| 
alpar@389
 | 
     1  | 
/* -*- mode: C++; indent-tabs-mode: nil; -*-
  | 
| 
alpar@389
 | 
     2  | 
 *
  | 
| 
alpar@389
 | 
     3  | 
 * This file is a part of LEMON, a generic C++ optimization library.
  | 
| 
alpar@389
 | 
     4  | 
 *
  | 
| 
alpar@440
 | 
     5  | 
 * Copyright (C) 2003-2009
  | 
| 
alpar@389
 | 
     6  | 
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  | 
| 
alpar@389
 | 
     7  | 
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
  | 
| 
alpar@389
 | 
     8  | 
 *
  | 
| 
alpar@389
 | 
     9  | 
 * Permission to use, modify and distribute this software is granted
  | 
| 
alpar@389
 | 
    10  | 
 * provided that this copyright notice appears in all copies. For
  | 
| 
alpar@389
 | 
    11  | 
 * precise terms see the accompanying LICENSE file.
  | 
| 
alpar@389
 | 
    12  | 
 *
  | 
| 
alpar@389
 | 
    13  | 
 * This software is provided "AS IS" with no warranty of any kind,
  | 
| 
alpar@389
 | 
    14  | 
 * express or implied, and with no claim as to its suitability for any
  | 
| 
alpar@389
 | 
    15  | 
 * purpose.
  | 
| 
alpar@389
 | 
    16  | 
 *
  | 
| 
alpar@389
 | 
    17  | 
 */
  | 
| 
alpar@389
 | 
    18  | 
  | 
| 
alpar@389
 | 
    19  | 
#ifndef LEMON_PREFLOW_H
  | 
| 
alpar@389
 | 
    20  | 
#define LEMON_PREFLOW_H
  | 
| 
alpar@389
 | 
    21  | 
  | 
| 
alpar@389
 | 
    22  | 
#include <lemon/tolerance.h>
  | 
| 
alpar@389
 | 
    23  | 
#include <lemon/elevator.h>
  | 
| 
alpar@389
 | 
    24  | 
  | 
| 
alpar@389
 | 
    25  | 
/// \file
  | 
| 
alpar@389
 | 
    26  | 
/// \ingroup max_flow
  | 
| 
alpar@389
 | 
    27  | 
/// \brief Implementation of the preflow algorithm.
  | 
| 
alpar@389
 | 
    28  | 
  | 
| 
alpar@389
 | 
    29  | 
namespace lemon {
 | 
| 
alpar@389
 | 
    30  | 
  | 
| 
alpar@389
 | 
    31  | 
  /// \brief Default traits class of Preflow class.
  | 
| 
alpar@389
 | 
    32  | 
  ///
  | 
| 
alpar@389
 | 
    33  | 
  /// Default traits class of Preflow class.
  | 
| 
kpeter@503
 | 
    34  | 
  /// \tparam GR Digraph type.
  | 
| 
kpeter@559
 | 
    35  | 
  /// \tparam CAP Capacity map type.
  | 
| 
kpeter@559
 | 
    36  | 
  template <typename GR, typename CAP>
  | 
| 
alpar@389
 | 
    37  | 
  struct PreflowDefaultTraits {
 | 
| 
alpar@389
 | 
    38  | 
  | 
| 
kpeter@393
 | 
    39  | 
    /// \brief The type of the digraph the algorithm runs on.
  | 
| 
kpeter@503
 | 
    40  | 
    typedef GR Digraph;
  | 
| 
alpar@389
 | 
    41  | 
  | 
| 
alpar@389
 | 
    42  | 
    /// \brief The type of the map that stores the arc capacities.
  | 
| 
alpar@389
 | 
    43  | 
    ///
  | 
| 
alpar@389
 | 
    44  | 
    /// The type of the map that stores the arc capacities.
  | 
| 
alpar@389
 | 
    45  | 
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
  | 
| 
kpeter@559
 | 
    46  | 
    typedef CAP CapacityMap;
  | 
| 
alpar@389
 | 
    47  | 
  | 
| 
kpeter@393
 | 
    48  | 
    /// \brief The type of the flow values.
  | 
| 
kpeter@641
 | 
    49  | 
    typedef typename CapacityMap::Value Value;
  | 
| 
alpar@389
 | 
    50  | 
  | 
| 
kpeter@393
 | 
    51  | 
    /// \brief The type of the map that stores the flow values.
  | 
| 
alpar@389
 | 
    52  | 
    ///
  | 
| 
kpeter@393
 | 
    53  | 
    /// The type of the map that stores the flow values.
  | 
| 
alpar@389
 | 
    54  | 
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
  | 
| 
kpeter@713
 | 
    55  | 
#ifdef DOXYGEN
  | 
| 
kpeter@713
 | 
    56  | 
    typedef GR::ArcMap<Value> FlowMap;
  | 
| 
kpeter@713
 | 
    57  | 
#else
  | 
| 
kpeter@641
 | 
    58  | 
    typedef typename Digraph::template ArcMap<Value> FlowMap;
  | 
| 
kpeter@713
 | 
    59  | 
#endif
  | 
| 
alpar@389
 | 
    60  | 
  | 
| 
alpar@389
 | 
    61  | 
    /// \brief Instantiates a FlowMap.
  | 
| 
alpar@389
 | 
    62  | 
    ///
  | 
| 
alpar@389
 | 
    63  | 
    /// This function instantiates a \ref FlowMap.
  | 
| 
kpeter@610
 | 
    64  | 
    /// \param digraph The digraph for which we would like to define
  | 
| 
alpar@389
 | 
    65  | 
    /// the flow map.
  | 
| 
alpar@389
 | 
    66  | 
    static FlowMap* createFlowMap(const Digraph& digraph) {
 | 
| 
alpar@389
 | 
    67  | 
      return new FlowMap(digraph);
  | 
| 
alpar@389
 | 
    68  | 
    }
  | 
| 
alpar@389
 | 
    69  | 
  | 
| 
kpeter@393
 | 
    70  | 
    /// \brief The elevator type used by Preflow algorithm.
  | 
| 
alpar@389
 | 
    71  | 
    ///
  | 
| 
alpar@389
 | 
    72  | 
    /// The elevator type used by Preflow algorithm.
  | 
| 
alpar@389
 | 
    73  | 
    ///
  | 
| 
kpeter@713
 | 
    74  | 
    /// \sa Elevator, LinkedElevator
  | 
| 
kpeter@713
 | 
    75  | 
#ifdef DOXYGEN
  | 
| 
kpeter@713
 | 
    76  | 
    typedef lemon::Elevator<GR, GR::Node> Elevator;
  | 
| 
kpeter@713
 | 
    77  | 
#else
  | 
| 
kpeter@713
 | 
    78  | 
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
  | 
| 
kpeter@713
 | 
    79  | 
#endif
  | 
| 
alpar@389
 | 
    80  | 
  | 
| 
alpar@389
 | 
    81  | 
    /// \brief Instantiates an Elevator.
  | 
| 
alpar@389
 | 
    82  | 
    ///
  | 
| 
kpeter@393
 | 
    83  | 
    /// This function instantiates an \ref Elevator.
  | 
| 
kpeter@610
 | 
    84  | 
    /// \param digraph The digraph for which we would like to define
  | 
| 
alpar@389
 | 
    85  | 
    /// the elevator.
  | 
| 
alpar@389
 | 
    86  | 
    /// \param max_level The maximum level of the elevator.
  | 
| 
alpar@389
 | 
    87  | 
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
 | 
| 
alpar@389
 | 
    88  | 
      return new Elevator(digraph, max_level);
  | 
| 
alpar@389
 | 
    89  | 
    }
  | 
| 
alpar@389
 | 
    90  | 
  | 
| 
alpar@389
 | 
    91  | 
    /// \brief The tolerance used by the algorithm
  | 
| 
alpar@389
 | 
    92  | 
    ///
  | 
| 
alpar@389
 | 
    93  | 
    /// The tolerance used by the algorithm to handle inexact computation.
  | 
| 
kpeter@641
 | 
    94  | 
    typedef lemon::Tolerance<Value> Tolerance;
  | 
| 
alpar@389
 | 
    95  | 
  | 
| 
alpar@389
 | 
    96  | 
  };
  | 
| 
alpar@389
 | 
    97  | 
  | 
| 
alpar@389
 | 
    98  | 
  | 
| 
alpar@389
 | 
    99  | 
  /// \ingroup max_flow
  | 
| 
alpar@389
 | 
   100  | 
  ///
  | 
| 
kpeter@393
 | 
   101  | 
  /// \brief %Preflow algorithm class.
  | 
| 
alpar@389
 | 
   102  | 
  ///
  | 
| 
kpeter@393
 | 
   103  | 
  /// This class provides an implementation of Goldberg-Tarjan's \e preflow
  | 
| 
kpeter@559
 | 
   104  | 
  /// \e push-relabel algorithm producing a \ref max_flow
  | 
| 
kpeter@755
 | 
   105  | 
  /// "flow of maximum value" in a digraph \ref clrs01algorithms,
  | 
| 
kpeter@755
 | 
   106  | 
  /// \ref amo93networkflows, \ref goldberg88newapproach.
  | 
| 
kpeter@559
 | 
   107  | 
  /// The preflow algorithms are the fastest known maximum
  | 
| 
kpeter@689
 | 
   108  | 
  /// flow algorithms. The current implementation uses a mixture of the
  | 
| 
alpar@389
 | 
   109  | 
  /// \e "highest label" and the \e "bound decrease" heuristics.
  | 
| 
alpar@389
 | 
   110  | 
  /// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
 | 
| 
alpar@389
 | 
   111  | 
  ///
  | 
| 
kpeter@393
 | 
   112  | 
  /// The algorithm consists of two phases. After the first phase
  | 
| 
kpeter@393
 | 
   113  | 
  /// the maximum flow value and the minimum cut is obtained. The
  | 
| 
kpeter@393
 | 
   114  | 
  /// second phase constructs a feasible maximum flow on each arc.
  | 
| 
alpar@389
 | 
   115  | 
  ///
  | 
| 
kpeter@503
 | 
   116  | 
  /// \tparam GR The type of the digraph the algorithm runs on.
  | 
| 
kpeter@559
 | 
   117  | 
  /// \tparam CAP The type of the capacity map. The default map
  | 
| 
kpeter@503
 | 
   118  | 
  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
  | 
| 
alpar@389
 | 
   119  | 
#ifdef DOXYGEN
  | 
| 
kpeter@559
 | 
   120  | 
  template <typename GR, typename CAP, typename TR>
  | 
| 
alpar@389
 | 
   121  | 
#else
  | 
| 
kpeter@503
 | 
   122  | 
  template <typename GR,
  | 
| 
kpeter@559
 | 
   123  | 
            typename CAP = typename GR::template ArcMap<int>,
  | 
| 
kpeter@559
 | 
   124  | 
            typename TR = PreflowDefaultTraits<GR, CAP> >
  | 
| 
alpar@389
 | 
   125  | 
#endif
  | 
| 
alpar@389
 | 
   126  | 
  class Preflow {
 | 
| 
alpar@389
 | 
   127  | 
  public:
  | 
| 
alpar@389
 | 
   128  | 
  | 
| 
kpeter@393
 | 
   129  | 
    ///The \ref PreflowDefaultTraits "traits class" of the algorithm.
  | 
| 
kpeter@503
 | 
   130  | 
    typedef TR Traits;
  | 
| 
kpeter@393
 | 
   131  | 
    ///The type of the digraph the algorithm runs on.
  | 
| 
alpar@389
 | 
   132  | 
    typedef typename Traits::Digraph Digraph;
  | 
| 
kpeter@393
 | 
   133  | 
    ///The type of the capacity map.
  | 
| 
alpar@389
 | 
   134  | 
    typedef typename Traits::CapacityMap CapacityMap;
  | 
| 
kpeter@393
 | 
   135  | 
    ///The type of the flow values.
  | 
| 
kpeter@641
 | 
   136  | 
    typedef typename Traits::Value Value;
  | 
| 
alpar@389
 | 
   137  | 
  | 
| 
kpeter@393
 | 
   138  | 
    ///The type of the flow map.
  | 
| 
alpar@389
 | 
   139  | 
    typedef typename Traits::FlowMap FlowMap;
  | 
| 
kpeter@393
 | 
   140  | 
    ///The type of the elevator.
  | 
| 
alpar@389
 | 
   141  | 
    typedef typename Traits::Elevator Elevator;
  | 
| 
kpeter@393
 | 
   142  | 
    ///The type of the tolerance.
  | 
| 
alpar@389
 | 
   143  | 
    typedef typename Traits::Tolerance Tolerance;
  | 
| 
alpar@389
 | 
   144  | 
  | 
| 
alpar@389
 | 
   145  | 
  private:
  | 
| 
alpar@389
 | 
   146  | 
  | 
| 
alpar@389
 | 
   147  | 
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
  | 
| 
alpar@389
 | 
   148  | 
  | 
| 
alpar@389
 | 
   149  | 
    const Digraph& _graph;
  | 
| 
alpar@389
 | 
   150  | 
    const CapacityMap* _capacity;
  | 
| 
alpar@389
 | 
   151  | 
  | 
| 
alpar@389
 | 
   152  | 
    int _node_num;
  | 
| 
alpar@389
 | 
   153  | 
  | 
| 
alpar@389
 | 
   154  | 
    Node _source, _target;
  | 
| 
alpar@389
 | 
   155  | 
  | 
| 
alpar@389
 | 
   156  | 
    FlowMap* _flow;
  | 
| 
alpar@389
 | 
   157  | 
    bool _local_flow;
  | 
| 
alpar@389
 | 
   158  | 
  | 
| 
alpar@389
 | 
   159  | 
    Elevator* _level;
  | 
| 
alpar@389
 | 
   160  | 
    bool _local_level;
  | 
| 
alpar@389
 | 
   161  | 
  | 
| 
kpeter@641
 | 
   162  | 
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
  | 
| 
alpar@389
 | 
   163  | 
    ExcessMap* _excess;
  | 
| 
alpar@389
 | 
   164  | 
  | 
| 
alpar@389
 | 
   165  | 
    Tolerance _tolerance;
  | 
| 
alpar@389
 | 
   166  | 
  | 
| 
alpar@389
 | 
   167  | 
    bool _phase;
  | 
| 
alpar@389
 | 
   168  | 
  | 
| 
alpar@389
 | 
   169  | 
  | 
| 
alpar@389
 | 
   170  | 
    void createStructures() {
 | 
| 
alpar@389
 | 
   171  | 
      _node_num = countNodes(_graph);
  | 
| 
alpar@389
 | 
   172  | 
  | 
| 
alpar@389
 | 
   173  | 
      if (!_flow) {
 | 
| 
alpar@389
 | 
   174  | 
        _flow = Traits::createFlowMap(_graph);
  | 
| 
alpar@389
 | 
   175  | 
        _local_flow = true;
  | 
| 
alpar@389
 | 
   176  | 
      }
  | 
| 
alpar@389
 | 
   177  | 
      if (!_level) {
 | 
| 
alpar@389
 | 
   178  | 
        _level = Traits::createElevator(_graph, _node_num);
  | 
| 
alpar@389
 | 
   179  | 
        _local_level = true;
  | 
| 
alpar@389
 | 
   180  | 
      }
  | 
| 
alpar@389
 | 
   181  | 
      if (!_excess) {
 | 
| 
alpar@389
 | 
   182  | 
        _excess = new ExcessMap(_graph);
  | 
| 
alpar@389
 | 
   183  | 
      }
  | 
| 
alpar@389
 | 
   184  | 
    }
  | 
| 
alpar@389
 | 
   185  | 
  | 
| 
alpar@389
 | 
   186  | 
    void destroyStructures() {
 | 
| 
alpar@389
 | 
   187  | 
      if (_local_flow) {
 | 
| 
alpar@389
 | 
   188  | 
        delete _flow;
  | 
| 
alpar@389
 | 
   189  | 
      }
  | 
| 
alpar@389
 | 
   190  | 
      if (_local_level) {
 | 
| 
alpar@389
 | 
   191  | 
        delete _level;
  | 
| 
alpar@389
 | 
   192  | 
      }
  | 
| 
alpar@389
 | 
   193  | 
      if (_excess) {
 | 
| 
alpar@389
 | 
   194  | 
        delete _excess;
  | 
| 
alpar@389
 | 
   195  | 
      }
  | 
| 
alpar@389
 | 
   196  | 
    }
  | 
| 
alpar@389
 | 
   197  | 
  | 
| 
alpar@389
 | 
   198  | 
  public:
  | 
| 
alpar@389
 | 
   199  | 
  | 
| 
alpar@389
 | 
   200  | 
    typedef Preflow Create;
  | 
| 
alpar@389
 | 
   201  | 
  | 
| 
kpeter@393
 | 
   202  | 
    ///\name Named Template Parameters
  | 
| 
alpar@389
 | 
   203  | 
  | 
| 
alpar@389
 | 
   204  | 
    ///@{
 | 
| 
alpar@389
 | 
   205  | 
  | 
| 
kpeter@559
 | 
   206  | 
    template <typename T>
  | 
| 
alpar@391
 | 
   207  | 
    struct SetFlowMapTraits : public Traits {
 | 
| 
kpeter@559
 | 
   208  | 
      typedef T FlowMap;
  | 
| 
alpar@389
 | 
   209  | 
      static FlowMap *createFlowMap(const Digraph&) {
 | 
| 
alpar@390
 | 
   210  | 
        LEMON_ASSERT(false, "FlowMap is not initialized");
  | 
| 
alpar@390
 | 
   211  | 
        return 0; // ignore warnings
  | 
| 
alpar@389
 | 
   212  | 
      }
  | 
| 
alpar@389
 | 
   213  | 
    };
  | 
| 
alpar@389
 | 
   214  | 
  | 
| 
alpar@389
 | 
   215  | 
    /// \brief \ref named-templ-param "Named parameter" for setting
  | 
| 
alpar@389
 | 
   216  | 
    /// FlowMap type
  | 
| 
alpar@389
 | 
   217  | 
    ///
  | 
| 
alpar@389
 | 
   218  | 
    /// \ref named-templ-param "Named parameter" for setting FlowMap
  | 
| 
kpeter@393
 | 
   219  | 
    /// type.
  | 
| 
kpeter@559
 | 
   220  | 
    template <typename T>
  | 
| 
alpar@391
 | 
   221  | 
    struct SetFlowMap
  | 
| 
kpeter@559
 | 
   222  | 
      : public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > {
 | 
| 
alpar@389
 | 
   223  | 
      typedef Preflow<Digraph, CapacityMap,
  | 
| 
kpeter@559
 | 
   224  | 
                      SetFlowMapTraits<T> > Create;
  | 
| 
alpar@389
 | 
   225  | 
    };
  | 
| 
alpar@389
 | 
   226  | 
  | 
| 
kpeter@559
 | 
   227  | 
    template <typename T>
  | 
| 
alpar@391
 | 
   228  | 
    struct SetElevatorTraits : public Traits {
 | 
| 
kpeter@559
 | 
   229  | 
      typedef T Elevator;
  | 
| 
alpar@389
 | 
   230  | 
      static Elevator *createElevator(const Digraph&, int) {
 | 
| 
alpar@390
 | 
   231  | 
        LEMON_ASSERT(false, "Elevator is not initialized");
  | 
| 
alpar@390
 | 
   232  | 
        return 0; // ignore warnings
  | 
| 
alpar@389
 | 
   233  | 
      }
  | 
| 
alpar@389
 | 
   234  | 
    };
  | 
| 
alpar@389
 | 
   235  | 
  | 
| 
alpar@389
 | 
   236  | 
    /// \brief \ref named-templ-param "Named parameter" for setting
  | 
| 
alpar@389
 | 
   237  | 
    /// Elevator type
  | 
| 
alpar@389
 | 
   238  | 
    ///
  | 
| 
alpar@389
 | 
   239  | 
    /// \ref named-templ-param "Named parameter" for setting Elevator
  | 
| 
kpeter@393
 | 
   240  | 
    /// type. If this named parameter is used, then an external
  | 
| 
kpeter@393
 | 
   241  | 
    /// elevator object must be passed to the algorithm using the
  | 
| 
kpeter@393
 | 
   242  | 
    /// \ref elevator(Elevator&) "elevator()" function before calling
  | 
| 
kpeter@393
 | 
   243  | 
    /// \ref run() or \ref init().
  | 
| 
kpeter@393
 | 
   244  | 
    /// \sa SetStandardElevator
  | 
| 
kpeter@559
 | 
   245  | 
    template <typename T>
  | 
| 
alpar@391
 | 
   246  | 
    struct SetElevator
  | 
| 
kpeter@559
 | 
   247  | 
      : public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > {
 | 
| 
alpar@389
 | 
   248  | 
      typedef Preflow<Digraph, CapacityMap,
  | 
| 
kpeter@559
 | 
   249  | 
                      SetElevatorTraits<T> > Create;
  | 
| 
alpar@389
 | 
   250  | 
    };
  | 
| 
alpar@389
 | 
   251  | 
  | 
| 
kpeter@559
 | 
   252  | 
    template <typename T>
  | 
| 
alpar@391
 | 
   253  | 
    struct SetStandardElevatorTraits : public Traits {
 | 
| 
kpeter@559
 | 
   254  | 
      typedef T Elevator;
  | 
| 
alpar@389
 | 
   255  | 
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
 | 
| 
alpar@389
 | 
   256  | 
        return new Elevator(digraph, max_level);
  | 
| 
alpar@389
 | 
   257  | 
      }
  | 
| 
alpar@389
 | 
   258  | 
    };
  | 
| 
alpar@389
 | 
   259  | 
  | 
| 
alpar@389
 | 
   260  | 
    /// \brief \ref named-templ-param "Named parameter" for setting
  | 
| 
kpeter@393
 | 
   261  | 
    /// Elevator type with automatic allocation
  | 
| 
alpar@389
 | 
   262  | 
    ///
  | 
| 
alpar@389
 | 
   263  | 
    /// \ref named-templ-param "Named parameter" for setting Elevator
  | 
| 
kpeter@393
 | 
   264  | 
    /// type with automatic allocation.
  | 
| 
kpeter@393
 | 
   265  | 
    /// The Elevator should have standard constructor interface to be
  | 
| 
kpeter@393
 | 
   266  | 
    /// able to automatically created by the algorithm (i.e. the
  | 
| 
kpeter@393
 | 
   267  | 
    /// digraph and the maximum level should be passed to it).
  | 
| 
kpeter@786
 | 
   268  | 
    /// However, an external elevator object could also be passed to the
  | 
| 
kpeter@393
 | 
   269  | 
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
  | 
| 
kpeter@393
 | 
   270  | 
    /// before calling \ref run() or \ref init().
  | 
| 
kpeter@393
 | 
   271  | 
    /// \sa SetElevator
  | 
| 
kpeter@559
 | 
   272  | 
    template <typename T>
  | 
| 
alpar@391
 | 
   273  | 
    struct SetStandardElevator
  | 
| 
alpar@389
 | 
   274  | 
      : public Preflow<Digraph, CapacityMap,
  | 
| 
kpeter@559
 | 
   275  | 
                       SetStandardElevatorTraits<T> > {
 | 
| 
alpar@389
 | 
   276  | 
      typedef Preflow<Digraph, CapacityMap,
  | 
| 
kpeter@559
 | 
   277  | 
                      SetStandardElevatorTraits<T> > Create;
  | 
| 
alpar@389
 | 
   278  | 
    };
  | 
| 
alpar@389
 | 
   279  | 
  | 
| 
alpar@389
 | 
   280  | 
    /// @}
  | 
| 
alpar@389
 | 
   281  | 
  | 
| 
alpar@389
 | 
   282  | 
  protected:
  | 
| 
alpar@389
 | 
   283  | 
  | 
| 
alpar@389
 | 
   284  | 
    Preflow() {}
 | 
| 
alpar@389
 | 
   285  | 
  | 
| 
alpar@389
 | 
   286  | 
  public:
  | 
| 
alpar@389
 | 
   287  | 
  | 
| 
alpar@389
 | 
   288  | 
  | 
| 
alpar@389
 | 
   289  | 
    /// \brief The constructor of the class.
  | 
| 
alpar@389
 | 
   290  | 
    ///
  | 
| 
alpar@389
 | 
   291  | 
    /// The constructor of the class.
  | 
| 
alpar@389
 | 
   292  | 
    /// \param digraph The digraph the algorithm runs on.
  | 
| 
alpar@389
 | 
   293  | 
    /// \param capacity The capacity of the arcs.
  | 
| 
alpar@389
 | 
   294  | 
    /// \param source The source node.
  | 
| 
alpar@389
 | 
   295  | 
    /// \param target The target node.
  | 
| 
alpar@389
 | 
   296  | 
    Preflow(const Digraph& digraph, const CapacityMap& capacity,
  | 
| 
kpeter@393
 | 
   297  | 
            Node source, Node target)
  | 
| 
alpar@389
 | 
   298  | 
      : _graph(digraph), _capacity(&capacity),
  | 
| 
alpar@389
 | 
   299  | 
        _node_num(0), _source(source), _target(target),
  | 
| 
alpar@389
 | 
   300  | 
        _flow(0), _local_flow(false),
  | 
| 
alpar@389
 | 
   301  | 
        _level(0), _local_level(false),
  | 
| 
alpar@389
 | 
   302  | 
        _excess(0), _tolerance(), _phase() {}
 | 
| 
alpar@389
 | 
   303  | 
  | 
| 
kpeter@393
 | 
   304  | 
    /// \brief Destructor.
  | 
| 
alpar@389
 | 
   305  | 
    ///
  | 
| 
alpar@389
 | 
   306  | 
    /// Destructor.
  | 
| 
alpar@389
 | 
   307  | 
    ~Preflow() {
 | 
| 
alpar@389
 | 
   308  | 
      destroyStructures();
  | 
| 
alpar@389
 | 
   309  | 
    }
  | 
| 
alpar@389
 | 
   310  | 
  | 
| 
alpar@389
 | 
   311  | 
    /// \brief Sets the capacity map.
  | 
| 
alpar@389
 | 
   312  | 
    ///
  | 
| 
alpar@389
 | 
   313  | 
    /// Sets the capacity map.
  | 
| 
kpeter@393
 | 
   314  | 
    /// \return <tt>(*this)</tt>
  | 
| 
alpar@389
 | 
   315  | 
    Preflow& capacityMap(const CapacityMap& map) {
 | 
| 
alpar@389
 | 
   316  | 
      _capacity = ↦
  | 
| 
alpar@389
 | 
   317  | 
      return *this;
  | 
| 
alpar@389
 | 
   318  | 
    }
  | 
| 
alpar@389
 | 
   319  | 
  | 
| 
alpar@389
 | 
   320  | 
    /// \brief Sets the flow map.
  | 
| 
alpar@389
 | 
   321  | 
    ///
  | 
| 
alpar@389
 | 
   322  | 
    /// Sets the flow map.
  | 
| 
kpeter@393
 | 
   323  | 
    /// If you don't use this function before calling \ref run() or
  | 
| 
kpeter@393
 | 
   324  | 
    /// \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@393
 | 
   325  | 
    /// The destructor deallocates this automatically allocated map,
  | 
| 
kpeter@393
 | 
   326  | 
    /// of course.
  | 
| 
kpeter@393
 | 
   327  | 
    /// \return <tt>(*this)</tt>
  | 
| 
alpar@389
 | 
   328  | 
    Preflow& flowMap(FlowMap& map) {
 | 
| 
alpar@389
 | 
   329  | 
      if (_local_flow) {
 | 
| 
alpar@389
 | 
   330  | 
        delete _flow;
  | 
| 
alpar@389
 | 
   331  | 
        _local_flow = false;
  | 
| 
alpar@389
 | 
   332  | 
      }
  | 
| 
alpar@389
 | 
   333  | 
      _flow = ↦
  | 
| 
alpar@389
 | 
   334  | 
      return *this;
  | 
| 
alpar@389
 | 
   335  | 
    }
  | 
| 
alpar@389
 | 
   336  | 
  | 
| 
kpeter@393
 | 
   337  | 
    /// \brief Sets the source node.
  | 
| 
alpar@389
 | 
   338  | 
    ///
  | 
| 
kpeter@393
 | 
   339  | 
    /// Sets the source node.
  | 
| 
kpeter@393
 | 
   340  | 
    /// \return <tt>(*this)</tt>
  | 
| 
kpeter@393
 | 
   341  | 
    Preflow& source(const Node& node) {
 | 
| 
kpeter@393
 | 
   342  | 
      _source = node;
  | 
| 
kpeter@393
 | 
   343  | 
      return *this;
  | 
| 
alpar@389
 | 
   344  | 
    }
  | 
| 
alpar@389
 | 
   345  | 
  | 
| 
kpeter@393
 | 
   346  | 
    /// \brief Sets the target node.
  | 
| 
alpar@389
 | 
   347  | 
    ///
  | 
| 
kpeter@393
 | 
   348  | 
    /// Sets the target node.
  | 
| 
kpeter@393
 | 
   349  | 
    /// \return <tt>(*this)</tt>
  | 
| 
kpeter@393
 | 
   350  | 
    Preflow& target(const Node& node) {
 | 
| 
kpeter@393
 | 
   351  | 
      _target = node;
  | 
| 
kpeter@393
 | 
   352  | 
      return *this;
  | 
| 
kpeter@393
 | 
   353  | 
    }
  | 
| 
kpeter@393
 | 
   354  | 
  | 
| 
kpeter@393
 | 
   355  | 
    /// \brief Sets the elevator used by algorithm.
  | 
| 
kpeter@393
 | 
   356  | 
    ///
  | 
| 
kpeter@393
 | 
   357  | 
    /// Sets the elevator used by algorithm.
  | 
| 
kpeter@393
 | 
   358  | 
    /// If you don't use this function before calling \ref run() or
  | 
| 
kpeter@393
 | 
   359  | 
    /// \ref init(), an instance will be allocated automatically.
  | 
| 
kpeter@393
 | 
   360  | 
    /// The destructor deallocates this automatically allocated elevator,
  | 
| 
kpeter@393
 | 
   361  | 
    /// of course.
  | 
| 
kpeter@393
 | 
   362  | 
    /// \return <tt>(*this)</tt>
  | 
| 
alpar@389
 | 
   363  | 
    Preflow& elevator(Elevator& elevator) {
 | 
| 
alpar@389
 | 
   364  | 
      if (_local_level) {
 | 
| 
alpar@389
 | 
   365  | 
        delete _level;
  | 
| 
alpar@389
 | 
   366  | 
        _local_level = false;
  | 
| 
alpar@389
 | 
   367  | 
      }
  | 
| 
alpar@389
 | 
   368  | 
      _level = &elevator;
  | 
| 
alpar@389
 | 
   369  | 
      return *this;
  | 
| 
alpar@389
 | 
   370  | 
    }
  | 
| 
alpar@389
 | 
   371  | 
  | 
| 
kpeter@393
 | 
   372  | 
    /// \brief Returns a const reference to the elevator.
  | 
| 
alpar@389
 | 
   373  | 
    ///
  | 
| 
kpeter@393
 | 
   374  | 
    /// Returns a const reference to the elevator.
  | 
| 
kpeter@393
 | 
   375  | 
    ///
  | 
| 
kpeter@393
 | 
   376  | 
    /// \pre Either \ref run() or \ref init() must be called before
  | 
| 
kpeter@393
 | 
   377  | 
    /// using this function.
  | 
| 
kpeter@420
 | 
   378  | 
    const Elevator& elevator() const {
 | 
| 
alpar@389
 | 
   379  | 
      return *_level;
  | 
| 
alpar@389
 | 
   380  | 
    }
  | 
| 
alpar@389
 | 
   381  | 
  | 
| 
kpeter@689
 | 
   382  | 
    /// \brief Sets the tolerance used by the algorithm.
  | 
| 
alpar@389
 | 
   383  | 
    ///
  | 
| 
kpeter@689
 | 
   384  | 
    /// Sets the tolerance object used by the algorithm.
  | 
| 
kpeter@689
 | 
   385  | 
    /// \return <tt>(*this)</tt>
  | 
| 
kpeter@688
 | 
   386  | 
    Preflow& tolerance(const Tolerance& tolerance) {
 | 
| 
alpar@389
 | 
   387  | 
      _tolerance = tolerance;
  | 
| 
alpar@389
 | 
   388  | 
      return *this;
  | 
| 
alpar@389
 | 
   389  | 
    }
  | 
| 
alpar@389
 | 
   390  | 
  | 
| 
kpeter@393
 | 
   391  | 
    /// \brief Returns a const reference to the tolerance.
  | 
| 
alpar@389
 | 
   392  | 
    ///
  | 
| 
kpeter@689
 | 
   393  | 
    /// Returns a const reference to the tolerance object used by
  | 
| 
kpeter@689
 | 
   394  | 
    /// the algorithm.
  | 
| 
alpar@389
 | 
   395  | 
    const Tolerance& tolerance() const {
 | 
| 
kpeter@688
 | 
   396  | 
      return _tolerance;
  | 
| 
alpar@389
 | 
   397  | 
    }
  | 
| 
alpar@389
 | 
   398  | 
  | 
| 
kpeter@393
 | 
   399  | 
    /// \name Execution Control
  | 
| 
kpeter@393
 | 
   400  | 
    /// The simplest way to execute the preflow algorithm is to use
  | 
| 
kpeter@393
 | 
   401  | 
    /// \ref run() or \ref runMinCut().\n
  | 
| 
kpeter@713
 | 
   402  | 
    /// If you need better control on the initial solution or the execution,
  | 
| 
kpeter@713
 | 
   403  | 
    /// you have to call one of the \ref init() functions first, then
  | 
| 
kpeter@393
 | 
   404  | 
    /// \ref startFirstPhase() and if you need it \ref startSecondPhase().
  | 
| 
alpar@389
 | 
   405  | 
  | 
| 
alpar@389
 | 
   406  | 
    ///@{
 | 
| 
alpar@389
 | 
   407  | 
  | 
| 
alpar@389
 | 
   408  | 
    /// \brief Initializes the internal data structures.
  | 
| 
alpar@389
 | 
   409  | 
    ///
  | 
| 
kpeter@393
 | 
   410  | 
    /// Initializes the internal data structures and sets the initial
  | 
| 
kpeter@393
 | 
   411  | 
    /// flow to zero on each arc.
  | 
| 
alpar@389
 | 
   412  | 
    void init() {
 | 
| 
alpar@389
 | 
   413  | 
      createStructures();
  | 
| 
alpar@389
 | 
   414  | 
  | 
| 
alpar@389
 | 
   415  | 
      _phase = true;
  | 
| 
alpar@389
 | 
   416  | 
      for (NodeIt n(_graph); n != INVALID; ++n) {
 | 
| 
kpeter@581
 | 
   417  | 
        (*_excess)[n] = 0;
  | 
| 
alpar@389
 | 
   418  | 
      }
  | 
| 
alpar@389
 | 
   419  | 
  | 
| 
alpar@389
 | 
   420  | 
      for (ArcIt e(_graph); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   421  | 
        _flow->set(e, 0);
  | 
| 
alpar@389
 | 
   422  | 
      }
  | 
| 
alpar@389
 | 
   423  | 
  | 
| 
alpar@389
 | 
   424  | 
      typename Digraph::template NodeMap<bool> reached(_graph, false);
  | 
| 
alpar@389
 | 
   425  | 
  | 
| 
alpar@389
 | 
   426  | 
      _level->initStart();
  | 
| 
alpar@389
 | 
   427  | 
      _level->initAddItem(_target);
  | 
| 
alpar@389
 | 
   428  | 
  | 
| 
alpar@389
 | 
   429  | 
      std::vector<Node> queue;
  | 
| 
kpeter@581
 | 
   430  | 
      reached[_source] = true;
  | 
| 
alpar@389
 | 
   431  | 
  | 
| 
alpar@389
 | 
   432  | 
      queue.push_back(_target);
  | 
| 
kpeter@581
 | 
   433  | 
      reached[_target] = true;
  | 
| 
alpar@389
 | 
   434  | 
      while (!queue.empty()) {
 | 
| 
alpar@389
 | 
   435  | 
        _level->initNewLevel();
  | 
| 
alpar@389
 | 
   436  | 
        std::vector<Node> nqueue;
  | 
| 
alpar@389
 | 
   437  | 
        for (int i = 0; i < int(queue.size()); ++i) {
 | 
| 
alpar@389
 | 
   438  | 
          Node n = queue[i];
  | 
| 
alpar@389
 | 
   439  | 
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   440  | 
            Node u = _graph.source(e);
  | 
| 
alpar@389
 | 
   441  | 
            if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
 | 
| 
kpeter@581
 | 
   442  | 
              reached[u] = true;
  | 
| 
alpar@389
 | 
   443  | 
              _level->initAddItem(u);
  | 
| 
alpar@389
 | 
   444  | 
              nqueue.push_back(u);
  | 
| 
alpar@389
 | 
   445  | 
            }
  | 
| 
alpar@389
 | 
   446  | 
          }
  | 
| 
alpar@389
 | 
   447  | 
        }
  | 
| 
alpar@389
 | 
   448  | 
        queue.swap(nqueue);
  | 
| 
alpar@389
 | 
   449  | 
      }
  | 
| 
alpar@389
 | 
   450  | 
      _level->initFinish();
  | 
| 
alpar@389
 | 
   451  | 
  | 
| 
alpar@389
 | 
   452  | 
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   453  | 
        if (_tolerance.positive((*_capacity)[e])) {
 | 
| 
alpar@389
 | 
   454  | 
          Node u = _graph.target(e);
  | 
| 
alpar@389
 | 
   455  | 
          if ((*_level)[u] == _level->maxLevel()) continue;
  | 
| 
alpar@389
 | 
   456  | 
          _flow->set(e, (*_capacity)[e]);
  | 
| 
kpeter@581
 | 
   457  | 
          (*_excess)[u] += (*_capacity)[e];
  | 
| 
alpar@389
 | 
   458  | 
          if (u != _target && !_level->active(u)) {
 | 
| 
alpar@389
 | 
   459  | 
            _level->activate(u);
  | 
| 
alpar@389
 | 
   460  | 
          }
  | 
| 
alpar@389
 | 
   461  | 
        }
  | 
| 
alpar@389
 | 
   462  | 
      }
  | 
| 
alpar@389
 | 
   463  | 
    }
  | 
| 
alpar@389
 | 
   464  | 
  | 
| 
kpeter@393
 | 
   465  | 
    /// \brief Initializes the internal data structures using the
  | 
| 
kpeter@393
 | 
   466  | 
    /// given flow map.
  | 
| 
alpar@389
 | 
   467  | 
    ///
  | 
| 
alpar@389
 | 
   468  | 
    /// Initializes the internal data structures and sets the initial
  | 
| 
alpar@389
 | 
   469  | 
    /// flow to the given \c flowMap. The \c flowMap should contain a
  | 
| 
kpeter@393
 | 
   470  | 
    /// flow or at least a preflow, i.e. at each node excluding the
  | 
| 
kpeter@393
 | 
   471  | 
    /// source node the incoming flow should greater or equal to the
  | 
| 
alpar@389
 | 
   472  | 
    /// outgoing flow.
  | 
| 
kpeter@393
 | 
   473  | 
    /// \return \c false if the given \c flowMap is not a preflow.
  | 
| 
alpar@389
 | 
   474  | 
    template <typename FlowMap>
  | 
| 
kpeter@392
 | 
   475  | 
    bool init(const FlowMap& flowMap) {
 | 
| 
alpar@389
 | 
   476  | 
      createStructures();
  | 
| 
alpar@389
 | 
   477  | 
  | 
| 
alpar@389
 | 
   478  | 
      for (ArcIt e(_graph); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   479  | 
        _flow->set(e, flowMap[e]);
  | 
| 
alpar@389
 | 
   480  | 
      }
  | 
| 
alpar@389
 | 
   481  | 
  | 
| 
alpar@389
 | 
   482  | 
      for (NodeIt n(_graph); n != INVALID; ++n) {
 | 
| 
kpeter@641
 | 
   483  | 
        Value excess = 0;
  | 
| 
alpar@389
 | 
   484  | 
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   485  | 
          excess += (*_flow)[e];
  | 
| 
alpar@389
 | 
   486  | 
        }
  | 
| 
alpar@389
 | 
   487  | 
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   488  | 
          excess -= (*_flow)[e];
  | 
| 
alpar@389
 | 
   489  | 
        }
  | 
| 
alpar@389
 | 
   490  | 
        if (excess < 0 && n != _source) return false;
  | 
| 
kpeter@581
 | 
   491  | 
        (*_excess)[n] = excess;
  | 
| 
alpar@389
 | 
   492  | 
      }
  | 
| 
alpar@389
 | 
   493  | 
  | 
| 
alpar@389
 | 
   494  | 
      typename Digraph::template NodeMap<bool> reached(_graph, false);
  | 
| 
alpar@389
 | 
   495  | 
  | 
| 
alpar@389
 | 
   496  | 
      _level->initStart();
  | 
| 
alpar@389
 | 
   497  | 
      _level->initAddItem(_target);
  | 
| 
alpar@389
 | 
   498  | 
  | 
| 
alpar@389
 | 
   499  | 
      std::vector<Node> queue;
  | 
| 
kpeter@581
 | 
   500  | 
      reached[_source] = true;
  | 
| 
alpar@389
 | 
   501  | 
  | 
| 
alpar@389
 | 
   502  | 
      queue.push_back(_target);
  | 
| 
kpeter@581
 | 
   503  | 
      reached[_target] = true;
  | 
| 
alpar@389
 | 
   504  | 
      while (!queue.empty()) {
 | 
| 
alpar@389
 | 
   505  | 
        _level->initNewLevel();
  | 
| 
alpar@389
 | 
   506  | 
        std::vector<Node> nqueue;
  | 
| 
alpar@389
 | 
   507  | 
        for (int i = 0; i < int(queue.size()); ++i) {
 | 
| 
alpar@389
 | 
   508  | 
          Node n = queue[i];
  | 
| 
alpar@389
 | 
   509  | 
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   510  | 
            Node u = _graph.source(e);
  | 
| 
alpar@389
 | 
   511  | 
            if (!reached[u] &&
  | 
| 
alpar@389
 | 
   512  | 
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
 | 
| 
kpeter@581
 | 
   513  | 
              reached[u] = true;
  | 
| 
alpar@389
 | 
   514  | 
              _level->initAddItem(u);
  | 
| 
alpar@389
 | 
   515  | 
              nqueue.push_back(u);
  | 
| 
alpar@389
 | 
   516  | 
            }
  | 
| 
alpar@389
 | 
   517  | 
          }
  | 
| 
alpar@389
 | 
   518  | 
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   519  | 
            Node v = _graph.target(e);
  | 
| 
alpar@389
 | 
   520  | 
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
 | 
| 
kpeter@581
 | 
   521  | 
              reached[v] = true;
  | 
| 
alpar@389
 | 
   522  | 
              _level->initAddItem(v);
  | 
| 
alpar@389
 | 
   523  | 
              nqueue.push_back(v);
  | 
| 
alpar@389
 | 
   524  | 
            }
  | 
| 
alpar@389
 | 
   525  | 
          }
  | 
| 
alpar@389
 | 
   526  | 
        }
  | 
| 
alpar@389
 | 
   527  | 
        queue.swap(nqueue);
  | 
| 
alpar@389
 | 
   528  | 
      }
  | 
| 
alpar@389
 | 
   529  | 
      _level->initFinish();
  | 
| 
alpar@389
 | 
   530  | 
  | 
| 
alpar@389
 | 
   531  | 
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   532  | 
        Value rem = (*_capacity)[e] - (*_flow)[e];
  | 
| 
alpar@389
 | 
   533  | 
        if (_tolerance.positive(rem)) {
 | 
| 
alpar@389
 | 
   534  | 
          Node u = _graph.target(e);
  | 
| 
alpar@389
 | 
   535  | 
          if ((*_level)[u] == _level->maxLevel()) continue;
  | 
| 
alpar@389
 | 
   536  | 
          _flow->set(e, (*_capacity)[e]);
  | 
| 
kpeter@581
 | 
   537  | 
          (*_excess)[u] += rem;
  | 
| 
alpar@389
 | 
   538  | 
          if (u != _target && !_level->active(u)) {
 | 
| 
alpar@389
 | 
   539  | 
            _level->activate(u);
  | 
| 
alpar@389
 | 
   540  | 
          }
  | 
| 
alpar@389
 | 
   541  | 
        }
  | 
| 
alpar@389
 | 
   542  | 
      }
  | 
| 
alpar@389
 | 
   543  | 
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   544  | 
        Value rem = (*_flow)[e];
  | 
| 
alpar@389
 | 
   545  | 
        if (_tolerance.positive(rem)) {
 | 
| 
alpar@389
 | 
   546  | 
          Node v = _graph.source(e);
  | 
| 
alpar@389
 | 
   547  | 
          if ((*_level)[v] == _level->maxLevel()) continue;
  | 
| 
alpar@389
 | 
   548  | 
          _flow->set(e, 0);
  | 
| 
kpeter@581
 | 
   549  | 
          (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   550  | 
          if (v != _target && !_level->active(v)) {
 | 
| 
alpar@389
 | 
   551  | 
            _level->activate(v);
  | 
| 
alpar@389
 | 
   552  | 
          }
  | 
| 
alpar@389
 | 
   553  | 
        }
  | 
| 
alpar@389
 | 
   554  | 
      }
  | 
| 
alpar@389
 | 
   555  | 
      return true;
  | 
| 
alpar@389
 | 
   556  | 
    }
  | 
| 
alpar@389
 | 
   557  | 
  | 
| 
alpar@389
 | 
   558  | 
    /// \brief Starts the first phase of the preflow algorithm.
  | 
| 
alpar@389
 | 
   559  | 
    ///
  | 
| 
alpar@389
 | 
   560  | 
    /// The preflow algorithm consists of two phases, this method runs
  | 
| 
alpar@389
 | 
   561  | 
    /// the first phase. After the first phase the maximum flow value
  | 
| 
alpar@389
 | 
   562  | 
    /// and a minimum value cut can already be computed, although a
  | 
| 
alpar@389
 | 
   563  | 
    /// maximum flow is not yet obtained. So after calling this method
  | 
| 
alpar@389
 | 
   564  | 
    /// \ref flowValue() returns the value of a maximum flow and \ref
  | 
| 
alpar@389
 | 
   565  | 
    /// minCut() returns a minimum cut.
  | 
| 
kpeter@393
 | 
   566  | 
    /// \pre One of the \ref init() functions must be called before
  | 
| 
kpeter@393
 | 
   567  | 
    /// using this function.
  | 
| 
alpar@389
 | 
   568  | 
    void startFirstPhase() {
 | 
| 
alpar@389
 | 
   569  | 
      _phase = true;
  | 
| 
alpar@389
 | 
   570  | 
  | 
| 
alpar@389
 | 
   571  | 
      Node n = _level->highestActive();
  | 
| 
alpar@389
 | 
   572  | 
      int level = _level->highestActiveLevel();
  | 
| 
alpar@389
 | 
   573  | 
      while (n != INVALID) {
 | 
| 
alpar@389
 | 
   574  | 
        int num = _node_num;
  | 
| 
alpar@389
 | 
   575  | 
  | 
| 
alpar@389
 | 
   576  | 
        while (num > 0 && n != INVALID) {
 | 
| 
kpeter@641
 | 
   577  | 
          Value excess = (*_excess)[n];
  | 
| 
alpar@389
 | 
   578  | 
          int new_level = _level->maxLevel();
  | 
| 
alpar@389
 | 
   579  | 
  | 
| 
alpar@389
 | 
   580  | 
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   581  | 
            Value rem = (*_capacity)[e] - (*_flow)[e];
  | 
| 
alpar@389
 | 
   582  | 
            if (!_tolerance.positive(rem)) continue;
  | 
| 
alpar@389
 | 
   583  | 
            Node v = _graph.target(e);
  | 
| 
alpar@389
 | 
   584  | 
            if ((*_level)[v] < level) {
 | 
| 
alpar@389
 | 
   585  | 
              if (!_level->active(v) && v != _target) {
 | 
| 
alpar@389
 | 
   586  | 
                _level->activate(v);
  | 
| 
alpar@389
 | 
   587  | 
              }
  | 
| 
alpar@389
 | 
   588  | 
              if (!_tolerance.less(rem, excess)) {
 | 
| 
alpar@389
 | 
   589  | 
                _flow->set(e, (*_flow)[e] + excess);
  | 
| 
kpeter@581
 | 
   590  | 
                (*_excess)[v] += excess;
  | 
| 
alpar@389
 | 
   591  | 
                excess = 0;
  | 
| 
alpar@389
 | 
   592  | 
                goto no_more_push_1;
  | 
| 
alpar@389
 | 
   593  | 
              } else {
 | 
| 
alpar@389
 | 
   594  | 
                excess -= rem;
  | 
| 
kpeter@581
 | 
   595  | 
                (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   596  | 
                _flow->set(e, (*_capacity)[e]);
  | 
| 
alpar@389
 | 
   597  | 
              }
  | 
| 
alpar@389
 | 
   598  | 
            } else if (new_level > (*_level)[v]) {
 | 
| 
alpar@389
 | 
   599  | 
              new_level = (*_level)[v];
  | 
| 
alpar@389
 | 
   600  | 
            }
  | 
| 
alpar@389
 | 
   601  | 
          }
  | 
| 
alpar@389
 | 
   602  | 
  | 
| 
alpar@389
 | 
   603  | 
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   604  | 
            Value rem = (*_flow)[e];
  | 
| 
alpar@389
 | 
   605  | 
            if (!_tolerance.positive(rem)) continue;
  | 
| 
alpar@389
 | 
   606  | 
            Node v = _graph.source(e);
  | 
| 
alpar@389
 | 
   607  | 
            if ((*_level)[v] < level) {
 | 
| 
alpar@389
 | 
   608  | 
              if (!_level->active(v) && v != _target) {
 | 
| 
alpar@389
 | 
   609  | 
                _level->activate(v);
  | 
| 
alpar@389
 | 
   610  | 
              }
  | 
| 
alpar@389
 | 
   611  | 
              if (!_tolerance.less(rem, excess)) {
 | 
| 
alpar@389
 | 
   612  | 
                _flow->set(e, (*_flow)[e] - excess);
  | 
| 
kpeter@581
 | 
   613  | 
                (*_excess)[v] += excess;
  | 
| 
alpar@389
 | 
   614  | 
                excess = 0;
  | 
| 
alpar@389
 | 
   615  | 
                goto no_more_push_1;
  | 
| 
alpar@389
 | 
   616  | 
              } else {
 | 
| 
alpar@389
 | 
   617  | 
                excess -= rem;
  | 
| 
kpeter@581
 | 
   618  | 
                (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   619  | 
                _flow->set(e, 0);
  | 
| 
alpar@389
 | 
   620  | 
              }
  | 
| 
alpar@389
 | 
   621  | 
            } else if (new_level > (*_level)[v]) {
 | 
| 
alpar@389
 | 
   622  | 
              new_level = (*_level)[v];
  | 
| 
alpar@389
 | 
   623  | 
            }
  | 
| 
alpar@389
 | 
   624  | 
          }
  | 
| 
alpar@389
 | 
   625  | 
  | 
| 
alpar@389
 | 
   626  | 
        no_more_push_1:
  | 
| 
alpar@389
 | 
   627  | 
  | 
| 
kpeter@581
 | 
   628  | 
          (*_excess)[n] = excess;
  | 
| 
alpar@389
 | 
   629  | 
  | 
| 
alpar@389
 | 
   630  | 
          if (excess != 0) {
 | 
| 
alpar@389
 | 
   631  | 
            if (new_level + 1 < _level->maxLevel()) {
 | 
| 
alpar@389
 | 
   632  | 
              _level->liftHighestActive(new_level + 1);
  | 
| 
alpar@389
 | 
   633  | 
            } else {
 | 
| 
alpar@389
 | 
   634  | 
              _level->liftHighestActiveToTop();
  | 
| 
alpar@389
 | 
   635  | 
            }
  | 
| 
alpar@389
 | 
   636  | 
            if (_level->emptyLevel(level)) {
 | 
| 
alpar@389
 | 
   637  | 
              _level->liftToTop(level);
  | 
| 
alpar@389
 | 
   638  | 
            }
  | 
| 
alpar@389
 | 
   639  | 
          } else {
 | 
| 
alpar@389
 | 
   640  | 
            _level->deactivate(n);
  | 
| 
alpar@389
 | 
   641  | 
          }
  | 
| 
alpar@389
 | 
   642  | 
  | 
| 
alpar@389
 | 
   643  | 
          n = _level->highestActive();
  | 
| 
alpar@389
 | 
   644  | 
          level = _level->highestActiveLevel();
  | 
| 
alpar@389
 | 
   645  | 
          --num;
  | 
| 
alpar@389
 | 
   646  | 
        }
  | 
| 
alpar@389
 | 
   647  | 
  | 
| 
alpar@389
 | 
   648  | 
        num = _node_num * 20;
  | 
| 
alpar@389
 | 
   649  | 
        while (num > 0 && n != INVALID) {
 | 
| 
kpeter@641
 | 
   650  | 
          Value excess = (*_excess)[n];
  | 
| 
alpar@389
 | 
   651  | 
          int new_level = _level->maxLevel();
  | 
| 
alpar@389
 | 
   652  | 
  | 
| 
alpar@389
 | 
   653  | 
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   654  | 
            Value rem = (*_capacity)[e] - (*_flow)[e];
  | 
| 
alpar@389
 | 
   655  | 
            if (!_tolerance.positive(rem)) continue;
  | 
| 
alpar@389
 | 
   656  | 
            Node v = _graph.target(e);
  | 
| 
alpar@389
 | 
   657  | 
            if ((*_level)[v] < level) {
 | 
| 
alpar@389
 | 
   658  | 
              if (!_level->active(v) && v != _target) {
 | 
| 
alpar@389
 | 
   659  | 
                _level->activate(v);
  | 
| 
alpar@389
 | 
   660  | 
              }
  | 
| 
alpar@389
 | 
   661  | 
              if (!_tolerance.less(rem, excess)) {
 | 
| 
alpar@389
 | 
   662  | 
                _flow->set(e, (*_flow)[e] + excess);
  | 
| 
kpeter@581
 | 
   663  | 
                (*_excess)[v] += excess;
  | 
| 
alpar@389
 | 
   664  | 
                excess = 0;
  | 
| 
alpar@389
 | 
   665  | 
                goto no_more_push_2;
  | 
| 
alpar@389
 | 
   666  | 
              } else {
 | 
| 
alpar@389
 | 
   667  | 
                excess -= rem;
  | 
| 
kpeter@581
 | 
   668  | 
                (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   669  | 
                _flow->set(e, (*_capacity)[e]);
  | 
| 
alpar@389
 | 
   670  | 
              }
  | 
| 
alpar@389
 | 
   671  | 
            } else if (new_level > (*_level)[v]) {
 | 
| 
alpar@389
 | 
   672  | 
              new_level = (*_level)[v];
  | 
| 
alpar@389
 | 
   673  | 
            }
  | 
| 
alpar@389
 | 
   674  | 
          }
  | 
| 
alpar@389
 | 
   675  | 
  | 
| 
alpar@389
 | 
   676  | 
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   677  | 
            Value rem = (*_flow)[e];
  | 
| 
alpar@389
 | 
   678  | 
            if (!_tolerance.positive(rem)) continue;
  | 
| 
alpar@389
 | 
   679  | 
            Node v = _graph.source(e);
  | 
| 
alpar@389
 | 
   680  | 
            if ((*_level)[v] < level) {
 | 
| 
alpar@389
 | 
   681  | 
              if (!_level->active(v) && v != _target) {
 | 
| 
alpar@389
 | 
   682  | 
                _level->activate(v);
  | 
| 
alpar@389
 | 
   683  | 
              }
  | 
| 
alpar@389
 | 
   684  | 
              if (!_tolerance.less(rem, excess)) {
 | 
| 
alpar@389
 | 
   685  | 
                _flow->set(e, (*_flow)[e] - excess);
  | 
| 
kpeter@581
 | 
   686  | 
                (*_excess)[v] += excess;
  | 
| 
alpar@389
 | 
   687  | 
                excess = 0;
  | 
| 
alpar@389
 | 
   688  | 
                goto no_more_push_2;
  | 
| 
alpar@389
 | 
   689  | 
              } else {
 | 
| 
alpar@389
 | 
   690  | 
                excess -= rem;
  | 
| 
kpeter@581
 | 
   691  | 
                (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   692  | 
                _flow->set(e, 0);
  | 
| 
alpar@389
 | 
   693  | 
              }
  | 
| 
alpar@389
 | 
   694  | 
            } else if (new_level > (*_level)[v]) {
 | 
| 
alpar@389
 | 
   695  | 
              new_level = (*_level)[v];
  | 
| 
alpar@389
 | 
   696  | 
            }
  | 
| 
alpar@389
 | 
   697  | 
          }
  | 
| 
alpar@389
 | 
   698  | 
  | 
| 
alpar@389
 | 
   699  | 
        no_more_push_2:
  | 
| 
alpar@389
 | 
   700  | 
  | 
| 
kpeter@581
 | 
   701  | 
          (*_excess)[n] = excess;
  | 
| 
alpar@389
 | 
   702  | 
  | 
| 
alpar@389
 | 
   703  | 
          if (excess != 0) {
 | 
| 
alpar@389
 | 
   704  | 
            if (new_level + 1 < _level->maxLevel()) {
 | 
| 
alpar@389
 | 
   705  | 
              _level->liftActiveOn(level, new_level + 1);
  | 
| 
alpar@389
 | 
   706  | 
            } else {
 | 
| 
alpar@389
 | 
   707  | 
              _level->liftActiveToTop(level);
  | 
| 
alpar@389
 | 
   708  | 
            }
  | 
| 
alpar@389
 | 
   709  | 
            if (_level->emptyLevel(level)) {
 | 
| 
alpar@389
 | 
   710  | 
              _level->liftToTop(level);
  | 
| 
alpar@389
 | 
   711  | 
            }
  | 
| 
alpar@389
 | 
   712  | 
          } else {
 | 
| 
alpar@389
 | 
   713  | 
            _level->deactivate(n);
  | 
| 
alpar@389
 | 
   714  | 
          }
  | 
| 
alpar@389
 | 
   715  | 
  | 
| 
alpar@389
 | 
   716  | 
          while (level >= 0 && _level->activeFree(level)) {
 | 
| 
alpar@389
 | 
   717  | 
            --level;
  | 
| 
alpar@389
 | 
   718  | 
          }
  | 
| 
alpar@389
 | 
   719  | 
          if (level == -1) {
 | 
| 
alpar@389
 | 
   720  | 
            n = _level->highestActive();
  | 
| 
alpar@389
 | 
   721  | 
            level = _level->highestActiveLevel();
  | 
| 
alpar@389
 | 
   722  | 
          } else {
 | 
| 
alpar@389
 | 
   723  | 
            n = _level->activeOn(level);
  | 
| 
alpar@389
 | 
   724  | 
          }
  | 
| 
alpar@389
 | 
   725  | 
          --num;
  | 
| 
alpar@389
 | 
   726  | 
        }
  | 
| 
alpar@389
 | 
   727  | 
      }
  | 
| 
alpar@389
 | 
   728  | 
    }
  | 
| 
alpar@389
 | 
   729  | 
  | 
| 
alpar@389
 | 
   730  | 
    /// \brief Starts the second phase of the preflow algorithm.
  | 
| 
alpar@389
 | 
   731  | 
    ///
  | 
| 
alpar@389
 | 
   732  | 
    /// The preflow algorithm consists of two phases, this method runs
  | 
| 
kpeter@393
 | 
   733  | 
    /// the second phase. After calling one of the \ref init() functions
  | 
| 
kpeter@393
 | 
   734  | 
    /// and \ref startFirstPhase() and then \ref startSecondPhase(),
  | 
| 
kpeter@393
 | 
   735  | 
    /// \ref flowMap() returns a maximum flow, \ref flowValue() returns the
  | 
| 
alpar@389
 | 
   736  | 
    /// value of a maximum flow, \ref minCut() returns a minimum cut
  | 
| 
kpeter@393
 | 
   737  | 
    /// \pre One of the \ref init() functions and \ref startFirstPhase()
  | 
| 
kpeter@393
 | 
   738  | 
    /// must be called before using this function.
  | 
| 
alpar@389
 | 
   739  | 
    void startSecondPhase() {
 | 
| 
alpar@389
 | 
   740  | 
      _phase = false;
  | 
| 
alpar@389
 | 
   741  | 
  | 
| 
alpar@389
 | 
   742  | 
      typename Digraph::template NodeMap<bool> reached(_graph);
  | 
| 
alpar@389
 | 
   743  | 
      for (NodeIt n(_graph); n != INVALID; ++n) {
 | 
| 
kpeter@581
 | 
   744  | 
        reached[n] = (*_level)[n] < _level->maxLevel();
  | 
| 
alpar@389
 | 
   745  | 
      }
  | 
| 
alpar@389
 | 
   746  | 
  | 
| 
alpar@389
 | 
   747  | 
      _level->initStart();
  | 
| 
alpar@389
 | 
   748  | 
      _level->initAddItem(_source);
  | 
| 
alpar@389
 | 
   749  | 
  | 
| 
alpar@389
 | 
   750  | 
      std::vector<Node> queue;
  | 
| 
alpar@389
 | 
   751  | 
      queue.push_back(_source);
  | 
| 
kpeter@581
 | 
   752  | 
      reached[_source] = true;
  | 
| 
alpar@389
 | 
   753  | 
  | 
| 
alpar@389
 | 
   754  | 
      while (!queue.empty()) {
 | 
| 
alpar@389
 | 
   755  | 
        _level->initNewLevel();
  | 
| 
alpar@389
 | 
   756  | 
        std::vector<Node> nqueue;
  | 
| 
alpar@389
 | 
   757  | 
        for (int i = 0; i < int(queue.size()); ++i) {
 | 
| 
alpar@389
 | 
   758  | 
          Node n = queue[i];
  | 
| 
alpar@389
 | 
   759  | 
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   760  | 
            Node v = _graph.target(e);
  | 
| 
alpar@389
 | 
   761  | 
            if (!reached[v] && _tolerance.positive((*_flow)[e])) {
 | 
| 
kpeter@581
 | 
   762  | 
              reached[v] = true;
  | 
| 
alpar@389
 | 
   763  | 
              _level->initAddItem(v);
  | 
| 
alpar@389
 | 
   764  | 
              nqueue.push_back(v);
  | 
| 
alpar@389
 | 
   765  | 
            }
  | 
| 
alpar@389
 | 
   766  | 
          }
  | 
| 
alpar@389
 | 
   767  | 
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
alpar@389
 | 
   768  | 
            Node u = _graph.source(e);
  | 
| 
alpar@389
 | 
   769  | 
            if (!reached[u] &&
  | 
| 
alpar@389
 | 
   770  | 
                _tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
 | 
| 
kpeter@581
 | 
   771  | 
              reached[u] = true;
  | 
| 
alpar@389
 | 
   772  | 
              _level->initAddItem(u);
  | 
| 
alpar@389
 | 
   773  | 
              nqueue.push_back(u);
  | 
| 
alpar@389
 | 
   774  | 
            }
  | 
| 
alpar@389
 | 
   775  | 
          }
  | 
| 
alpar@389
 | 
   776  | 
        }
  | 
| 
alpar@389
 | 
   777  | 
        queue.swap(nqueue);
  | 
| 
alpar@389
 | 
   778  | 
      }
  | 
| 
alpar@389
 | 
   779  | 
      _level->initFinish();
  | 
| 
alpar@389
 | 
   780  | 
  | 
| 
alpar@389
 | 
   781  | 
      for (NodeIt n(_graph); n != INVALID; ++n) {
 | 
| 
alpar@389
 | 
   782  | 
        if (!reached[n]) {
 | 
| 
alpar@389
 | 
   783  | 
          _level->dirtyTopButOne(n);
  | 
| 
alpar@389
 | 
   784  | 
        } else if ((*_excess)[n] > 0 && _target != n) {
 | 
| 
alpar@389
 | 
   785  | 
          _level->activate(n);
  | 
| 
alpar@389
 | 
   786  | 
        }
  | 
| 
alpar@389
 | 
   787  | 
      }
  | 
| 
alpar@389
 | 
   788  | 
  | 
| 
alpar@389
 | 
   789  | 
      Node n;
  | 
| 
alpar@389
 | 
   790  | 
      while ((n = _level->highestActive()) != INVALID) {
 | 
| 
kpeter@641
 | 
   791  | 
        Value excess = (*_excess)[n];
  | 
| 
alpar@389
 | 
   792  | 
        int level = _level->highestActiveLevel();
  | 
| 
alpar@389
 | 
   793  | 
        int new_level = _level->maxLevel();
  | 
| 
alpar@389
 | 
   794  | 
  | 
| 
alpar@389
 | 
   795  | 
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   796  | 
          Value rem = (*_capacity)[e] - (*_flow)[e];
  | 
| 
alpar@389
 | 
   797  | 
          if (!_tolerance.positive(rem)) continue;
  | 
| 
alpar@389
 | 
   798  | 
          Node v = _graph.target(e);
  | 
| 
alpar@389
 | 
   799  | 
          if ((*_level)[v] < level) {
 | 
| 
alpar@389
 | 
   800  | 
            if (!_level->active(v) && v != _source) {
 | 
| 
alpar@389
 | 
   801  | 
              _level->activate(v);
  | 
| 
alpar@389
 | 
   802  | 
            }
  | 
| 
alpar@389
 | 
   803  | 
            if (!_tolerance.less(rem, excess)) {
 | 
| 
alpar@389
 | 
   804  | 
              _flow->set(e, (*_flow)[e] + excess);
  | 
| 
kpeter@581
 | 
   805  | 
              (*_excess)[v] += excess;
  | 
| 
alpar@389
 | 
   806  | 
              excess = 0;
  | 
| 
alpar@389
 | 
   807  | 
              goto no_more_push;
  | 
| 
alpar@389
 | 
   808  | 
            } else {
 | 
| 
alpar@389
 | 
   809  | 
              excess -= rem;
  | 
| 
kpeter@581
 | 
   810  | 
              (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   811  | 
              _flow->set(e, (*_capacity)[e]);
  | 
| 
alpar@389
 | 
   812  | 
            }
  | 
| 
alpar@389
 | 
   813  | 
          } else if (new_level > (*_level)[v]) {
 | 
| 
alpar@389
 | 
   814  | 
            new_level = (*_level)[v];
  | 
| 
alpar@389
 | 
   815  | 
          }
  | 
| 
alpar@389
 | 
   816  | 
        }
  | 
| 
alpar@389
 | 
   817  | 
  | 
| 
alpar@389
 | 
   818  | 
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
 | 
| 
kpeter@641
 | 
   819  | 
          Value rem = (*_flow)[e];
  | 
| 
alpar@389
 | 
   820  | 
          if (!_tolerance.positive(rem)) continue;
  | 
| 
alpar@389
 | 
   821  | 
          Node v = _graph.source(e);
  | 
| 
alpar@389
 | 
   822  | 
          if ((*_level)[v] < level) {
 | 
| 
alpar@389
 | 
   823  | 
            if (!_level->active(v) && v != _source) {
 | 
| 
alpar@389
 | 
   824  | 
              _level->activate(v);
  | 
| 
alpar@389
 | 
   825  | 
            }
  | 
| 
alpar@389
 | 
   826  | 
            if (!_tolerance.less(rem, excess)) {
 | 
| 
alpar@389
 | 
   827  | 
              _flow->set(e, (*_flow)[e] - excess);
  | 
| 
kpeter@581
 | 
   828  | 
              (*_excess)[v] += excess;
  | 
| 
alpar@389
 | 
   829  | 
              excess = 0;
  | 
| 
alpar@389
 | 
   830  | 
              goto no_more_push;
  | 
| 
alpar@389
 | 
   831  | 
            } else {
 | 
| 
alpar@389
 | 
   832  | 
              excess -= rem;
  | 
| 
kpeter@581
 | 
   833  | 
              (*_excess)[v] += rem;
  | 
| 
alpar@389
 | 
   834  | 
              _flow->set(e, 0);
  | 
| 
alpar@389
 | 
   835  | 
            }
  | 
| 
alpar@389
 | 
   836  | 
          } else if (new_level > (*_level)[v]) {
 | 
| 
alpar@389
 | 
   837  | 
            new_level = (*_level)[v];
  | 
| 
alpar@389
 | 
   838  | 
          }
  | 
| 
alpar@389
 | 
   839  | 
        }
  | 
| 
alpar@389
 | 
   840  | 
  | 
| 
alpar@389
 | 
   841  | 
      no_more_push:
  | 
| 
alpar@389
 | 
   842  | 
  | 
| 
kpeter@581
 | 
   843  | 
        (*_excess)[n] = excess;
  | 
| 
alpar@389
 | 
   844  | 
  | 
| 
alpar@389
 | 
   845  | 
        if (excess != 0) {
 | 
| 
alpar@389
 | 
   846  | 
          if (new_level + 1 < _level->maxLevel()) {
 | 
| 
alpar@389
 | 
   847  | 
            _level->liftHighestActive(new_level + 1);
  | 
| 
alpar@389
 | 
   848  | 
          } else {
 | 
| 
alpar@389
 | 
   849  | 
            // Calculation error
  | 
| 
alpar@389
 | 
   850  | 
            _level->liftHighestActiveToTop();
  | 
| 
alpar@389
 | 
   851  | 
          }
  | 
| 
alpar@389
 | 
   852  | 
          if (_level->emptyLevel(level)) {
 | 
| 
alpar@389
 | 
   853  | 
            // Calculation error
  | 
| 
alpar@389
 | 
   854  | 
            _level->liftToTop(level);
  | 
| 
alpar@389
 | 
   855  | 
          }
  | 
| 
alpar@389
 | 
   856  | 
        } else {
 | 
| 
alpar@389
 | 
   857  | 
          _level->deactivate(n);
  | 
| 
alpar@389
 | 
   858  | 
        }
  | 
| 
alpar@389
 | 
   859  | 
  | 
| 
alpar@389
 | 
   860  | 
      }
  | 
| 
alpar@389
 | 
   861  | 
    }
  | 
| 
alpar@389
 | 
   862  | 
  | 
| 
alpar@389
 | 
   863  | 
    /// \brief Runs the preflow algorithm.
  | 
| 
alpar@389
 | 
   864  | 
    ///
  | 
| 
alpar@389
 | 
   865  | 
    /// Runs the preflow algorithm.
  | 
| 
alpar@389
 | 
   866  | 
    /// \note pf.run() is just a shortcut of the following code.
  | 
| 
alpar@389
 | 
   867  | 
    /// \code
  | 
| 
alpar@389
 | 
   868  | 
    ///   pf.init();
  | 
| 
alpar@389
 | 
   869  | 
    ///   pf.startFirstPhase();
  | 
| 
alpar@389
 | 
   870  | 
    ///   pf.startSecondPhase();
  | 
| 
alpar@389
 | 
   871  | 
    /// \endcode
  | 
| 
alpar@389
 | 
   872  | 
    void run() {
 | 
| 
alpar@389
 | 
   873  | 
      init();
  | 
| 
alpar@389
 | 
   874  | 
      startFirstPhase();
  | 
| 
alpar@389
 | 
   875  | 
      startSecondPhase();
  | 
| 
alpar@389
 | 
   876  | 
    }
  | 
| 
alpar@389
 | 
   877  | 
  | 
| 
alpar@389
 | 
   878  | 
    /// \brief Runs the preflow algorithm to compute the minimum cut.
  | 
| 
alpar@389
 | 
   879  | 
    ///
  | 
| 
alpar@389
 | 
   880  | 
    /// Runs the preflow algorithm to compute the minimum cut.
  | 
| 
alpar@389
 | 
   881  | 
    /// \note pf.runMinCut() is just a shortcut of the following code.
  | 
| 
alpar@389
 | 
   882  | 
    /// \code
  | 
| 
alpar@389
 | 
   883  | 
    ///   pf.init();
  | 
| 
alpar@389
 | 
   884  | 
    ///   pf.startFirstPhase();
  | 
| 
alpar@389
 | 
   885  | 
    /// \endcode
  | 
| 
alpar@389
 | 
   886  | 
    void runMinCut() {
 | 
| 
alpar@389
 | 
   887  | 
      init();
  | 
| 
alpar@389
 | 
   888  | 
      startFirstPhase();
  | 
| 
alpar@389
 | 
   889  | 
    }
  | 
| 
alpar@389
 | 
   890  | 
  | 
| 
alpar@389
 | 
   891  | 
    /// @}
  | 
| 
alpar@389
 | 
   892  | 
  | 
| 
alpar@389
 | 
   893  | 
    /// \name Query Functions
  | 
| 
kpeter@393
 | 
   894  | 
    /// The results of the preflow algorithm can be obtained using these
  | 
| 
alpar@389
 | 
   895  | 
    /// functions.\n
  | 
| 
kpeter@393
 | 
   896  | 
    /// Either one of the \ref run() "run*()" functions or one of the
  | 
| 
kpeter@393
 | 
   897  | 
    /// \ref startFirstPhase() "start*()" functions should be called
  | 
| 
kpeter@393
 | 
   898  | 
    /// before using them.
  | 
| 
alpar@389
 | 
   899  | 
  | 
| 
alpar@389
 | 
   900  | 
    ///@{
 | 
| 
alpar@389
 | 
   901  | 
  | 
| 
alpar@389
 | 
   902  | 
    /// \brief Returns the value of the maximum flow.
  | 
| 
alpar@389
 | 
   903  | 
    ///
  | 
| 
alpar@389
 | 
   904  | 
    /// Returns the value of the maximum flow by returning the excess
  | 
| 
kpeter@393
 | 
   905  | 
    /// of the target node. This value equals to the value of
  | 
| 
kpeter@393
 | 
   906  | 
    /// the maximum flow already after the first phase of the algorithm.
  | 
| 
kpeter@393
 | 
   907  | 
    ///
  | 
| 
kpeter@393
 | 
   908  | 
    /// \pre Either \ref run() or \ref init() must be called before
  | 
| 
kpeter@393
 | 
   909  | 
    /// using this function.
  | 
| 
kpeter@641
 | 
   910  | 
    Value flowValue() const {
 | 
| 
alpar@389
 | 
   911  | 
      return (*_excess)[_target];
  | 
| 
alpar@389
 | 
   912  | 
    }
  | 
| 
alpar@389
 | 
   913  | 
  | 
| 
kpeter@641
 | 
   914  | 
    /// \brief Returns the flow value on the given arc.
  | 
| 
alpar@389
 | 
   915  | 
    ///
  | 
| 
kpeter@641
 | 
   916  | 
    /// Returns the flow value on the given arc. This method can
  | 
| 
kpeter@393
 | 
   917  | 
    /// be called after the second phase of the algorithm.
  | 
| 
kpeter@393
 | 
   918  | 
    ///
  | 
| 
kpeter@393
 | 
   919  | 
    /// \pre Either \ref run() or \ref init() must be called before
  | 
| 
kpeter@393
 | 
   920  | 
    /// using this function.
  | 
| 
kpeter@641
 | 
   921  | 
    Value flow(const Arc& arc) const {
 | 
| 
kpeter@393
 | 
   922  | 
      return (*_flow)[arc];
  | 
| 
kpeter@393
 | 
   923  | 
    }
  | 
| 
kpeter@393
 | 
   924  | 
  | 
| 
kpeter@393
 | 
   925  | 
    /// \brief Returns a const reference to the flow map.
  | 
| 
kpeter@393
 | 
   926  | 
    ///
  | 
| 
kpeter@393
 | 
   927  | 
    /// Returns a const reference to the arc map storing the found flow.
  | 
| 
kpeter@393
 | 
   928  | 
    /// This method can be called after the second phase of the algorithm.
  | 
| 
kpeter@393
 | 
   929  | 
    ///
  | 
| 
kpeter@393
 | 
   930  | 
    /// \pre Either \ref run() or \ref init() must be called before
  | 
| 
kpeter@393
 | 
   931  | 
    /// using this function.
  | 
| 
kpeter@420
 | 
   932  | 
    const FlowMap& flowMap() const {
 | 
| 
kpeter@393
 | 
   933  | 
      return *_flow;
  | 
| 
kpeter@393
 | 
   934  | 
    }
  | 
| 
kpeter@393
 | 
   935  | 
  | 
| 
kpeter@393
 | 
   936  | 
    /// \brief Returns \c true when the node is on the source side of the
  | 
| 
kpeter@393
 | 
   937  | 
    /// minimum cut.
  | 
| 
kpeter@393
 | 
   938  | 
    ///
  | 
| 
kpeter@393
 | 
   939  | 
    /// Returns true when the node is on the source side of the found
  | 
| 
kpeter@393
 | 
   940  | 
    /// minimum cut. This method can be called both after running \ref
  | 
| 
alpar@389
 | 
   941  | 
    /// startFirstPhase() and \ref startSecondPhase().
  | 
| 
kpeter@393
 | 
   942  | 
    ///
  | 
| 
kpeter@393
 | 
   943  | 
    /// \pre Either \ref run() or \ref init() must be called before
  | 
| 
kpeter@393
 | 
   944  | 
    /// using this function.
  | 
| 
alpar@389
 | 
   945  | 
    bool minCut(const Node& node) const {
 | 
| 
alpar@389
 | 
   946  | 
      return ((*_level)[node] == _level->maxLevel()) == _phase;
  | 
| 
alpar@389
 | 
   947  | 
    }
  | 
| 
alpar@389
 | 
   948  | 
  | 
| 
kpeter@393
 | 
   949  | 
    /// \brief Gives back a minimum value cut.
  | 
| 
alpar@389
 | 
   950  | 
    ///
  | 
| 
kpeter@393
 | 
   951  | 
    /// Sets \c cutMap to the characteristic vector of a minimum value
  | 
| 
kpeter@393
 | 
   952  | 
    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
  | 
| 
kpeter@393
 | 
   953  | 
    /// node map with \c bool (or convertible) value type.
  | 
| 
kpeter@393
 | 
   954  | 
    ///
  | 
| 
kpeter@393
 | 
   955  | 
    /// This method can be called both after running \ref startFirstPhase()
  | 
| 
kpeter@393
 | 
   956  | 
    /// and \ref startSecondPhase(). The result after the second phase
  | 
| 
kpeter@393
 | 
   957  | 
    /// could be slightly different if inexact computation is used.
  | 
| 
kpeter@393
 | 
   958  | 
    ///
  | 
| 
kpeter@393
 | 
   959  | 
    /// \note This function calls \ref minCut() for each node, so it runs in
  | 
| 
kpeter@559
 | 
   960  | 
    /// O(n) time.
  | 
| 
kpeter@393
 | 
   961  | 
    ///
  | 
| 
kpeter@393
 | 
   962  | 
    /// \pre Either \ref run() or \ref init() must be called before
  | 
| 
kpeter@393
 | 
   963  | 
    /// using this function.
  | 
| 
alpar@389
 | 
   964  | 
    template <typename CutMap>
  | 
| 
alpar@389
 | 
   965  | 
    void minCutMap(CutMap& cutMap) const {
 | 
| 
alpar@389
 | 
   966  | 
      for (NodeIt n(_graph); n != INVALID; ++n) {
 | 
| 
alpar@389
 | 
   967  | 
        cutMap.set(n, minCut(n));
  | 
| 
alpar@389
 | 
   968  | 
      }
  | 
| 
alpar@389
 | 
   969  | 
    }
  | 
| 
alpar@389
 | 
   970  | 
  | 
| 
alpar@389
 | 
   971  | 
    /// @}
  | 
| 
alpar@389
 | 
   972  | 
  };
  | 
| 
alpar@389
 | 
   973  | 
}
  | 
| 
alpar@389
 | 
   974  | 
  | 
| 
alpar@389
 | 
   975  | 
#endif
  |