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
kpeter@601:           "Wrong potentials " + test_id);
kpeter@664:     check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
kpeter@664:           "Wrong dual cost " + test_id);
kpeter@601:   }
kpeter@601: }
kpeter@601: 
kpeter@818: template < typename MCF, typename Param >
kpeter@818: void runMcfGeqTests( Param param,
kpeter@818:                      const std::string &test_str = "",
kpeter@818:                      bool full_neg_cost_support = false )
kpeter@818: {
kpeter@818:   MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr);
kpeter@818:   
kpeter@818:   // Basic tests
kpeter@818:   mcf1.upperMap(u).costMap(c).supplyMap(s1);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1,
kpeter@818:            mcf1.OPTIMAL, true,     5240, test_str + "-1");
kpeter@818:   mcf1.stSupply(v, w, 27);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2,
kpeter@818:            mcf1.OPTIMAL, true,     7620, test_str + "-2");
kpeter@818:   mcf1.lowerMap(l2).supplyMap(s1);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1,
kpeter@818:            mcf1.OPTIMAL, true,     5970, test_str + "-3");
kpeter@818:   mcf1.stSupply(v, w, 27);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2,
kpeter@818:            mcf1.OPTIMAL, true,     8010, test_str + "-4");
kpeter@818:   mcf1.reset().supplyMap(s1);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1,
kpeter@818:            mcf1.OPTIMAL, true,       74, test_str + "-5");
kpeter@818:   mcf1.lowerMap(l2).stSupply(v, w, 27);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, cu, cc, s2,
kpeter@818:            mcf1.OPTIMAL, true,       94, test_str + "-6");
kpeter@818:   mcf1.reset();
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s3,
kpeter@818:            mcf1.OPTIMAL, true,        0, test_str + "-7");
kpeter@818:   mcf1.lowerMap(l2).upperMap(u);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, cc, s3,
kpeter@818:            mcf1.INFEASIBLE, false,    0, test_str + "-8");
kpeter@818:   mcf1.lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l3, u, c, s4,
kpeter@818:            mcf1.OPTIMAL, true,     6360, test_str + "-9");
kpeter@818: 
kpeter@818:   // Tests for the GEQ form
kpeter@818:   mcf1.reset().upperMap(u).costMap(c).supplyMap(s5);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5,
kpeter@818:            mcf1.OPTIMAL, true,     3530, test_str + "-10", GEQ);
kpeter@818:   mcf1.lowerMap(l2);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5,
kpeter@818:            mcf1.OPTIMAL, true,     4540, test_str + "-11", GEQ);
kpeter@818:   mcf1.supplyMap(s6);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6,
kpeter@818:            mcf1.INFEASIBLE, false,    0, test_str + "-12", GEQ);
kpeter@818: 
kpeter@818:   // Tests with negative costs
kpeter@818:   mcf2.lowerMap(neg1_l1).costMap(neg1_c).supplyMap(neg1_s);
kpeter@818:   checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u1, neg1_c, neg1_s,
kpeter@818:            mcf2.UNBOUNDED, false,     0, test_str + "-13");
kpeter@818:   mcf2.upperMap(neg1_u2);
kpeter@818:   checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s,
kpeter@818:            mcf2.OPTIMAL, true,   -40000, test_str + "-14");
kpeter@818:   mcf2.reset().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s);
kpeter@818:   checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s,
kpeter@818:            mcf2.UNBOUNDED, false,     0, test_str + "-15");
kpeter@818: 
kpeter@818:   mcf3.costMap(neg2_c).supplyMap(neg2_s);
kpeter@818:   if (full_neg_cost_support) {
kpeter@818:     checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
kpeter@818:              mcf3.OPTIMAL, true,   -300, test_str + "-16", GEQ);
kpeter@818:   } else {
kpeter@818:     checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
kpeter@818:              mcf3.UNBOUNDED, false,   0, test_str + "-17", GEQ);
kpeter@818:   }
kpeter@818:   mcf3.upperMap(neg2_u);
kpeter@818:   checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
kpeter@818:            mcf3.OPTIMAL, true,     -300, test_str + "-18", GEQ);
kpeter@818: }
kpeter@818: 
kpeter@818: template < typename MCF, typename Param >
kpeter@818: void runMcfLeqTests( Param param,
kpeter@818:                      const std::string &test_str = "" )
kpeter@818: {
kpeter@818:   // Tests for the LEQ form
kpeter@818:   MCF mcf1(gr);
kpeter@818:   mcf1.supplyType(mcf1.LEQ);
kpeter@818:   mcf1.upperMap(u).costMap(c).supplyMap(s6);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s6,
kpeter@818:            mcf1.OPTIMAL, true,   5080, test_str + "-19", LEQ);
kpeter@818:   mcf1.lowerMap(l2);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6,
kpeter@818:            mcf1.OPTIMAL, true,   5930, test_str + "-20", LEQ);
kpeter@818:   mcf1.supplyMap(s5);
kpeter@818:   checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5,
kpeter@818:            mcf1.INFEASIBLE, false,  0, test_str + "-21", LEQ);
kpeter@818: }
kpeter@818: 
kpeter@818: 
kpeter@601: int main()
kpeter@601: {
kpeter@818:   // Read the test networks
kpeter@601:   std::istringstream input(test_lgf);
kpeter@601:   DigraphReader<Digraph>(gr, input)
kpeter@601:     .arcMap("cost", c)
kpeter@601:     .arcMap("cap", u)
kpeter@601:     .arcMap("low1", l1)
kpeter@601:     .arcMap("low2", l2)
kpeter@640:     .arcMap("low3", l3)
kpeter@601:     .nodeMap("sup1", s1)
kpeter@601:     .nodeMap("sup2", s2)
kpeter@601:     .nodeMap("sup3", s3)
kpeter@609:     .nodeMap("sup4", s4)
kpeter@609:     .nodeMap("sup5", s5)
kpeter@640:     .nodeMap("sup6", s6)
kpeter@601:     .node("source", v)
kpeter@601:     .node("target", w)
kpeter@601:     .run();
kpeter@640:   
kpeter@818:   std::istringstream neg_inp1(test_neg1_lgf);
kpeter@818:   DigraphReader<Digraph>(neg1_gr, neg_inp1)
kpeter@818:     .arcMap("cost", neg1_c)
kpeter@818:     .arcMap("low1", neg1_l1)
kpeter@818:     .arcMap("low2", neg1_l2)
kpeter@818:     .nodeMap("sup", neg1_s)
kpeter@818:     .run();
kpeter@640:   
kpeter@818:   std::istringstream neg_inp2(test_neg2_lgf);
kpeter@818:   DigraphReader<Digraph>(neg2_gr, neg_inp2)
kpeter@818:     .arcMap("cost", neg2_c)
kpeter@818:     .nodeMap("sup", neg2_s)
kpeter@818:     .run();
kpeter@640:   
kpeter@818:   // Check the interface of NetworkSimplex
kpeter@601:   {
kpeter@818:     typedef concepts::Digraph GR;
kpeter@818:     checkConcept< McfClassConcept<GR, int, int>,
kpeter@818:                   NetworkSimplex<GR> >();
kpeter@818:     checkConcept< McfClassConcept<GR, double, double>,
kpeter@818:                   NetworkSimplex<GR, double> >();
kpeter@818:     checkConcept< McfClassConcept<GR, int, double>,
kpeter@818:                   NetworkSimplex<GR, int, double> >();
kpeter@601:   }
kpeter@601: 
kpeter@819:   // Check the interface of CapacityScaling
kpeter@819:   {
kpeter@819:     typedef concepts::Digraph GR;
kpeter@819:     checkConcept< McfClassConcept<GR, int, int>,
kpeter@819:                   CapacityScaling<GR> >();
kpeter@819:     checkConcept< McfClassConcept<GR, double, double>,
kpeter@819:                   CapacityScaling<GR, double> >();
kpeter@819:     checkConcept< McfClassConcept<GR, int, double>,
kpeter@819:                   CapacityScaling<GR, int, double> >();
kpeter@819:     typedef CapacityScaling<GR>::
kpeter@819:       SetHeap<concepts::Heap<int, RangeMap<int> > >::Create CAS;
kpeter@819:     checkConcept< McfClassConcept<GR, int, int>, CAS >();
kpeter@819:   }
kpeter@819: 
kpeter@819:   // Check the interface of CostScaling
kpeter@819:   {
kpeter@819:     typedef concepts::Digraph GR;
kpeter@819:     checkConcept< McfClassConcept<GR, int, int>,
kpeter@819:                   CostScaling<GR> >();
kpeter@819:     checkConcept< McfClassConcept<GR, double, double>,
kpeter@819:                   CostScaling<GR, double> >();
kpeter@819:     checkConcept< McfClassConcept<GR, int, double>,
kpeter@819:                   CostScaling<GR, int, double> >();
kpeter@819:     typedef CostScaling<GR>::
kpeter@819:       SetLargeCost<double>::Create COS;
kpeter@819:     checkConcept< McfClassConcept<GR, int, int>, COS >();
kpeter@819:   }
kpeter@819: 
kpeter@819:   // Check the interface of CycleCanceling
kpeter@819:   {
kpeter@819:     typedef concepts::Digraph GR;
kpeter@819:     checkConcept< McfClassConcept<GR, int, int>,
kpeter@819:                   CycleCanceling<GR> >();
kpeter@819:     checkConcept< McfClassConcept<GR, double, double>,
kpeter@819:                   CycleCanceling<GR, double> >();
kpeter@819:     checkConcept< McfClassConcept<GR, int, double>,
kpeter@819:                   CycleCanceling<GR, int, double> >();
kpeter@819:   }
kpeter@819: 
kpeter@818:   // Test NetworkSimplex
kpeter@818:   { 
kpeter@818:     typedef NetworkSimplex<Digraph> MCF;
kpeter@818:     runMcfGeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE", true);
kpeter@818:     runMcfLeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE");
kpeter@818:     runMcfGeqTests<MCF>(MCF::BEST_ELIGIBLE,  "NS-BE", true);
kpeter@818:     runMcfLeqTests<MCF>(MCF::BEST_ELIGIBLE,  "NS-BE");
kpeter@818:     runMcfGeqTests<MCF>(MCF::BLOCK_SEARCH,   "NS-BS", true);
kpeter@818:     runMcfLeqTests<MCF>(MCF::BLOCK_SEARCH,   "NS-BS");
kpeter@818:     runMcfGeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL", true);
kpeter@818:     runMcfLeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL");
kpeter@818:     runMcfGeqTests<MCF>(MCF::ALTERING_LIST,  "NS-AL", true);
kpeter@818:     runMcfLeqTests<MCF>(MCF::ALTERING_LIST,  "NS-AL");
kpeter@601:   }
kpeter@819:   
kpeter@819:   // Test CapacityScaling
kpeter@819:   {
kpeter@819:     typedef CapacityScaling<Digraph> MCF;
kpeter@819:     runMcfGeqTests<MCF>(0, "SSP");
kpeter@819:     runMcfGeqTests<MCF>(2, "CAS");
kpeter@819:   }
kpeter@819: 
kpeter@819:   // Test CostScaling
kpeter@819:   {
kpeter@819:     typedef CostScaling<Digraph> MCF;
kpeter@819:     runMcfGeqTests<MCF>(MCF::PUSH, "COS-PR");
kpeter@819:     runMcfGeqTests<MCF>(MCF::AUGMENT, "COS-AR");
kpeter@819:     runMcfGeqTests<MCF>(MCF::PARTIAL_AUGMENT, "COS-PAR");
kpeter@819:   }
kpeter@819: 
kpeter@819:   // Test CycleCanceling
kpeter@819:   {
kpeter@819:     typedef CycleCanceling<Digraph> MCF;
kpeter@819:     runMcfGeqTests<MCF>(MCF::SIMPLE_CYCLE_CANCELING, "SCC");
kpeter@819:     runMcfGeqTests<MCF>(MCF::MINIMUM_MEAN_CYCLE_CANCELING, "MMCC");
kpeter@819:     runMcfGeqTests<MCF>(MCF::CANCEL_AND_TIGHTEN, "CAT");
kpeter@819:   }
kpeter@601: 
kpeter@601:   return 0;
kpeter@601: }