diff -r c35afa9e89e7 -r ef88c0a30f85 lemon/howard.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/howard.h Thu Nov 05 15:48:01 2009 +0100 @@ -0,0 +1,597 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_HOWARD_H +#define LEMON_HOWARD_H + +/// \ingroup min_mean_cycle +/// +/// \file +/// \brief Howard's algorithm for finding a minimum mean cycle. + +#include +#include +#include +#include +#include +#include + +namespace lemon { + + /// \brief Default traits class of Howard class. + /// + /// Default traits class of Howard class. + /// \tparam GR The type of the digraph. + /// \tparam LEN The type of the length map. + /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. +#ifdef DOXYGEN + template +#else + template ::is_integer> +#endif + struct HowardDefaultTraits + { + /// The type of the digraph + typedef GR Digraph; + /// The type of the length map + typedef LEN LengthMap; + /// The type of the arc lengths + typedef typename LengthMap::Value Value; + + /// \brief The large value type used for internal computations + /// + /// The large value type used for internal computations. + /// It is \c long \c long if the \c Value type is integer, + /// otherwise it is \c double. + /// \c Value must be convertible to \c LargeValue. + typedef double LargeValue; + + /// The tolerance type used for internal computations + typedef lemon::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addBack() function. + typedef lemon::Path Path; + }; + + // Default traits class for integer value types + template + struct HowardDefaultTraits + { + typedef GR Digraph; + typedef LEN LengthMap; + typedef typename LengthMap::Value Value; +#ifdef LEMON_HAVE_LONG_LONG + typedef long long LargeValue; +#else + typedef long LargeValue; +#endif + typedef lemon::Tolerance Tolerance; + typedef lemon::Path Path; + }; + + + /// \addtogroup min_mean_cycle + /// @{ + + /// \brief Implementation of Howard's algorithm for finding a minimum + /// mean cycle. + /// + /// This class implements Howard's policy iteration algorithm for finding + /// a directed cycle of minimum mean length (cost) in a digraph + /// \ref amo93networkflows, \ref dasdan98minmeancycle. + /// This class provides the most efficient algorithm for the + /// minimum mean cycle problem, though the best known theoretical + /// bound on its running time is exponential. + /// + /// \tparam GR The type of the digraph the algorithm runs on. + /// \tparam LEN The type of the length map. The default + /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". +#ifdef DOXYGEN + template +#else + template < typename GR, + typename LEN = typename GR::template ArcMap, + typename TR = HowardDefaultTraits > +#endif + class Howard + { + public: + + /// The type of the digraph + typedef typename TR::Digraph Digraph; + /// The type of the length map + typedef typename TR::LengthMap LengthMap; + /// The type of the arc lengths + typedef typename TR::Value Value; + + /// \brief The large value type + /// + /// The large value type used for internal computations. + /// Using the \ref HowardDefaultTraits "default traits class", + /// it is \c long \c long if the \c Value type is integer, + /// otherwise it is \c double. + typedef typename TR::LargeValue LargeValue; + + /// The tolerance type + typedef typename TR::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// Using the \ref HowardDefaultTraits "default traits class", + /// it is \ref lemon::Path "Path". + typedef typename TR::Path Path; + + /// The \ref HowardDefaultTraits "traits class" of the algorithm + typedef TR Traits; + + private: + + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + // The digraph the algorithm runs on + const Digraph &_gr; + // The length of the arcs + const LengthMap &_length; + + // Data for the found cycles + bool _curr_found, _best_found; + LargeValue _curr_length, _best_length; + int _curr_size, _best_size; + Node _curr_node, _best_node; + + Path *_cycle_path; + bool _local_path; + + // Internal data used by the algorithm + typename Digraph::template NodeMap _policy; + typename Digraph::template NodeMap _reached; + typename Digraph::template NodeMap _level; + typename Digraph::template NodeMap _dist; + + // Data for storing the strongly connected components + int _comp_num; + typename Digraph::template NodeMap _comp; + std::vector > _comp_nodes; + std::vector* _nodes; + typename Digraph::template NodeMap > _in_arcs; + + // Queue used for BFS search + std::vector _queue; + int _qfront, _qback; + + Tolerance _tolerance; + + // Infinite constant + const LargeValue INF; + + public: + + /// \name Named Template Parameters + /// @{ + + template + struct SetLargeValueTraits : public Traits { + typedef T LargeValue; + typedef lemon::Tolerance Tolerance; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c LargeValue type. + /// + /// \ref named-templ-param "Named parameter" for setting \c LargeValue + /// type. It is used for internal computations in the algorithm. + template + struct SetLargeValue + : public Howard > { + typedef Howard > Create; + }; + + template + struct SetPathTraits : public Traits { + typedef T Path; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c %Path type. + /// + /// \ref named-templ-param "Named parameter" for setting the \c %Path + /// type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addBack() function. + template + struct SetPath + : public Howard > { + typedef Howard > Create; + }; + + /// @} + + public: + + /// \brief Constructor. + /// + /// The constructor of the class. + /// + /// \param digraph The digraph the algorithm runs on. + /// \param length The lengths (costs) of the arcs. + Howard( const Digraph &digraph, + const LengthMap &length ) : + _gr(digraph), _length(length), _best_found(false), + _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), + _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), + _comp(digraph), _in_arcs(digraph), + INF(std::numeric_limits::has_infinity ? + std::numeric_limits::infinity() : + std::numeric_limits::max()) + {} + + /// Destructor. + ~Howard() { + if (_local_path) delete _cycle_path; + } + + /// \brief Set the path structure for storing the found cycle. + /// + /// This function sets an external path structure for storing the + /// found cycle. + /// + /// If you don't call this function before calling \ref run() or + /// \ref findMinMean(), it will allocate a local \ref Path "path" + /// structure. The destuctor deallocates this automatically + /// allocated object, of course. + /// + /// \note The algorithm calls only the \ref lemon::Path::addBack() + /// "addBack()" function of the given path structure. + /// + /// \return (*this) + Howard& cycle(Path &path) { + if (_local_path) { + delete _cycle_path; + _local_path = false; + } + _cycle_path = &path; + return *this; + } + + /// \brief Set the tolerance used by the algorithm. + /// + /// This function sets the tolerance object used by the algorithm. + /// + /// \return (*this) + Howard& tolerance(const Tolerance& tolerance) { + _tolerance = tolerance; + return *this; + } + + /// \brief Return a const reference to the tolerance. + /// + /// This function returns a const reference to the tolerance object + /// used by the algorithm. + const Tolerance& tolerance() const { + return _tolerance; + } + + /// \name Execution control + /// The simplest way to execute the algorithm is to call the \ref run() + /// function.\n + /// If you only need the minimum mean length, you may call + /// \ref findMinMean(). + + /// @{ + + /// \brief Run the algorithm. + /// + /// This function runs the algorithm. + /// It can be called more than once (e.g. if the underlying digraph + /// and/or the arc lengths have been modified). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \note mmc.run() is just a shortcut of the following code. + /// \code + /// return mmc.findMinMean() && mmc.findCycle(); + /// \endcode + bool run() { + return findMinMean() && findCycle(); + } + + /// \brief Find the minimum cycle mean. + /// + /// This function finds the minimum mean length of the directed + /// cycles in the digraph. + /// + /// \return \c true if a directed cycle exists in the digraph. + bool findMinMean() { + // Initialize and find strongly connected components + init(); + findComponents(); + + // Find the minimum cycle mean in the components + for (int comp = 0; comp < _comp_num; ++comp) { + // Find the minimum mean cycle in the current component + if (!buildPolicyGraph(comp)) continue; + while (true) { + findPolicyCycle(); + if (!computeNodeDistances()) break; + } + // Update the best cycle (global minimum mean cycle) + if ( _curr_found && (!_best_found || + _curr_length * _best_size < _best_length * _curr_size) ) { + _best_found = true; + _best_length = _curr_length; + _best_size = _curr_size; + _best_node = _curr_node; + } + } + return _best_found; + } + + /// \brief Find a minimum mean directed cycle. + /// + /// This function finds a directed cycle of minimum mean length + /// in the digraph using the data computed by findMinMean(). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \pre \ref findMinMean() must be called before using this function. + bool findCycle() { + if (!_best_found) return false; + _cycle_path->addBack(_policy[_best_node]); + for ( Node v = _best_node; + (v = _gr.target(_policy[v])) != _best_node; ) { + _cycle_path->addBack(_policy[v]); + } + return true; + } + + /// @} + + /// \name Query Functions + /// The results of the algorithm can be obtained using these + /// functions.\n + /// The algorithm should be executed before using them. + + /// @{ + + /// \brief Return the total length of the found cycle. + /// + /// This function returns the total length of the found cycle. + /// + /// \pre \ref run() or \ref findMinMean() must be called before + /// using this function. + LargeValue cycleLength() const { + return _best_length; + } + + /// \brief Return the number of arcs on the found cycle. + /// + /// This function returns the number of arcs on the found cycle. + /// + /// \pre \ref run() or \ref findMinMean() must be called before + /// using this function. + int cycleArcNum() const { + return _best_size; + } + + /// \brief Return the mean length of the found cycle. + /// + /// This function returns the mean length of the found cycle. + /// + /// \note alg.cycleMean() is just a shortcut of the + /// following code. + /// \code + /// return static_cast(alg.cycleLength()) / alg.cycleArcNum(); + /// \endcode + /// + /// \pre \ref run() or \ref findMinMean() must be called before + /// using this function. + double cycleMean() const { + return static_cast(_best_length) / _best_size; + } + + /// \brief Return the found cycle. + /// + /// This function returns a const reference to the path structure + /// storing the found cycle. + /// + /// \pre \ref run() or \ref findCycle() must be called before using + /// this function. + const Path& cycle() const { + return *_cycle_path; + } + + ///@} + + private: + + // Initialize + void init() { + if (!_cycle_path) { + _local_path = true; + _cycle_path = new Path; + } + _queue.resize(countNodes(_gr)); + _best_found = false; + _best_length = 0; + _best_size = 1; + _cycle_path->clear(); + } + + // Find strongly connected components and initialize _comp_nodes + // and _in_arcs + void findComponents() { + _comp_num = stronglyConnectedComponents(_gr, _comp); + _comp_nodes.resize(_comp_num); + if (_comp_num == 1) { + _comp_nodes[0].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + _comp_nodes[0].push_back(n); + _in_arcs[n].clear(); + for (InArcIt a(_gr, n); a != INVALID; ++a) { + _in_arcs[n].push_back(a); + } + } + } else { + for (int i = 0; i < _comp_num; ++i) + _comp_nodes[i].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + int k = _comp[n]; + _comp_nodes[k].push_back(n); + _in_arcs[n].clear(); + for (InArcIt a(_gr, n); a != INVALID; ++a) { + if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); + } + } + } + } + + // Build the policy graph in the given strongly connected component + // (the out-degree of every node is 1) + bool buildPolicyGraph(int comp) { + _nodes = &(_comp_nodes[comp]); + if (_nodes->size() < 1 || + (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { + return false; + } + for (int i = 0; i < int(_nodes->size()); ++i) { + _dist[(*_nodes)[i]] = INF; + } + Node u, v; + Arc e; + for (int i = 0; i < int(_nodes->size()); ++i) { + v = (*_nodes)[i]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + if (_length[e] < _dist[u]) { + _dist[u] = _length[e]; + _policy[u] = e; + } + } + } + return true; + } + + // Find the minimum mean cycle in the policy graph + void findPolicyCycle() { + for (int i = 0; i < int(_nodes->size()); ++i) { + _level[(*_nodes)[i]] = -1; + } + LargeValue clength; + int csize; + Node u, v; + _curr_found = false; + for (int i = 0; i < int(_nodes->size()); ++i) { + u = (*_nodes)[i]; + if (_level[u] >= 0) continue; + for (; _level[u] < 0; u = _gr.target(_policy[u])) { + _level[u] = i; + } + if (_level[u] == i) { + // A cycle is found + clength = _length[_policy[u]]; + csize = 1; + for (v = u; (v = _gr.target(_policy[v])) != u; ) { + clength += _length[_policy[v]]; + ++csize; + } + if ( !_curr_found || + (clength * _curr_size < _curr_length * csize) ) { + _curr_found = true; + _curr_length = clength; + _curr_size = csize; + _curr_node = u; + } + } + } + } + + // Contract the policy graph and compute node distances + bool computeNodeDistances() { + // Find the component of the main cycle and compute node distances + // using reverse BFS + for (int i = 0; i < int(_nodes->size()); ++i) { + _reached[(*_nodes)[i]] = false; + } + _qfront = _qback = 0; + _queue[0] = _curr_node; + _reached[_curr_node] = true; + _dist[_curr_node] = 0; + Node u, v; + Arc e; + while (_qfront <= _qback) { + v = _queue[_qfront++]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + if (_policy[u] == e && !_reached[u]) { + _reached[u] = true; + _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; + _queue[++_qback] = u; + } + } + } + + // Connect all other nodes to this component and compute node + // distances using reverse BFS + _qfront = 0; + while (_qback < int(_nodes->size())-1) { + v = _queue[_qfront++]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + if (!_reached[u]) { + _reached[u] = true; + _policy[u] = e; + _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; + _queue[++_qback] = u; + } + } + } + + // Improve node distances + bool improved = false; + for (int i = 0; i < int(_nodes->size()); ++i) { + v = (*_nodes)[i]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; + if (_tolerance.less(delta, _dist[u])) { + _dist[u] = delta; + _policy[u] = e; + improved = true; + } + } + } + return improved; + } + + }; //class Howard + + ///@} + +} //namespace lemon + +#endif //LEMON_HOWARD_H