alpar@209: /* -*- mode: C++; indent-tabs-mode: nil; -*- alpar@8: * alpar@209: * This file is a part of LEMON, a generic C++ optimization library. alpar@8: * alpar@440: * Copyright (C) 2003-2009 alpar@8: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport alpar@8: * (Egervary Research Group on Combinatorial Optimization, EGRES). alpar@8: * alpar@8: * Permission to use, modify and distribute this software is granted alpar@8: * provided that this copyright notice appears in all copies. For alpar@8: * precise terms see the accompanying LICENSE file. alpar@8: * alpar@8: * This software is provided "AS IS" with no warranty of any kind, alpar@8: * express or implied, and with no claim as to its suitability for any alpar@8: * purpose. alpar@8: * alpar@8: */ alpar@8: alpar@8: #ifndef LEMON_DIM2_H alpar@8: #define LEMON_DIM2_H alpar@8: alpar@8: #include <iostream> alpar@8: alpar@8: ///\ingroup misc alpar@8: ///\file alpar@209: ///\brief A simple two dimensional vector and a bounding box implementation alpar@8: /// alpar@8: /// The class \ref lemon::dim2::Point "dim2::Point" implements kpeter@49: /// a two dimensional vector with the usual operations. alpar@8: /// kpeter@253: /// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine alpar@8: /// the rectangular bounding box of a set of alpar@8: /// \ref lemon::dim2::Point "dim2::Point"'s. alpar@8: alpar@8: namespace lemon { alpar@8: alpar@8: ///Tools for handling two dimensional coordinates alpar@8: alpar@8: ///This namespace is a storage of several alpar@8: ///tools for handling two dimensional coordinates alpar@8: namespace dim2 { alpar@8: alpar@8: /// \addtogroup misc alpar@8: /// @{ alpar@8: kpeter@253: /// Two dimensional vector (plain vector) alpar@8: kpeter@241: /// A simple two dimensional vector (plain vector) implementation kpeter@49: /// with the usual vector operations. alpar@8: template<typename T> alpar@8: class Point { alpar@8: alpar@8: public: alpar@8: alpar@8: typedef T Value; alpar@8: kpeter@15: ///First coordinate alpar@8: T x; kpeter@15: ///Second coordinate alpar@209: T y; alpar@209: alpar@8: ///Default constructor alpar@8: Point() {} alpar@8: alpar@8: ///Construct an instance from coordinates alpar@8: Point(T a, T b) : x(a), y(b) { } alpar@8: kpeter@49: ///Returns the dimension of the vector (i.e. returns 2). alpar@8: kpeter@15: ///The dimension of the vector. alpar@209: ///This function always returns 2. alpar@8: int size() const { return 2; } alpar@8: alpar@8: ///Subscripting operator alpar@8: alpar@8: ///\c p[0] is \c p.x and \c p[1] is \c p.y alpar@8: /// alpar@8: T& operator[](int idx) { return idx == 0 ? x : y; } alpar@8: alpar@8: ///Const subscripting operator alpar@8: alpar@8: ///\c p[0] is \c p.x and \c p[1] is \c p.y alpar@8: /// alpar@8: const T& operator[](int idx) const { return idx == 0 ? x : y; } alpar@8: alpar@8: ///Conversion constructor alpar@8: template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} alpar@8: alpar@8: ///Give back the square of the norm of the vector alpar@8: T normSquare() const { alpar@8: return x*x+y*y; alpar@8: } alpar@209: kpeter@49: ///Increment the left hand side by \c u alpar@8: Point<T>& operator +=(const Point<T>& u) { alpar@8: x += u.x; alpar@8: y += u.y; alpar@8: return *this; alpar@8: } alpar@209: kpeter@49: ///Decrement the left hand side by \c u alpar@8: Point<T>& operator -=(const Point<T>& u) { alpar@8: x -= u.x; alpar@8: y -= u.y; alpar@8: return *this; alpar@8: } alpar@8: alpar@8: ///Multiply the left hand side with a scalar alpar@8: Point<T>& operator *=(const T &u) { alpar@8: x *= u; alpar@8: y *= u; alpar@8: return *this; alpar@8: } alpar@8: alpar@8: ///Divide the left hand side by a scalar alpar@8: Point<T>& operator /=(const T &u) { alpar@8: x /= u; alpar@8: y /= u; alpar@8: return *this; alpar@8: } alpar@209: alpar@8: ///Return the scalar product of two vectors alpar@8: T operator *(const Point<T>& u) const { alpar@8: return x*u.x+y*u.y; alpar@8: } alpar@209: alpar@8: ///Return the sum of two vectors alpar@8: Point<T> operator+(const Point<T> &u) const { alpar@8: Point<T> b=*this; alpar@8: return b+=u; alpar@8: } alpar@8: kpeter@15: ///Return the negative of the vector alpar@8: Point<T> operator-() const { alpar@8: Point<T> b=*this; alpar@8: b.x=-b.x; b.y=-b.y; alpar@8: return b; alpar@8: } alpar@8: alpar@8: ///Return the difference of two vectors alpar@8: Point<T> operator-(const Point<T> &u) const { alpar@8: Point<T> b=*this; alpar@8: return b-=u; alpar@8: } alpar@8: alpar@8: ///Return a vector multiplied by a scalar alpar@8: Point<T> operator*(const T &u) const { alpar@8: Point<T> b=*this; alpar@8: return b*=u; alpar@8: } alpar@8: alpar@8: ///Return a vector divided by a scalar alpar@8: Point<T> operator/(const T &u) const { alpar@8: Point<T> b=*this; alpar@8: return b/=u; alpar@8: } alpar@8: alpar@8: ///Test equality alpar@8: bool operator==(const Point<T> &u) const { alpar@8: return (x==u.x) && (y==u.y); alpar@8: } alpar@8: alpar@8: ///Test inequality alpar@8: bool operator!=(Point u) const { alpar@8: return (x!=u.x) || (y!=u.y); alpar@8: } alpar@8: alpar@8: }; alpar@8: alpar@209: ///Return a Point alpar@8: kpeter@15: ///Return a Point. alpar@8: ///\relates Point alpar@8: template <typename T> alpar@8: inline Point<T> makePoint(const T& x, const T& y) { alpar@8: return Point<T>(x, y); alpar@8: } alpar@8: alpar@8: ///Return a vector multiplied by a scalar alpar@8: kpeter@15: ///Return a vector multiplied by a scalar. alpar@8: ///\relates Point alpar@8: template<typename T> Point<T> operator*(const T &u,const Point<T> &x) { alpar@8: return x*u; alpar@8: } alpar@8: kpeter@241: ///Read a plain vector from a stream alpar@8: kpeter@241: ///Read a plain vector from a stream. alpar@8: ///\relates Point alpar@8: /// alpar@8: template<typename T> alpar@8: inline std::istream& operator>>(std::istream &is, Point<T> &z) { alpar@8: char c; alpar@8: if (is >> c) { alpar@8: if (c != '(') is.putback(c); alpar@8: } else { alpar@8: is.clear(); alpar@8: } alpar@8: if (!(is >> z.x)) return is; alpar@8: if (is >> c) { alpar@8: if (c != ',') is.putback(c); alpar@8: } else { alpar@8: is.clear(); alpar@8: } alpar@8: if (!(is >> z.y)) return is; alpar@8: if (is >> c) { alpar@8: if (c != ')') is.putback(c); alpar@8: } else { alpar@8: is.clear(); alpar@8: } alpar@8: return is; alpar@8: } alpar@8: kpeter@241: ///Write a plain vector to a stream alpar@8: kpeter@241: ///Write a plain vector to a stream. alpar@8: ///\relates Point alpar@8: /// alpar@8: template<typename T> alpar@8: inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) alpar@8: { kpeter@250: os << "(" << z.x << "," << z.y << ")"; alpar@8: return os; alpar@8: } alpar@8: alpar@8: ///Rotate by 90 degrees alpar@8: kpeter@15: ///Returns the parameter rotated by 90 degrees in positive direction. alpar@8: ///\relates Point alpar@8: /// alpar@8: template<typename T> alpar@8: inline Point<T> rot90(const Point<T> &z) alpar@8: { alpar@8: return Point<T>(-z.y,z.x); alpar@8: } alpar@8: alpar@8: ///Rotate by 180 degrees alpar@8: kpeter@15: ///Returns the parameter rotated by 180 degrees. alpar@8: ///\relates Point alpar@8: /// alpar@8: template<typename T> alpar@8: inline Point<T> rot180(const Point<T> &z) alpar@8: { alpar@8: return Point<T>(-z.x,-z.y); alpar@8: } alpar@8: alpar@8: ///Rotate by 270 degrees alpar@8: kpeter@15: ///Returns the parameter rotated by 90 degrees in negative direction. alpar@8: ///\relates Point alpar@8: /// alpar@8: template<typename T> alpar@8: inline Point<T> rot270(const Point<T> &z) alpar@8: { alpar@8: return Point<T>(z.y,-z.x); alpar@8: } alpar@8: alpar@209: alpar@8: kpeter@313: /// Bounding box of plain vectors (points). alpar@8: kpeter@253: /// A class to calculate or store the bounding box of plain vectors kpeter@313: /// (\ref Point "points"). kpeter@253: template<typename T> kpeter@253: class Box { kpeter@241: Point<T> _bottom_left, _top_right; alpar@8: bool _empty; alpar@8: public: alpar@209: kpeter@253: ///Default constructor: creates an empty box kpeter@253: Box() { _empty = true; } alpar@8: kpeter@253: ///Construct a box from one point kpeter@253: Box(Point<T> a) { kpeter@241: _bottom_left = _top_right = a; kpeter@241: _empty = false; kpeter@241: } alpar@209: kpeter@253: ///Construct a box from two points alpar@209: kpeter@253: ///Construct a box from two points. kpeter@15: ///\param a The bottom left corner. kpeter@15: ///\param b The top right corner. kpeter@15: ///\warning The coordinates of the bottom left corner must be no more kpeter@15: ///than those of the top right one. kpeter@253: Box(Point<T> a,Point<T> b) alpar@8: { kpeter@241: _bottom_left = a; kpeter@241: _top_right = b; alpar@209: _empty = false; alpar@8: } alpar@209: kpeter@253: ///Construct a box from four numbers alpar@8: kpeter@253: ///Construct a box from four numbers. kpeter@15: ///\param l The left side of the box. kpeter@15: ///\param b The bottom of the box. kpeter@15: ///\param r The right side of the box. kpeter@15: ///\param t The top of the box. kpeter@15: ///\warning The left side must be no more than the right side and alpar@209: ///bottom must be no more than the top. kpeter@253: Box(T l,T b,T r,T t) alpar@8: { kpeter@241: _bottom_left=Point<T>(l,b); kpeter@241: _top_right=Point<T>(r,t); alpar@209: _empty = false; alpar@8: } alpar@209: kpeter@253: ///Return \c true if the box is empty. alpar@209: kpeter@253: ///Return \c true if the box is empty (i.e. return \c false kpeter@15: ///if at least one point was added to the box or the coordinates of kpeter@15: ///the box were set). kpeter@49: /// kpeter@253: ///The coordinates of an empty box are not defined. alpar@8: bool empty() const { alpar@8: return _empty; alpar@8: } alpar@209: kpeter@253: ///Make the box empty alpar@8: void clear() { kpeter@241: _empty = true; alpar@8: } alpar@8: kpeter@49: ///Give back the bottom left corner of the box alpar@8: kpeter@49: ///Give back the bottom left corner of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: Point<T> bottomLeft() const { kpeter@241: return _bottom_left; alpar@8: } alpar@8: kpeter@49: ///Set the bottom left corner of the box alpar@8: kpeter@49: ///Set the bottom left corner of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void bottomLeft(Point<T> p) { kpeter@241: _bottom_left = p; alpar@8: } alpar@8: kpeter@49: ///Give back the top right corner of the box alpar@8: kpeter@49: ///Give back the top right corner of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: Point<T> topRight() const { kpeter@241: return _top_right; alpar@8: } alpar@8: kpeter@49: ///Set the top right corner of the box alpar@8: kpeter@49: ///Set the top right corner of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void topRight(Point<T> p) { kpeter@241: _top_right = p; alpar@8: } alpar@8: kpeter@49: ///Give back the bottom right corner of the box alpar@8: kpeter@49: ///Give back the bottom right corner of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: Point<T> bottomRight() const { kpeter@241: return Point<T>(_top_right.x,_bottom_left.y); alpar@8: } alpar@8: kpeter@49: ///Set the bottom right corner of the box alpar@8: kpeter@49: ///Set the bottom right corner of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void bottomRight(Point<T> p) { kpeter@241: _top_right.x = p.x; kpeter@241: _bottom_left.y = p.y; alpar@8: } alpar@209: kpeter@49: ///Give back the top left corner of the box alpar@8: kpeter@49: ///Give back the top left corner of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: Point<T> topLeft() const { kpeter@241: return Point<T>(_bottom_left.x,_top_right.y); alpar@8: } alpar@8: kpeter@49: ///Set the top left corner of the box alpar@8: kpeter@49: ///Set the top left corner of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void topLeft(Point<T> p) { kpeter@241: _top_right.y = p.y; kpeter@241: _bottom_left.x = p.x; alpar@8: } alpar@8: alpar@8: ///Give back the bottom of the box alpar@8: alpar@8: ///Give back the bottom of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: T bottom() const { kpeter@241: return _bottom_left.y; alpar@8: } alpar@8: alpar@8: ///Set the bottom of the box alpar@8: alpar@8: ///Set the bottom of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void bottom(T t) { kpeter@241: _bottom_left.y = t; alpar@8: } alpar@8: alpar@8: ///Give back the top of the box alpar@8: alpar@8: ///Give back the top of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: T top() const { kpeter@241: return _top_right.y; alpar@8: } alpar@8: alpar@8: ///Set the top of the box alpar@8: alpar@8: ///Set the top of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void top(T t) { kpeter@241: _top_right.y = t; alpar@8: } alpar@8: alpar@8: ///Give back the left side of the box alpar@8: alpar@8: ///Give back the left side of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: T left() const { kpeter@241: return _bottom_left.x; alpar@8: } alpar@209: alpar@8: ///Set the left side of the box alpar@8: alpar@8: ///Set the left side of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void left(T t) { kpeter@241: _bottom_left.x = t; alpar@8: } alpar@8: alpar@8: /// Give back the right side of the box alpar@8: alpar@8: /// Give back the right side of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: T right() const { kpeter@241: return _top_right.x; alpar@8: } alpar@8: alpar@8: ///Set the right side of the box alpar@8: alpar@8: ///Set the right side of the box. kpeter@241: ///\pre The box must not be empty. alpar@8: void right(T t) { kpeter@241: _top_right.x = t; alpar@8: } alpar@8: alpar@8: ///Give back the height of the box alpar@8: alpar@8: ///Give back the height of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: T height() const { kpeter@241: return _top_right.y-_bottom_left.y; alpar@8: } alpar@8: alpar@8: ///Give back the width of the box alpar@8: alpar@8: ///Give back the width of the box. kpeter@253: ///If the box is empty, then the return value is not defined. alpar@8: T width() const { kpeter@241: return _top_right.x-_bottom_left.x; alpar@8: } alpar@8: kpeter@253: ///Checks whether a point is inside the box kpeter@15: bool inside(const Point<T>& u) const { alpar@8: if (_empty) alpar@8: return false; kpeter@241: else { kpeter@241: return ( (u.x-_bottom_left.x)*(_top_right.x-u.x) >= 0 && kpeter@241: (u.y-_bottom_left.y)*(_top_right.y-u.y) >= 0 ); alpar@8: } alpar@8: } alpar@209: kpeter@253: ///Increments the box with a point kpeter@15: kpeter@253: ///Increments the box with a point. kpeter@15: /// kpeter@253: Box& add(const Point<T>& u){ kpeter@241: if (_empty) { kpeter@241: _bottom_left = _top_right = u; alpar@8: _empty = false; alpar@8: } kpeter@241: else { kpeter@241: if (_bottom_left.x > u.x) _bottom_left.x = u.x; kpeter@241: if (_bottom_left.y > u.y) _bottom_left.y = u.y; kpeter@241: if (_top_right.x < u.x) _top_right.x = u.x; kpeter@241: if (_top_right.y < u.y) _top_right.y = u.y; alpar@8: } alpar@8: return *this; alpar@8: } alpar@209: kpeter@253: ///Increments the box to contain another box alpar@209: kpeter@253: ///Increments the box to contain another box. kpeter@15: /// kpeter@253: Box& add(const Box &u){ alpar@8: if ( !u.empty() ){ kpeter@241: add(u._bottom_left); kpeter@241: add(u._top_right); alpar@8: } alpar@8: return *this; alpar@8: } alpar@209: kpeter@253: ///Intersection of two boxes kpeter@15: kpeter@253: ///Intersection of two boxes. kpeter@15: /// kpeter@253: Box operator&(const Box& u) const { kpeter@253: Box b; kpeter@241: if (_empty || u._empty) { alpar@209: b._empty = true; alpar@209: } else { kpeter@241: b._bottom_left.x = std::max(_bottom_left.x, u._bottom_left.x); kpeter@241: b._bottom_left.y = std::max(_bottom_left.y, u._bottom_left.y); kpeter@241: b._top_right.x = std::min(_top_right.x, u._top_right.x); kpeter@241: b._top_right.y = std::min(_top_right.y, u._top_right.y); kpeter@241: b._empty = b._bottom_left.x > b._top_right.x || kpeter@241: b._bottom_left.y > b._top_right.y; alpar@209: } alpar@8: return b; alpar@8: } alpar@8: kpeter@253: };//class Box alpar@8: alpar@8: kpeter@253: ///Read a box from a stream kpeter@250: kpeter@253: ///Read a box from a stream. kpeter@253: ///\relates Box kpeter@250: template<typename T> kpeter@253: inline std::istream& operator>>(std::istream &is, Box<T>& b) { kpeter@250: char c; kpeter@250: Point<T> p; kpeter@250: if (is >> c) { kpeter@250: if (c != '(') is.putback(c); kpeter@250: } else { kpeter@250: is.clear(); kpeter@250: } kpeter@250: if (!(is >> p)) return is; kpeter@250: b.bottomLeft(p); kpeter@250: if (is >> c) { kpeter@250: if (c != ',') is.putback(c); kpeter@250: } else { kpeter@250: is.clear(); kpeter@250: } kpeter@250: if (!(is >> p)) return is; kpeter@250: b.topRight(p); kpeter@250: if (is >> c) { kpeter@250: if (c != ')') is.putback(c); kpeter@250: } else { kpeter@250: is.clear(); kpeter@250: } kpeter@250: return is; kpeter@250: } kpeter@250: kpeter@253: ///Write a box to a stream kpeter@250: kpeter@253: ///Write a box to a stream. kpeter@253: ///\relates Box kpeter@250: template<typename T> kpeter@253: inline std::ostream& operator<<(std::ostream &os, const Box<T>& b) kpeter@250: { kpeter@250: os << "(" << b.bottomLeft() << "," << b.topRight() << ")"; kpeter@250: return os; kpeter@250: } kpeter@250: kpeter@313: ///Map of x-coordinates of a <tt>Point</tt>-map alpar@8: kpeter@313: ///Map of x-coordinates of a \ref Point "Point"-map. kpeter@314: /// alpar@8: template<class M> alpar@209: class XMap alpar@8: { alpar@8: M& _map; alpar@8: public: alpar@8: alpar@8: typedef typename M::Value::Value Value; alpar@8: typedef typename M::Key Key; alpar@8: ///\e alpar@8: XMap(M& map) : _map(map) {} alpar@8: Value operator[](Key k) const {return _map[k].x;} alpar@8: void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));} alpar@8: }; alpar@209: kpeter@313: ///Returns an XMap class alpar@8: kpeter@313: ///This function just returns an XMap class. alpar@8: ///\relates XMap alpar@209: template<class M> alpar@209: inline XMap<M> xMap(M &m) alpar@8: { alpar@8: return XMap<M>(m); alpar@8: } alpar@8: alpar@209: template<class M> alpar@209: inline XMap<M> xMap(const M &m) alpar@8: { alpar@8: return XMap<M>(m); alpar@8: } alpar@8: kpeter@313: ///Constant (read only) version of XMap alpar@8: kpeter@313: ///Constant (read only) version of XMap. kpeter@314: /// alpar@8: template<class M> alpar@209: class ConstXMap alpar@8: { alpar@8: const M& _map; alpar@8: public: alpar@8: alpar@8: typedef typename M::Value::Value Value; alpar@8: typedef typename M::Key Key; alpar@8: ///\e alpar@8: ConstXMap(const M &map) : _map(map) {} alpar@8: Value operator[](Key k) const {return _map[k].x;} alpar@8: }; alpar@209: kpeter@313: ///Returns a ConstXMap class alpar@8: kpeter@313: ///This function just returns a ConstXMap class. alpar@8: ///\relates ConstXMap alpar@209: template<class M> alpar@209: inline ConstXMap<M> xMap(const M &m) alpar@8: { alpar@8: return ConstXMap<M>(m); alpar@8: } alpar@8: kpeter@313: ///Map of y-coordinates of a <tt>Point</tt>-map alpar@209: kpeter@313: ///Map of y-coordinates of a \ref Point "Point"-map. kpeter@314: /// alpar@8: template<class M> alpar@209: class YMap alpar@8: { alpar@8: M& _map; alpar@8: public: alpar@8: alpar@8: typedef typename M::Value::Value Value; alpar@8: typedef typename M::Key Key; alpar@8: ///\e alpar@8: YMap(M& map) : _map(map) {} alpar@8: Value operator[](Key k) const {return _map[k].y;} alpar@8: void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));} alpar@8: }; alpar@8: kpeter@313: ///Returns a YMap class alpar@8: kpeter@313: ///This function just returns a YMap class. alpar@8: ///\relates YMap alpar@209: template<class M> alpar@209: inline YMap<M> yMap(M &m) alpar@8: { alpar@8: return YMap<M>(m); alpar@8: } alpar@8: alpar@209: template<class M> alpar@209: inline YMap<M> yMap(const M &m) alpar@8: { alpar@8: return YMap<M>(m); alpar@8: } alpar@8: kpeter@313: ///Constant (read only) version of YMap alpar@8: kpeter@313: ///Constant (read only) version of YMap. kpeter@314: /// alpar@8: template<class M> alpar@209: class ConstYMap alpar@8: { alpar@8: const M& _map; alpar@8: public: alpar@8: alpar@8: typedef typename M::Value::Value Value; alpar@8: typedef typename M::Key Key; alpar@8: ///\e alpar@8: ConstYMap(const M &map) : _map(map) {} alpar@8: Value operator[](Key k) const {return _map[k].y;} alpar@8: }; alpar@209: kpeter@313: ///Returns a ConstYMap class alpar@8: kpeter@313: ///This function just returns a ConstYMap class. alpar@8: ///\relates ConstYMap alpar@209: template<class M> alpar@209: inline ConstYMap<M> yMap(const M &m) alpar@8: { alpar@8: return ConstYMap<M>(m); alpar@8: } alpar@8: alpar@8: kpeter@313: ///\brief Map of the normSquare() of a <tt>Point</tt>-map kpeter@49: /// kpeter@49: ///Map of the \ref Point::normSquare() "normSquare()" kpeter@49: ///of a \ref Point "Point"-map. alpar@8: template<class M> alpar@209: class NormSquareMap alpar@8: { alpar@8: const M& _map; alpar@8: public: alpar@8: alpar@8: typedef typename M::Value::Value Value; alpar@8: typedef typename M::Key Key; alpar@8: ///\e alpar@8: NormSquareMap(const M &map) : _map(map) {} alpar@8: Value operator[](Key k) const {return _map[k].normSquare();} alpar@8: }; alpar@209: kpeter@313: ///Returns a NormSquareMap class alpar@8: kpeter@313: ///This function just returns a NormSquareMap class. alpar@8: ///\relates NormSquareMap alpar@209: template<class M> alpar@209: inline NormSquareMap<M> normSquareMap(const M &m) alpar@8: { alpar@8: return NormSquareMap<M>(m); alpar@8: } alpar@8: alpar@8: /// @} alpar@8: alpar@8: } //namespce dim2 alpar@209: alpar@8: } //namespace lemon alpar@8: alpar@8: #endif //LEMON_DIM2_H