lemon/time_measure.h
author Janos Tapolcai <tapolcai@tmit.bme.hu>
Fri, 23 Jan 2009 18:40:41 +0100
changeset 490 2eb5c8ca2c91
parent 440 88ed40ad0d4f
parent 484 daddd623ac9a
child 492 b9b3473327e3
permissions -rw-r--r--
Dirty hacking for VS 2005 in lp_base.h (#209)
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@119
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@119
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@119
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@119
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@119
     8
 *
alpar@119
     9
 * Permission to use, modify and distribute this software is granted
alpar@119
    10
 * provided that this copyright notice appears in all copies. For
alpar@119
    11
 * precise terms see the accompanying LICENSE file.
alpar@119
    12
 *
alpar@119
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@119
    14
 * express or implied, and with no claim as to its suitability for any
alpar@119
    15
 * purpose.
alpar@119
    16
 *
alpar@119
    17
 */
alpar@119
    18
alpar@119
    19
#ifndef LEMON_TIME_MEASURE_H
alpar@119
    20
#define LEMON_TIME_MEASURE_H
alpar@119
    21
alpar@119
    22
///\ingroup timecount
alpar@119
    23
///\file
alpar@119
    24
///\brief Tools for measuring cpu usage
alpar@119
    25
deba@126
    26
#ifdef WIN32
alpar@484
    27
#ifndef WIN32_LEAN_AND_MEAN
alpar@143
    28
#define WIN32_LEAN_AND_MEAN
alpar@484
    29
#endif
alpar@484
    30
#ifndef NOMINMAX
alpar@143
    31
#define NOMINMAX
alpar@484
    32
#endif
deba@126
    33
#include <windows.h>
deba@126
    34
#include <cmath>
deba@126
    35
#else
alpar@482
    36
#include <unistd.h>
alpar@119
    37
#include <sys/times.h>
deba@126
    38
#include <sys/time.h>
deba@126
    39
#endif
alpar@119
    40
alpar@143
    41
#include <string>
alpar@119
    42
#include <fstream>
alpar@119
    43
#include <iostream>
alpar@119
    44
alpar@119
    45
namespace lemon {
alpar@119
    46
alpar@119
    47
  /// \addtogroup timecount
alpar@119
    48
  /// @{
alpar@119
    49
alpar@119
    50
  /// A class to store (cpu)time instances.
alpar@119
    51
alpar@119
    52
  /// This class stores five time values.
alpar@119
    53
  /// - a real time
alpar@119
    54
  /// - a user cpu time
alpar@119
    55
  /// - a system cpu time
alpar@119
    56
  /// - a user cpu time of children
alpar@119
    57
  /// - a system cpu time of children
alpar@119
    58
  ///
alpar@119
    59
  /// TimeStamp's can be added to or substracted from each other and
alpar@119
    60
  /// they can be pushed to a stream.
alpar@119
    61
  ///
alpar@119
    62
  /// In most cases, perhaps the \ref Timer or the \ref TimeReport
alpar@119
    63
  /// class is what you want to use instead.
alpar@119
    64
alpar@119
    65
  class TimeStamp
alpar@119
    66
  {
deba@126
    67
    double utime;
deba@126
    68
    double stime;
deba@126
    69
    double cutime;
deba@126
    70
    double cstime;
deba@126
    71
    double rtime;
alpar@209
    72
alpar@209
    73
    void _reset() {
deba@126
    74
      utime = stime = cutime = cstime = rtime = 0;
alpar@119
    75
    }
alpar@119
    76
alpar@119
    77
  public:
alpar@119
    78
alpar@119
    79
    ///Read the current time values of the process
alpar@119
    80
    void stamp()
alpar@119
    81
    {
deba@126
    82
#ifndef WIN32
alpar@119
    83
      timeval tv;
deba@126
    84
      gettimeofday(&tv, 0);
deba@126
    85
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
deba@126
    86
deba@126
    87
      tms ts;
deba@126
    88
      double tck=sysconf(_SC_CLK_TCK);
deba@126
    89
      times(&ts);
deba@126
    90
      utime=ts.tms_utime/tck;
deba@126
    91
      stime=ts.tms_stime/tck;
deba@126
    92
      cutime=ts.tms_cutime/tck;
deba@126
    93
      cstime=ts.tms_cstime/tck;
deba@126
    94
#else
deba@126
    95
      static const double ch = 4294967296.0e-7;
deba@126
    96
      static const double cl = 1.0e-7;
deba@126
    97
deba@126
    98
      FILETIME system;
deba@126
    99
      GetSystemTimeAsFileTime(&system);
deba@126
   100
      rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime;
deba@126
   101
deba@126
   102
      FILETIME create, exit, kernel, user;
deba@126
   103
      if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) {
alpar@209
   104
        utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime;
alpar@209
   105
        stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime;
alpar@209
   106
        cutime = 0;
alpar@209
   107
        cstime = 0;
deba@126
   108
      } else {
alpar@209
   109
        rtime = 0;
alpar@209
   110
        utime = 0;
alpar@209
   111
        stime = 0;
alpar@209
   112
        cutime = 0;
alpar@209
   113
        cstime = 0;
deba@126
   114
      }
alpar@209
   115
#endif
alpar@119
   116
    }
alpar@209
   117
alpar@119
   118
    /// Constructor initializing with zero
alpar@119
   119
    TimeStamp()
alpar@119
   120
    { _reset(); }
alpar@119
   121
    ///Constructor initializing with the current time values of the process
alpar@119
   122
    TimeStamp(void *) { stamp();}
alpar@209
   123
alpar@119
   124
    ///Set every time value to zero
alpar@119
   125
    TimeStamp &reset() {_reset();return *this;}
alpar@119
   126
alpar@119
   127
    ///\e
alpar@119
   128
    TimeStamp &operator+=(const TimeStamp &b)
alpar@119
   129
    {
deba@126
   130
      utime+=b.utime;
deba@126
   131
      stime+=b.stime;
deba@126
   132
      cutime+=b.cutime;
deba@126
   133
      cstime+=b.cstime;
deba@126
   134
      rtime+=b.rtime;
alpar@119
   135
      return *this;
alpar@119
   136
    }
alpar@119
   137
    ///\e
alpar@119
   138
    TimeStamp operator+(const TimeStamp &b) const
alpar@119
   139
    {
alpar@119
   140
      TimeStamp t(*this);
alpar@119
   141
      return t+=b;
alpar@119
   142
    }
alpar@119
   143
    ///\e
alpar@119
   144
    TimeStamp &operator-=(const TimeStamp &b)
alpar@119
   145
    {
deba@126
   146
      utime-=b.utime;
deba@126
   147
      stime-=b.stime;
deba@126
   148
      cutime-=b.cutime;
deba@126
   149
      cstime-=b.cstime;
deba@126
   150
      rtime-=b.rtime;
alpar@119
   151
      return *this;
alpar@119
   152
    }
alpar@119
   153
    ///\e
alpar@119
   154
    TimeStamp operator-(const TimeStamp &b) const
alpar@119
   155
    {
alpar@119
   156
      TimeStamp t(*this);
alpar@119
   157
      return t-=b;
alpar@119
   158
    }
alpar@119
   159
    ///\e
alpar@119
   160
    TimeStamp &operator*=(double b)
alpar@119
   161
    {
deba@126
   162
      utime*=b;
deba@126
   163
      stime*=b;
deba@126
   164
      cutime*=b;
deba@126
   165
      cstime*=b;
deba@126
   166
      rtime*=b;
alpar@119
   167
      return *this;
alpar@119
   168
    }
alpar@119
   169
    ///\e
alpar@119
   170
    TimeStamp operator*(double b) const
alpar@119
   171
    {
alpar@119
   172
      TimeStamp t(*this);
alpar@119
   173
      return t*=b;
alpar@119
   174
    }
alpar@119
   175
    friend TimeStamp operator*(double b,const TimeStamp &t);
alpar@119
   176
    ///\e
alpar@119
   177
    TimeStamp &operator/=(double b)
alpar@119
   178
    {
deba@126
   179
      utime/=b;
deba@126
   180
      stime/=b;
deba@126
   181
      cutime/=b;
deba@126
   182
      cstime/=b;
deba@126
   183
      rtime/=b;
alpar@119
   184
      return *this;
alpar@119
   185
    }
alpar@119
   186
    ///\e
alpar@119
   187
    TimeStamp operator/(double b) const
alpar@119
   188
    {
alpar@119
   189
      TimeStamp t(*this);
alpar@119
   190
      return t/=b;
alpar@119
   191
    }
alpar@119
   192
    ///The time ellapsed since the last call of stamp()
alpar@119
   193
    TimeStamp ellapsed() const
alpar@119
   194
    {
alpar@119
   195
      TimeStamp t(NULL);
alpar@119
   196
      return t-*this;
alpar@119
   197
    }
alpar@209
   198
alpar@119
   199
    friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
alpar@209
   200
alpar@119
   201
    ///Gives back the user time of the process
alpar@119
   202
    double userTime() const
alpar@119
   203
    {
deba@126
   204
      return utime;
alpar@119
   205
    }
alpar@119
   206
    ///Gives back the system time of the process
alpar@119
   207
    double systemTime() const
alpar@119
   208
    {
deba@126
   209
      return stime;
alpar@119
   210
    }
alpar@119
   211
    ///Gives back the user time of the process' children
deba@126
   212
alpar@209
   213
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   214
    ///
alpar@119
   215
    double cUserTime() const
alpar@119
   216
    {
deba@126
   217
      return cutime;
alpar@119
   218
    }
alpar@119
   219
    ///Gives back the user time of the process' children
deba@126
   220
alpar@209
   221
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   222
    ///
alpar@119
   223
    double cSystemTime() const
alpar@119
   224
    {
deba@126
   225
      return cstime;
alpar@119
   226
    }
alpar@119
   227
    ///Gives back the real time
deba@126
   228
    double realTime() const {return rtime;}
alpar@119
   229
  };
alpar@119
   230
alpar@209
   231
  TimeStamp operator*(double b,const TimeStamp &t)
alpar@119
   232
  {
alpar@119
   233
    return t*b;
alpar@119
   234
  }
alpar@209
   235
alpar@119
   236
  ///Prints the time counters
alpar@119
   237
alpar@119
   238
  ///Prints the time counters in the following form:
alpar@119
   239
  ///
alpar@119
   240
  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
alpar@119
   241
  ///
alpar@119
   242
  /// where the values are the
alpar@119
   243
  /// \li \c u: user cpu time,
alpar@119
   244
  /// \li \c s: system cpu time,
alpar@119
   245
  /// \li \c cu: user cpu time of children,
alpar@119
   246
  /// \li \c cs: system cpu time of children,
alpar@119
   247
  /// \li \c real: real time.
alpar@119
   248
  /// \relates TimeStamp
deba@126
   249
  /// \note On <tt>WIN32</tt> platform the cummulative values are not
deba@126
   250
  /// calculated.
alpar@119
   251
  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
alpar@119
   252
  {
deba@126
   253
    os << "u: " << t.userTime() <<
deba@126
   254
      "s, s: " << t.systemTime() <<
deba@126
   255
      "s, cu: " << t.cUserTime() <<
deba@126
   256
      "s, cs: " << t.cSystemTime() <<
alpar@119
   257
      "s, real: " << t.realTime() << "s";
alpar@119
   258
    return os;
alpar@119
   259
  }
alpar@119
   260
alpar@119
   261
  ///Class for measuring the cpu time and real time usage of the process
alpar@119
   262
alpar@119
   263
  ///Class for measuring the cpu time and real time usage of the process.
alpar@119
   264
  ///It is quite easy-to-use, here is a short example.
alpar@119
   265
  ///\code
alpar@119
   266
  /// #include<lemon/time_measure.h>
alpar@119
   267
  /// #include<iostream>
alpar@119
   268
  ///
alpar@119
   269
  /// int main()
alpar@119
   270
  /// {
alpar@119
   271
  ///
alpar@119
   272
  ///   ...
alpar@119
   273
  ///
alpar@119
   274
  ///   Timer t;
alpar@119
   275
  ///   doSomething();
alpar@119
   276
  ///   std::cout << t << '\n';
alpar@119
   277
  ///   t.restart();
alpar@119
   278
  ///   doSomethingElse();
alpar@119
   279
  ///   std::cout << t << '\n';
alpar@119
   280
  ///
alpar@119
   281
  ///   ...
alpar@119
   282
  ///
alpar@119
   283
  /// }
alpar@119
   284
  ///\endcode
alpar@119
   285
  ///
alpar@119
   286
  ///The \ref Timer can also be \ref stop() "stopped" and
alpar@119
   287
  ///\ref start() "started" again, so it is possible to compute collected
alpar@119
   288
  ///running times.
alpar@119
   289
  ///
alpar@119
   290
  ///\warning Depending on the operation system and its actual configuration
alpar@119
   291
  ///the time counters have a certain (10ms on a typical Linux system)
alpar@119
   292
  ///granularity.
alpar@119
   293
  ///Therefore this tool is not appropriate to measure very short times.
alpar@119
   294
  ///Also, if you start and stop the timer very frequently, it could lead to
alpar@119
   295
  ///distorted results.
alpar@119
   296
  ///
alpar@119
   297
  ///\note If you want to measure the running time of the execution of a certain
alpar@119
   298
  ///function, consider the usage of \ref TimeReport instead.
alpar@119
   299
  ///
alpar@119
   300
  ///\sa TimeReport
alpar@119
   301
  class Timer
alpar@119
   302
  {
alpar@119
   303
    int _running; //Timer is running iff _running>0; (_running>=0 always holds)
alpar@119
   304
    TimeStamp start_time; //This is the relativ start-time if the timer
alpar@119
   305
                          //is _running, the collected _running time otherwise.
alpar@209
   306
alpar@119
   307
    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
alpar@209
   308
alpar@209
   309
  public:
alpar@119
   310
    ///Constructor.
alpar@119
   311
alpar@119
   312
    ///\param run indicates whether or not the timer starts immediately.
alpar@119
   313
    ///
alpar@119
   314
    Timer(bool run=true) :_running(run) {_reset();}
alpar@119
   315
alpar@119
   316
    ///\name Control the state of the timer
alpar@119
   317
    ///Basically a Timer can be either running or stopped,
alpar@119
   318
    ///but it provides a bit finer control on the execution.
kpeter@314
   319
    ///The \ref lemon::Timer "Timer" also counts the number of
kpeter@314
   320
    ///\ref lemon::Timer::start() "start()" executions, and it stops
kpeter@313
   321
    ///only after the same amount (or more) \ref lemon::Timer::stop()
kpeter@313
   322
    ///"stop()"s. This can be useful e.g. to compute the running time
alpar@119
   323
    ///of recursive functions.
alpar@119
   324
alpar@119
   325
    ///@{
alpar@119
   326
alpar@119
   327
    ///Reset and stop the time counters
alpar@119
   328
alpar@119
   329
    ///This function resets and stops the time counters
alpar@119
   330
    ///\sa restart()
alpar@119
   331
    void reset()
alpar@119
   332
    {
alpar@119
   333
      _running=0;
alpar@119
   334
      _reset();
alpar@119
   335
    }
alpar@119
   336
alpar@119
   337
    ///Start the time counters
alpar@209
   338
alpar@119
   339
    ///This function starts the time counters.
alpar@119
   340
    ///
alpar@119
   341
    ///If the timer is started more than ones, it will remain running
alpar@119
   342
    ///until the same amount of \ref stop() is called.
alpar@119
   343
    ///\sa stop()
alpar@209
   344
    void start()
alpar@119
   345
    {
alpar@119
   346
      if(_running) _running++;
alpar@119
   347
      else {
alpar@209
   348
        _running=1;
alpar@209
   349
        TimeStamp t;
alpar@209
   350
        t.stamp();
alpar@209
   351
        start_time=t-start_time;
alpar@119
   352
      }
alpar@119
   353
    }
alpar@119
   354
alpar@209
   355
alpar@119
   356
    ///Stop the time counters
alpar@119
   357
alpar@119
   358
    ///This function stops the time counters. If start() was executed more than
alpar@119
   359
    ///once, then the same number of stop() execution is necessary the really
alpar@119
   360
    ///stop the timer.
alpar@209
   361
    ///
alpar@119
   362
    ///\sa halt()
alpar@119
   363
    ///\sa start()
alpar@119
   364
    ///\sa restart()
alpar@119
   365
    ///\sa reset()
alpar@119
   366
alpar@209
   367
    void stop()
alpar@119
   368
    {
alpar@119
   369
      if(_running && !--_running) {
alpar@209
   370
        TimeStamp t;
alpar@209
   371
        t.stamp();
alpar@209
   372
        start_time=t-start_time;
alpar@119
   373
      }
alpar@119
   374
    }
alpar@119
   375
alpar@119
   376
    ///Halt (i.e stop immediately) the time counters
alpar@119
   377
alpar@120
   378
    ///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
alpar@119
   379
    ///is a faster
alpar@119
   380
    ///equivalent of the following.
alpar@119
   381
    ///\code
alpar@119
   382
    ///  while(t.running()) t.stop()
alpar@119
   383
    ///\endcode
alpar@119
   384
    ///
alpar@119
   385
    ///
alpar@119
   386
    ///\sa stop()
alpar@119
   387
    ///\sa restart()
alpar@119
   388
    ///\sa reset()
alpar@119
   389
alpar@209
   390
    void halt()
alpar@119
   391
    {
alpar@119
   392
      if(_running) {
alpar@209
   393
        _running=0;
alpar@209
   394
        TimeStamp t;
alpar@209
   395
        t.stamp();
alpar@209
   396
        start_time=t-start_time;
alpar@119
   397
      }
alpar@119
   398
    }
alpar@119
   399
alpar@119
   400
    ///Returns the running state of the timer
alpar@119
   401
alpar@119
   402
    ///This function returns the number of stop() exections that is
alpar@119
   403
    ///necessary to really stop the timer.
alpar@119
   404
    ///For example the timer
alpar@119
   405
    ///is running if and only if the return value is \c true
alpar@119
   406
    ///(i.e. greater than
alpar@119
   407
    ///zero).
alpar@119
   408
    int running()  { return _running; }
alpar@209
   409
alpar@209
   410
alpar@119
   411
    ///Restart the time counters
alpar@119
   412
alpar@119
   413
    ///This function is a shorthand for
alpar@119
   414
    ///a reset() and a start() calls.
alpar@119
   415
    ///
alpar@209
   416
    void restart()
alpar@119
   417
    {
alpar@119
   418
      reset();
alpar@119
   419
      start();
alpar@119
   420
    }
alpar@209
   421
alpar@119
   422
    ///@}
alpar@119
   423
alpar@119
   424
    ///\name Query Functions for the ellapsed time
alpar@119
   425
alpar@119
   426
    ///@{
alpar@119
   427
alpar@119
   428
    ///Gives back the ellapsed user time of the process
alpar@119
   429
    double userTime() const
alpar@119
   430
    {
alpar@119
   431
      return operator TimeStamp().userTime();
alpar@119
   432
    }
alpar@119
   433
    ///Gives back the ellapsed system time of the process
alpar@119
   434
    double systemTime() const
alpar@119
   435
    {
alpar@119
   436
      return operator TimeStamp().systemTime();
alpar@119
   437
    }
alpar@119
   438
    ///Gives back the ellapsed user time of the process' children
deba@126
   439
alpar@209
   440
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   441
    ///
alpar@119
   442
    double cUserTime() const
alpar@119
   443
    {
alpar@119
   444
      return operator TimeStamp().cUserTime();
alpar@119
   445
    }
alpar@119
   446
    ///Gives back the ellapsed user time of the process' children
deba@126
   447
alpar@209
   448
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   449
    ///
alpar@119
   450
    double cSystemTime() const
alpar@119
   451
    {
alpar@119
   452
      return operator TimeStamp().cSystemTime();
alpar@119
   453
    }
alpar@119
   454
    ///Gives back the ellapsed real time
alpar@119
   455
    double realTime() const
alpar@119
   456
    {
alpar@119
   457
      return operator TimeStamp().realTime();
alpar@119
   458
    }
alpar@119
   459
    ///Computes the ellapsed time
alpar@119
   460
alpar@119
   461
    ///This conversion computes the ellapsed time, therefore you can print
alpar@119
   462
    ///the ellapsed time like this.
alpar@119
   463
    ///\code
alpar@119
   464
    ///  Timer t;
alpar@119
   465
    ///  doSomething();
alpar@119
   466
    ///  std::cout << t << '\n';
alpar@119
   467
    ///\endcode
alpar@119
   468
    operator TimeStamp () const
alpar@119
   469
    {
alpar@119
   470
      TimeStamp t;
alpar@119
   471
      t.stamp();
alpar@119
   472
      return _running?t-start_time:start_time;
alpar@119
   473
    }
alpar@119
   474
alpar@119
   475
alpar@119
   476
    ///@}
alpar@119
   477
  };
alpar@119
   478
kpeter@313
   479
  ///Same as Timer but prints a report on destruction.
alpar@119
   480
alpar@119
   481
  ///Same as \ref Timer but prints a report on destruction.
alpar@119
   482
  ///This example shows its usage.
alpar@119
   483
  ///\code
alpar@119
   484
  ///  void myAlg(ListGraph &g,int n)
alpar@119
   485
  ///  {
alpar@119
   486
  ///    TimeReport tr("Running time of myAlg: ");
alpar@119
   487
  ///    ... //Here comes the algorithm
alpar@119
   488
  ///  }
alpar@119
   489
  ///\endcode
alpar@119
   490
  ///
alpar@119
   491
  ///\sa Timer
alpar@119
   492
  ///\sa NoTimeReport
alpar@209
   493
  class TimeReport : public Timer
alpar@119
   494
  {
alpar@119
   495
    std::string _title;
alpar@119
   496
    std::ostream &_os;
alpar@119
   497
  public:
kpeter@313
   498
    ///Constructor
alpar@119
   499
kpeter@313
   500
    ///Constructor.
alpar@119
   501
    ///\param title This text will be printed before the ellapsed time.
alpar@119
   502
    ///\param os The stream to print the report to.
alpar@119
   503
    ///\param run Sets whether the timer should start immediately.
alpar@209
   504
    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
alpar@119
   505
      : Timer(run), _title(title), _os(os){}
kpeter@313
   506
    ///Destructor that prints the ellapsed time
alpar@209
   507
    ~TimeReport()
alpar@119
   508
    {
alpar@119
   509
      _os << _title << *this << std::endl;
alpar@119
   510
    }
alpar@119
   511
  };
alpar@209
   512
kpeter@313
   513
  ///'Do nothing' version of TimeReport
alpar@119
   514
alpar@119
   515
  ///\sa TimeReport
alpar@119
   516
  ///
alpar@119
   517
  class NoTimeReport
alpar@119
   518
  {
alpar@119
   519
  public:
alpar@119
   520
    ///\e
alpar@119
   521
    NoTimeReport(std::string,std::ostream &,bool) {}
alpar@119
   522
    ///\e
alpar@119
   523
    NoTimeReport(std::string,std::ostream &) {}
alpar@119
   524
    ///\e
alpar@119
   525
    NoTimeReport(std::string) {}
alpar@119
   526
    ///\e Do nothing.
alpar@119
   527
    ~NoTimeReport() {}
alpar@119
   528
alpar@119
   529
    operator TimeStamp () const { return TimeStamp(); }
alpar@119
   530
    void reset() {}
alpar@119
   531
    void start() {}
alpar@119
   532
    void stop() {}
alpar@209
   533
    void halt() {}
alpar@119
   534
    int running() { return 0; }
alpar@119
   535
    void restart() {}
alpar@119
   536
    double userTime() const { return 0; }
alpar@119
   537
    double systemTime() const { return 0; }
alpar@119
   538
    double cUserTime() const { return 0; }
alpar@119
   539
    double cSystemTime() const { return 0; }
alpar@119
   540
    double realTime() const { return 0; }
alpar@119
   541
  };
alpar@209
   542
alpar@119
   543
  ///Tool to measure the running time more exactly.
alpar@209
   544
alpar@119
   545
  ///This function calls \c f several times and returns the average
alpar@119
   546
  ///running time. The number of the executions will be choosen in such a way
alpar@119
   547
  ///that the full real running time will be roughly between \c min_time
alpar@119
   548
  ///and <tt>2*min_time</tt>.
alpar@119
   549
  ///\param f the function object to be measured.
alpar@119
   550
  ///\param min_time the minimum total running time.
alpar@119
   551
  ///\retval num if it is not \c NULL, then the actual
alpar@119
   552
  ///        number of execution of \c f will be written into <tt>*num</tt>.
alpar@119
   553
  ///\retval full_time if it is not \c NULL, then the actual
alpar@119
   554
  ///        total running time will be written into <tt>*full_time</tt>.
alpar@119
   555
  ///\return The average running time of \c f.
alpar@209
   556
alpar@119
   557
  template<class F>
alpar@119
   558
  TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
alpar@119
   559
                            TimeStamp *full_time=NULL)
alpar@119
   560
  {
alpar@119
   561
    TimeStamp full;
alpar@119
   562
    unsigned int total=0;
alpar@119
   563
    Timer t;
alpar@119
   564
    for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
alpar@119
   565
      for(;total<tn;total++) f();
alpar@119
   566
      full=t;
alpar@119
   567
    }
alpar@119
   568
    if(num) *num=total;
alpar@119
   569
    if(full_time) *full_time=full;
alpar@119
   570
    return full/total;
alpar@119
   571
  }
alpar@209
   572
alpar@209
   573
  /// @}
alpar@119
   574
alpar@119
   575
alpar@119
   576
} //namespace lemon
alpar@119
   577
alpar@119
   578
#endif //LEMON_TIME_MEASURE_H