lemon/capacity_scaling.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 26 Apr 2011 17:25:00 +0200
changeset 943 4f9e5801224e
parent 921 140c953ad5d1
parent 919 e0cef67fe565
child 985 eb12ad2789fc
child 1003 16f55008c863
permissions -rw-r--r--
Merge bugfix #420
alpar@877
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@805
     2
 *
alpar@877
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@805
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
kpeter@805
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@805
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@805
     8
 *
kpeter@805
     9
 * Permission to use, modify and distribute this software is granted
kpeter@805
    10
 * provided that this copyright notice appears in all copies. For
kpeter@805
    11
 * precise terms see the accompanying LICENSE file.
kpeter@805
    12
 *
kpeter@805
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@805
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@805
    15
 * purpose.
kpeter@805
    16
 *
kpeter@805
    17
 */
kpeter@805
    18
kpeter@805
    19
#ifndef LEMON_CAPACITY_SCALING_H
kpeter@805
    20
#define LEMON_CAPACITY_SCALING_H
kpeter@805
    21
kpeter@806
    22
/// \ingroup min_cost_flow_algs
kpeter@805
    23
///
kpeter@805
    24
/// \file
kpeter@806
    25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
kpeter@805
    26
kpeter@805
    27
#include <vector>
kpeter@806
    28
#include <limits>
kpeter@806
    29
#include <lemon/core.h>
kpeter@805
    30
#include <lemon/bin_heap.h>
kpeter@805
    31
kpeter@805
    32
namespace lemon {
kpeter@805
    33
kpeter@807
    34
  /// \brief Default traits class of CapacityScaling algorithm.
kpeter@807
    35
  ///
kpeter@807
    36
  /// Default traits class of CapacityScaling algorithm.
kpeter@807
    37
  /// \tparam GR Digraph type.
kpeter@812
    38
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@807
    39
  /// and supply values. By default it is \c int.
kpeter@812
    40
  /// \tparam C The number type used for costs and potentials.
kpeter@807
    41
  /// By default it is the same as \c V.
kpeter@807
    42
  template <typename GR, typename V = int, typename C = V>
kpeter@807
    43
  struct CapacityScalingDefaultTraits
kpeter@807
    44
  {
kpeter@807
    45
    /// The type of the digraph
kpeter@807
    46
    typedef GR Digraph;
kpeter@807
    47
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@807
    48
    typedef V Value;
kpeter@807
    49
    /// The type of the arc costs
kpeter@807
    50
    typedef C Cost;
kpeter@807
    51
kpeter@807
    52
    /// \brief The type of the heap used for internal Dijkstra computations.
kpeter@807
    53
    ///
kpeter@807
    54
    /// The type of the heap used for internal Dijkstra computations.
kpeter@807
    55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
kpeter@807
    56
    /// its priority type must be \c Cost and its cross reference type
kpeter@807
    57
    /// must be \ref RangeMap "RangeMap<int>".
kpeter@807
    58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
kpeter@807
    59
  };
kpeter@807
    60
kpeter@806
    61
  /// \addtogroup min_cost_flow_algs
kpeter@805
    62
  /// @{
kpeter@805
    63
kpeter@806
    64
  /// \brief Implementation of the Capacity Scaling algorithm for
kpeter@806
    65
  /// finding a \ref min_cost_flow "minimum cost flow".
kpeter@805
    66
  ///
kpeter@805
    67
  /// \ref CapacityScaling implements the capacity scaling version
kpeter@806
    68
  /// of the successive shortest path algorithm for finding a
kpeter@813
    69
  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
kpeter@813
    70
  /// \ref edmondskarp72theoretical. It is an efficient dual
kpeter@806
    71
  /// solution method.
kpeter@805
    72
  ///
kpeter@806
    73
  /// Most of the parameters of the problem (except for the digraph)
kpeter@806
    74
  /// can be given using separate functions, and the algorithm can be
kpeter@806
    75
  /// executed using the \ref run() function. If some parameters are not
kpeter@806
    76
  /// specified, then default values will be used.
kpeter@805
    77
  ///
kpeter@806
    78
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@812
    79
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@825
    80
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@812
    81
  /// \tparam C The number type used for costs and potentials in the
kpeter@825
    82
  /// algorithm. By default, it is the same as \c V.
kpeter@825
    83
  /// \tparam TR The traits class that defines various types used by the
kpeter@825
    84
  /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
kpeter@825
    85
  /// "CapacityScalingDefaultTraits<GR, V, C>".
kpeter@825
    86
  /// In most cases, this parameter should not be set directly,
kpeter@825
    87
  /// consider to use the named template parameters instead.
kpeter@805
    88
  ///
kpeter@921
    89
  /// \warning Both \c V and \c C must be signed number types.
kpeter@921
    90
  /// \warning All input data (capacities, supply values, and costs) must
kpeter@806
    91
  /// be integer.
kpeter@919
    92
  /// \warning This algorithm does not support negative costs for
kpeter@919
    93
  /// arcs having infinite upper bound.
kpeter@807
    94
#ifdef DOXYGEN
kpeter@807
    95
  template <typename GR, typename V, typename C, typename TR>
kpeter@807
    96
#else
kpeter@807
    97
  template < typename GR, typename V = int, typename C = V,
kpeter@807
    98
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
kpeter@807
    99
#endif
kpeter@805
   100
  class CapacityScaling
kpeter@805
   101
  {
kpeter@806
   102
  public:
kpeter@805
   103
kpeter@807
   104
    /// The type of the digraph
kpeter@807
   105
    typedef typename TR::Digraph Digraph;
kpeter@806
   106
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@807
   107
    typedef typename TR::Value Value;
kpeter@806
   108
    /// The type of the arc costs
kpeter@807
   109
    typedef typename TR::Cost Cost;
kpeter@807
   110
kpeter@807
   111
    /// The type of the heap used for internal Dijkstra computations
kpeter@807
   112
    typedef typename TR::Heap Heap;
kpeter@807
   113
kpeter@807
   114
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
kpeter@807
   115
    typedef TR Traits;
kpeter@805
   116
kpeter@805
   117
  public:
kpeter@805
   118
kpeter@806
   119
    /// \brief Problem type constants for the \c run() function.
kpeter@806
   120
    ///
kpeter@806
   121
    /// Enum type containing the problem type constants that can be
kpeter@806
   122
    /// returned by the \ref run() function of the algorithm.
kpeter@806
   123
    enum ProblemType {
kpeter@806
   124
      /// The problem has no feasible solution (flow).
kpeter@806
   125
      INFEASIBLE,
kpeter@806
   126
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@806
   127
      /// bounded), and the algorithm has found optimal flow and node
kpeter@806
   128
      /// potentials (primal and dual solutions).
kpeter@806
   129
      OPTIMAL,
kpeter@806
   130
      /// The digraph contains an arc of negative cost and infinite
kpeter@806
   131
      /// upper bound. It means that the objective function is unbounded
kpeter@812
   132
      /// on that arc, however, note that it could actually be bounded
kpeter@806
   133
      /// over the feasible flows, but this algroithm cannot handle
kpeter@806
   134
      /// these cases.
kpeter@806
   135
      UNBOUNDED
kpeter@806
   136
    };
alpar@877
   137
kpeter@806
   138
  private:
kpeter@806
   139
kpeter@806
   140
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@806
   141
kpeter@806
   142
    typedef std::vector<int> IntVector;
kpeter@806
   143
    typedef std::vector<Value> ValueVector;
kpeter@806
   144
    typedef std::vector<Cost> CostVector;
kpeter@839
   145
    typedef std::vector<char> BoolVector;
kpeter@839
   146
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
kpeter@805
   147
kpeter@805
   148
  private:
kpeter@805
   149
kpeter@806
   150
    // Data related to the underlying digraph
kpeter@806
   151
    const GR &_graph;
kpeter@806
   152
    int _node_num;
kpeter@806
   153
    int _arc_num;
kpeter@806
   154
    int _res_arc_num;
kpeter@806
   155
    int _root;
kpeter@806
   156
kpeter@806
   157
    // Parameters of the problem
kpeter@806
   158
    bool _have_lower;
kpeter@806
   159
    Value _sum_supply;
kpeter@806
   160
kpeter@806
   161
    // Data structures for storing the digraph
kpeter@806
   162
    IntNodeMap _node_id;
kpeter@806
   163
    IntArcMap _arc_idf;
kpeter@806
   164
    IntArcMap _arc_idb;
kpeter@806
   165
    IntVector _first_out;
kpeter@806
   166
    BoolVector _forward;
kpeter@806
   167
    IntVector _source;
kpeter@806
   168
    IntVector _target;
kpeter@806
   169
    IntVector _reverse;
kpeter@806
   170
kpeter@806
   171
    // Node and arc data
kpeter@806
   172
    ValueVector _lower;
kpeter@806
   173
    ValueVector _upper;
kpeter@806
   174
    CostVector _cost;
kpeter@806
   175
    ValueVector _supply;
kpeter@806
   176
kpeter@806
   177
    ValueVector _res_cap;
kpeter@806
   178
    CostVector _pi;
kpeter@806
   179
    ValueVector _excess;
kpeter@806
   180
    IntVector _excess_nodes;
kpeter@806
   181
    IntVector _deficit_nodes;
kpeter@806
   182
kpeter@806
   183
    Value _delta;
kpeter@810
   184
    int _factor;
kpeter@806
   185
    IntVector _pred;
kpeter@806
   186
kpeter@806
   187
  public:
alpar@877
   188
kpeter@806
   189
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@805
   190
    ///
kpeter@806
   191
    /// Constant for infinite upper bounds (capacities).
kpeter@806
   192
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@806
   193
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@806
   194
    const Value INF;
kpeter@806
   195
kpeter@806
   196
  private:
kpeter@806
   197
kpeter@806
   198
    // Special implementation of the Dijkstra algorithm for finding
kpeter@806
   199
    // shortest paths in the residual network of the digraph with
kpeter@806
   200
    // respect to the reduced arc costs and modifying the node
kpeter@806
   201
    // potentials according to the found distance labels.
kpeter@805
   202
    class ResidualDijkstra
kpeter@805
   203
    {
kpeter@805
   204
    private:
kpeter@805
   205
kpeter@806
   206
      int _node_num;
kpeter@811
   207
      bool _geq;
kpeter@806
   208
      const IntVector &_first_out;
kpeter@806
   209
      const IntVector &_target;
kpeter@806
   210
      const CostVector &_cost;
kpeter@806
   211
      const ValueVector &_res_cap;
kpeter@806
   212
      const ValueVector &_excess;
kpeter@806
   213
      CostVector &_pi;
kpeter@806
   214
      IntVector &_pred;
alpar@877
   215
kpeter@806
   216
      IntVector _proc_nodes;
kpeter@806
   217
      CostVector _dist;
alpar@877
   218
kpeter@805
   219
    public:
kpeter@805
   220
kpeter@806
   221
      ResidualDijkstra(CapacityScaling& cs) :
kpeter@811
   222
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
kpeter@811
   223
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
kpeter@811
   224
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
kpeter@811
   225
        _pred(cs._pred), _dist(cs._node_num)
kpeter@805
   226
      {}
kpeter@805
   227
kpeter@806
   228
      int run(int s, Value delta = 1) {
kpeter@807
   229
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
kpeter@805
   230
        Heap heap(heap_cross_ref);
kpeter@805
   231
        heap.push(s, 0);
kpeter@806
   232
        _pred[s] = -1;
kpeter@805
   233
        _proc_nodes.clear();
kpeter@805
   234
kpeter@806
   235
        // Process nodes
kpeter@805
   236
        while (!heap.empty() && _excess[heap.top()] > -delta) {
kpeter@806
   237
          int u = heap.top(), v;
kpeter@806
   238
          Cost d = heap.prio() + _pi[u], dn;
kpeter@805
   239
          _dist[u] = heap.prio();
kpeter@806
   240
          _proc_nodes.push_back(u);
kpeter@805
   241
          heap.pop();
kpeter@805
   242
kpeter@806
   243
          // Traverse outgoing residual arcs
kpeter@811
   244
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
kpeter@811
   245
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@806
   246
            if (_res_cap[a] < delta) continue;
kpeter@806
   247
            v = _target[a];
kpeter@806
   248
            switch (heap.state(v)) {
kpeter@805
   249
              case Heap::PRE_HEAP:
kpeter@806
   250
                heap.push(v, d + _cost[a] - _pi[v]);
kpeter@806
   251
                _pred[v] = a;
kpeter@805
   252
                break;
kpeter@805
   253
              case Heap::IN_HEAP:
kpeter@806
   254
                dn = d + _cost[a] - _pi[v];
kpeter@806
   255
                if (dn < heap[v]) {
kpeter@806
   256
                  heap.decrease(v, dn);
kpeter@806
   257
                  _pred[v] = a;
kpeter@805
   258
                }
kpeter@805
   259
                break;
kpeter@805
   260
              case Heap::POST_HEAP:
kpeter@805
   261
                break;
kpeter@805
   262
            }
kpeter@805
   263
          }
kpeter@805
   264
        }
kpeter@806
   265
        if (heap.empty()) return -1;
kpeter@805
   266
kpeter@806
   267
        // Update potentials of processed nodes
kpeter@806
   268
        int t = heap.top();
kpeter@806
   269
        Cost dt = heap.prio();
kpeter@806
   270
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
kpeter@806
   271
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
kpeter@806
   272
        }
kpeter@805
   273
kpeter@805
   274
        return t;
kpeter@805
   275
      }
kpeter@805
   276
kpeter@805
   277
    }; //class ResidualDijkstra
kpeter@805
   278
kpeter@805
   279
  public:
kpeter@805
   280
kpeter@807
   281
    /// \name Named Template Parameters
kpeter@807
   282
    /// @{
kpeter@807
   283
kpeter@807
   284
    template <typename T>
kpeter@807
   285
    struct SetHeapTraits : public Traits {
kpeter@807
   286
      typedef T Heap;
kpeter@807
   287
    };
kpeter@807
   288
kpeter@807
   289
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@807
   290
    /// \c Heap type.
kpeter@807
   291
    ///
kpeter@807
   292
    /// \ref named-templ-param "Named parameter" for setting \c Heap
kpeter@807
   293
    /// type, which is used for internal Dijkstra computations.
kpeter@807
   294
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
kpeter@807
   295
    /// its priority type must be \c Cost and its cross reference type
kpeter@807
   296
    /// must be \ref RangeMap "RangeMap<int>".
kpeter@807
   297
    template <typename T>
kpeter@807
   298
    struct SetHeap
kpeter@807
   299
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
kpeter@807
   300
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
kpeter@807
   301
    };
kpeter@807
   302
kpeter@807
   303
    /// @}
kpeter@807
   304
kpeter@863
   305
  protected:
kpeter@863
   306
kpeter@863
   307
    CapacityScaling() {}
kpeter@863
   308
kpeter@807
   309
  public:
kpeter@807
   310
kpeter@806
   311
    /// \brief Constructor.
kpeter@805
   312
    ///
kpeter@806
   313
    /// The constructor of the class.
kpeter@805
   314
    ///
kpeter@806
   315
    /// \param graph The digraph the algorithm runs on.
kpeter@806
   316
    CapacityScaling(const GR& graph) :
kpeter@806
   317
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
kpeter@806
   318
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@806
   319
          std::numeric_limits<Value>::infinity() :
kpeter@806
   320
          std::numeric_limits<Value>::max())
kpeter@805
   321
    {
kpeter@812
   322
      // Check the number types
kpeter@806
   323
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@806
   324
        "The flow type of CapacityScaling must be signed");
kpeter@806
   325
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@806
   326
        "The cost type of CapacityScaling must be signed");
kpeter@806
   327
kpeter@830
   328
      // Reset data structures
kpeter@806
   329
      reset();
kpeter@805
   330
    }
kpeter@805
   331
kpeter@806
   332
    /// \name Parameters
kpeter@806
   333
    /// The parameters of the algorithm can be specified using these
kpeter@806
   334
    /// functions.
kpeter@806
   335
kpeter@806
   336
    /// @{
kpeter@806
   337
kpeter@806
   338
    /// \brief Set the lower bounds on the arcs.
kpeter@805
   339
    ///
kpeter@806
   340
    /// This function sets the lower bounds on the arcs.
kpeter@806
   341
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@806
   342
    /// will be set to zero on all arcs.
kpeter@805
   343
    ///
kpeter@806
   344
    /// \param map An arc map storing the lower bounds.
kpeter@806
   345
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   346
    /// of the algorithm.
kpeter@806
   347
    ///
kpeter@806
   348
    /// \return <tt>(*this)</tt>
kpeter@806
   349
    template <typename LowerMap>
kpeter@806
   350
    CapacityScaling& lowerMap(const LowerMap& map) {
kpeter@806
   351
      _have_lower = true;
kpeter@806
   352
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   353
        _lower[_arc_idf[a]] = map[a];
kpeter@806
   354
        _lower[_arc_idb[a]] = map[a];
kpeter@805
   355
      }
kpeter@805
   356
      return *this;
kpeter@805
   357
    }
kpeter@805
   358
kpeter@806
   359
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@805
   360
    ///
kpeter@806
   361
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@806
   362
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@806
   363
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@812
   364
    /// unbounded from above).
kpeter@805
   365
    ///
kpeter@806
   366
    /// \param map An arc map storing the upper bounds.
kpeter@806
   367
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   368
    /// of the algorithm.
kpeter@806
   369
    ///
kpeter@806
   370
    /// \return <tt>(*this)</tt>
kpeter@806
   371
    template<typename UpperMap>
kpeter@806
   372
    CapacityScaling& upperMap(const UpperMap& map) {
kpeter@806
   373
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   374
        _upper[_arc_idf[a]] = map[a];
kpeter@805
   375
      }
kpeter@805
   376
      return *this;
kpeter@805
   377
    }
kpeter@805
   378
kpeter@806
   379
    /// \brief Set the costs of the arcs.
kpeter@806
   380
    ///
kpeter@806
   381
    /// This function sets the costs of the arcs.
kpeter@806
   382
    /// If it is not used before calling \ref run(), the costs
kpeter@806
   383
    /// will be set to \c 1 on all arcs.
kpeter@806
   384
    ///
kpeter@806
   385
    /// \param map An arc map storing the costs.
kpeter@806
   386
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@806
   387
    /// of the algorithm.
kpeter@806
   388
    ///
kpeter@806
   389
    /// \return <tt>(*this)</tt>
kpeter@806
   390
    template<typename CostMap>
kpeter@806
   391
    CapacityScaling& costMap(const CostMap& map) {
kpeter@806
   392
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   393
        _cost[_arc_idf[a]] =  map[a];
kpeter@806
   394
        _cost[_arc_idb[a]] = -map[a];
kpeter@806
   395
      }
kpeter@806
   396
      return *this;
kpeter@806
   397
    }
kpeter@806
   398
kpeter@806
   399
    /// \brief Set the supply values of the nodes.
kpeter@806
   400
    ///
kpeter@806
   401
    /// This function sets the supply values of the nodes.
kpeter@806
   402
    /// If neither this function nor \ref stSupply() is used before
kpeter@806
   403
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@806
   404
    ///
kpeter@806
   405
    /// \param map A node map storing the supply values.
kpeter@806
   406
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   407
    /// of the algorithm.
kpeter@806
   408
    ///
kpeter@806
   409
    /// \return <tt>(*this)</tt>
kpeter@806
   410
    template<typename SupplyMap>
kpeter@806
   411
    CapacityScaling& supplyMap(const SupplyMap& map) {
kpeter@806
   412
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@806
   413
        _supply[_node_id[n]] = map[n];
kpeter@806
   414
      }
kpeter@806
   415
      return *this;
kpeter@806
   416
    }
kpeter@806
   417
kpeter@806
   418
    /// \brief Set single source and target nodes and a supply value.
kpeter@806
   419
    ///
kpeter@806
   420
    /// This function sets a single source node and a single target node
kpeter@806
   421
    /// and the required flow value.
kpeter@806
   422
    /// If neither this function nor \ref supplyMap() is used before
kpeter@806
   423
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@806
   424
    ///
kpeter@806
   425
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@919
   426
    /// with a map in which \c k is assigned to \c s, \c -k is
kpeter@806
   427
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@806
   428
    ///
kpeter@806
   429
    /// \param s The source node.
kpeter@806
   430
    /// \param t The target node.
kpeter@806
   431
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@806
   432
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@806
   433
    ///
kpeter@806
   434
    /// \return <tt>(*this)</tt>
kpeter@806
   435
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
kpeter@806
   436
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   437
        _supply[i] = 0;
kpeter@806
   438
      }
kpeter@806
   439
      _supply[_node_id[s]] =  k;
kpeter@806
   440
      _supply[_node_id[t]] = -k;
kpeter@806
   441
      return *this;
kpeter@806
   442
    }
alpar@877
   443
kpeter@806
   444
    /// @}
kpeter@806
   445
kpeter@805
   446
    /// \name Execution control
kpeter@807
   447
    /// The algorithm can be executed using \ref run().
kpeter@805
   448
kpeter@805
   449
    /// @{
kpeter@805
   450
kpeter@805
   451
    /// \brief Run the algorithm.
kpeter@805
   452
    ///
kpeter@805
   453
    /// This function runs the algorithm.
kpeter@806
   454
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@806
   455
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@806
   456
    /// For example,
kpeter@806
   457
    /// \code
kpeter@806
   458
    ///   CapacityScaling<ListDigraph> cs(graph);
kpeter@806
   459
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@806
   460
    ///     .supplyMap(sup).run();
kpeter@806
   461
    /// \endcode
kpeter@806
   462
    ///
kpeter@830
   463
    /// This function can be called more than once. All the given parameters
kpeter@830
   464
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
kpeter@830
   465
    /// is used, thus only the modified parameters have to be set again.
kpeter@830
   466
    /// If the underlying digraph was also modified after the construction
kpeter@830
   467
    /// of the class (or the last \ref reset() call), then the \ref reset()
kpeter@830
   468
    /// function must be called.
kpeter@805
   469
    ///
kpeter@810
   470
    /// \param factor The capacity scaling factor. It must be larger than
kpeter@810
   471
    /// one to use scaling. If it is less or equal to one, then scaling
kpeter@810
   472
    /// will be disabled.
kpeter@805
   473
    ///
kpeter@806
   474
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@806
   475
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@806
   476
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@806
   477
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@806
   478
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
kpeter@806
   479
    /// and infinite upper bound. It means that the objective function
kpeter@812
   480
    /// is unbounded on that arc, however, note that it could actually be
kpeter@806
   481
    /// bounded over the feasible flows, but this algroithm cannot handle
kpeter@806
   482
    /// these cases.
kpeter@806
   483
    ///
kpeter@806
   484
    /// \see ProblemType
kpeter@830
   485
    /// \see resetParams(), reset()
kpeter@810
   486
    ProblemType run(int factor = 4) {
kpeter@810
   487
      _factor = factor;
kpeter@810
   488
      ProblemType pt = init();
kpeter@806
   489
      if (pt != OPTIMAL) return pt;
kpeter@806
   490
      return start();
kpeter@806
   491
    }
kpeter@806
   492
kpeter@806
   493
    /// \brief Reset all the parameters that have been given before.
kpeter@806
   494
    ///
kpeter@806
   495
    /// This function resets all the paramaters that have been given
kpeter@806
   496
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@806
   497
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@806
   498
    ///
kpeter@830
   499
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@830
   500
    /// parameters are kept for the next \ref run() call, unless
kpeter@830
   501
    /// \ref resetParams() or \ref reset() is used.
kpeter@830
   502
    /// If the underlying digraph was also modified after the construction
kpeter@830
   503
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@830
   504
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@806
   505
    ///
kpeter@806
   506
    /// For example,
kpeter@806
   507
    /// \code
kpeter@806
   508
    ///   CapacityScaling<ListDigraph> cs(graph);
kpeter@806
   509
    ///
kpeter@806
   510
    ///   // First run
kpeter@806
   511
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@806
   512
    ///     .supplyMap(sup).run();
kpeter@806
   513
    ///
kpeter@830
   514
    ///   // Run again with modified cost map (resetParams() is not called,
kpeter@806
   515
    ///   // so only the cost map have to be set again)
kpeter@806
   516
    ///   cost[e] += 100;
kpeter@806
   517
    ///   cs.costMap(cost).run();
kpeter@806
   518
    ///
kpeter@830
   519
    ///   // Run again from scratch using resetParams()
kpeter@806
   520
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@830
   521
    ///   cs.resetParams();
kpeter@806
   522
    ///   cs.upperMap(capacity).costMap(cost)
kpeter@806
   523
    ///     .supplyMap(sup).run();
kpeter@806
   524
    /// \endcode
kpeter@806
   525
    ///
kpeter@806
   526
    /// \return <tt>(*this)</tt>
kpeter@830
   527
    ///
kpeter@830
   528
    /// \see reset(), run()
kpeter@830
   529
    CapacityScaling& resetParams() {
kpeter@806
   530
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   531
        _supply[i] = 0;
kpeter@806
   532
      }
kpeter@806
   533
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   534
        _lower[j] = 0;
kpeter@806
   535
        _upper[j] = INF;
kpeter@806
   536
        _cost[j] = _forward[j] ? 1 : -1;
kpeter@806
   537
      }
kpeter@806
   538
      _have_lower = false;
kpeter@806
   539
      return *this;
kpeter@805
   540
    }
kpeter@805
   541
kpeter@830
   542
    /// \brief Reset the internal data structures and all the parameters
kpeter@830
   543
    /// that have been given before.
kpeter@830
   544
    ///
kpeter@830
   545
    /// This function resets the internal data structures and all the
kpeter@830
   546
    /// paramaters that have been given before using functions \ref lowerMap(),
kpeter@830
   547
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@830
   548
    ///
kpeter@830
   549
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@830
   550
    /// parameters are kept for the next \ref run() call, unless
kpeter@830
   551
    /// \ref resetParams() or \ref reset() is used.
kpeter@830
   552
    /// If the underlying digraph was also modified after the construction
kpeter@830
   553
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@830
   554
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@830
   555
    ///
kpeter@830
   556
    /// See \ref resetParams() for examples.
kpeter@830
   557
    ///
kpeter@830
   558
    /// \return <tt>(*this)</tt>
kpeter@830
   559
    ///
kpeter@830
   560
    /// \see resetParams(), run()
kpeter@830
   561
    CapacityScaling& reset() {
kpeter@830
   562
      // Resize vectors
kpeter@830
   563
      _node_num = countNodes(_graph);
kpeter@830
   564
      _arc_num = countArcs(_graph);
kpeter@830
   565
      _res_arc_num = 2 * (_arc_num + _node_num);
kpeter@830
   566
      _root = _node_num;
kpeter@830
   567
      ++_node_num;
kpeter@830
   568
kpeter@830
   569
      _first_out.resize(_node_num + 1);
kpeter@830
   570
      _forward.resize(_res_arc_num);
kpeter@830
   571
      _source.resize(_res_arc_num);
kpeter@830
   572
      _target.resize(_res_arc_num);
kpeter@830
   573
      _reverse.resize(_res_arc_num);
kpeter@830
   574
kpeter@830
   575
      _lower.resize(_res_arc_num);
kpeter@830
   576
      _upper.resize(_res_arc_num);
kpeter@830
   577
      _cost.resize(_res_arc_num);
kpeter@830
   578
      _supply.resize(_node_num);
alpar@877
   579
kpeter@830
   580
      _res_cap.resize(_res_arc_num);
kpeter@830
   581
      _pi.resize(_node_num);
kpeter@830
   582
      _excess.resize(_node_num);
kpeter@830
   583
      _pred.resize(_node_num);
kpeter@830
   584
kpeter@830
   585
      // Copy the graph
kpeter@830
   586
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
kpeter@830
   587
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@830
   588
        _node_id[n] = i;
kpeter@830
   589
      }
kpeter@830
   590
      i = 0;
kpeter@830
   591
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@830
   592
        _first_out[i] = j;
kpeter@830
   593
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@830
   594
          _arc_idf[a] = j;
kpeter@830
   595
          _forward[j] = true;
kpeter@830
   596
          _source[j] = i;
kpeter@830
   597
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@830
   598
        }
kpeter@830
   599
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@830
   600
          _arc_idb[a] = j;
kpeter@830
   601
          _forward[j] = false;
kpeter@830
   602
          _source[j] = i;
kpeter@830
   603
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@830
   604
        }
kpeter@830
   605
        _forward[j] = false;
kpeter@830
   606
        _source[j] = i;
kpeter@830
   607
        _target[j] = _root;
kpeter@830
   608
        _reverse[j] = k;
kpeter@830
   609
        _forward[k] = true;
kpeter@830
   610
        _source[k] = _root;
kpeter@830
   611
        _target[k] = i;
kpeter@830
   612
        _reverse[k] = j;
kpeter@830
   613
        ++j; ++k;
kpeter@830
   614
      }
kpeter@830
   615
      _first_out[i] = j;
kpeter@830
   616
      _first_out[_node_num] = k;
kpeter@830
   617
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@830
   618
        int fi = _arc_idf[a];
kpeter@830
   619
        int bi = _arc_idb[a];
kpeter@830
   620
        _reverse[fi] = bi;
kpeter@830
   621
        _reverse[bi] = fi;
kpeter@830
   622
      }
alpar@877
   623
kpeter@830
   624
      // Reset parameters
kpeter@830
   625
      resetParams();
kpeter@830
   626
      return *this;
kpeter@830
   627
    }
kpeter@830
   628
kpeter@805
   629
    /// @}
kpeter@805
   630
kpeter@805
   631
    /// \name Query Functions
kpeter@805
   632
    /// The results of the algorithm can be obtained using these
kpeter@805
   633
    /// functions.\n
kpeter@806
   634
    /// The \ref run() function must be called before using them.
kpeter@805
   635
kpeter@805
   636
    /// @{
kpeter@805
   637
kpeter@806
   638
    /// \brief Return the total cost of the found flow.
kpeter@805
   639
    ///
kpeter@806
   640
    /// This function returns the total cost of the found flow.
kpeter@806
   641
    /// Its complexity is O(e).
kpeter@806
   642
    ///
kpeter@806
   643
    /// \note The return type of the function can be specified as a
kpeter@806
   644
    /// template parameter. For example,
kpeter@806
   645
    /// \code
kpeter@806
   646
    ///   cs.totalCost<double>();
kpeter@806
   647
    /// \endcode
kpeter@806
   648
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@806
   649
    /// type of the algorithm, which is the default return type of the
kpeter@806
   650
    /// function.
kpeter@805
   651
    ///
kpeter@805
   652
    /// \pre \ref run() must be called before using this function.
kpeter@806
   653
    template <typename Number>
kpeter@806
   654
    Number totalCost() const {
kpeter@806
   655
      Number c = 0;
kpeter@806
   656
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   657
        int i = _arc_idb[a];
kpeter@806
   658
        c += static_cast<Number>(_res_cap[i]) *
kpeter@806
   659
             (-static_cast<Number>(_cost[i]));
kpeter@806
   660
      }
kpeter@806
   661
      return c;
kpeter@805
   662
    }
kpeter@805
   663
kpeter@806
   664
#ifndef DOXYGEN
kpeter@806
   665
    Cost totalCost() const {
kpeter@806
   666
      return totalCost<Cost>();
kpeter@805
   667
    }
kpeter@806
   668
#endif
kpeter@805
   669
kpeter@805
   670
    /// \brief Return the flow on the given arc.
kpeter@805
   671
    ///
kpeter@806
   672
    /// This function returns the flow on the given arc.
kpeter@805
   673
    ///
kpeter@805
   674
    /// \pre \ref run() must be called before using this function.
kpeter@806
   675
    Value flow(const Arc& a) const {
kpeter@806
   676
      return _res_cap[_arc_idb[a]];
kpeter@805
   677
    }
kpeter@805
   678
kpeter@806
   679
    /// \brief Return the flow map (the primal solution).
kpeter@805
   680
    ///
kpeter@806
   681
    /// This function copies the flow value on each arc into the given
kpeter@806
   682
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@806
   683
    /// the \c Value type of the map.
kpeter@805
   684
    ///
kpeter@805
   685
    /// \pre \ref run() must be called before using this function.
kpeter@806
   686
    template <typename FlowMap>
kpeter@806
   687
    void flowMap(FlowMap &map) const {
kpeter@806
   688
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   689
        map.set(a, _res_cap[_arc_idb[a]]);
kpeter@806
   690
      }
kpeter@805
   691
    }
kpeter@805
   692
kpeter@806
   693
    /// \brief Return the potential (dual value) of the given node.
kpeter@805
   694
    ///
kpeter@806
   695
    /// This function returns the potential (dual value) of the
kpeter@806
   696
    /// given node.
kpeter@805
   697
    ///
kpeter@805
   698
    /// \pre \ref run() must be called before using this function.
kpeter@806
   699
    Cost potential(const Node& n) const {
kpeter@806
   700
      return _pi[_node_id[n]];
kpeter@806
   701
    }
kpeter@806
   702
kpeter@806
   703
    /// \brief Return the potential map (the dual solution).
kpeter@806
   704
    ///
kpeter@806
   705
    /// This function copies the potential (dual value) of each node
kpeter@806
   706
    /// into the given map.
kpeter@806
   707
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@806
   708
    /// \c Value type of the map.
kpeter@806
   709
    ///
kpeter@806
   710
    /// \pre \ref run() must be called before using this function.
kpeter@806
   711
    template <typename PotentialMap>
kpeter@806
   712
    void potentialMap(PotentialMap &map) const {
kpeter@806
   713
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@806
   714
        map.set(n, _pi[_node_id[n]]);
kpeter@806
   715
      }
kpeter@805
   716
    }
kpeter@805
   717
kpeter@805
   718
    /// @}
kpeter@805
   719
kpeter@805
   720
  private:
kpeter@805
   721
kpeter@806
   722
    // Initialize the algorithm
kpeter@810
   723
    ProblemType init() {
kpeter@821
   724
      if (_node_num <= 1) return INFEASIBLE;
kpeter@805
   725
kpeter@806
   726
      // Check the sum of supply values
kpeter@806
   727
      _sum_supply = 0;
kpeter@806
   728
      for (int i = 0; i != _root; ++i) {
kpeter@806
   729
        _sum_supply += _supply[i];
kpeter@805
   730
      }
kpeter@806
   731
      if (_sum_supply > 0) return INFEASIBLE;
alpar@877
   732
kpeter@811
   733
      // Initialize vectors
kpeter@806
   734
      for (int i = 0; i != _root; ++i) {
kpeter@806
   735
        _pi[i] = 0;
kpeter@806
   736
        _excess[i] = _supply[i];
kpeter@805
   737
      }
kpeter@805
   738
kpeter@806
   739
      // Remove non-zero lower bounds
kpeter@811
   740
      const Value MAX = std::numeric_limits<Value>::max();
kpeter@811
   741
      int last_out;
kpeter@806
   742
      if (_have_lower) {
kpeter@806
   743
        for (int i = 0; i != _root; ++i) {
kpeter@811
   744
          last_out = _first_out[i+1];
kpeter@811
   745
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@806
   746
            if (_forward[j]) {
kpeter@806
   747
              Value c = _lower[j];
kpeter@806
   748
              if (c >= 0) {
kpeter@811
   749
                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
kpeter@806
   750
              } else {
kpeter@811
   751
                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
kpeter@806
   752
              }
kpeter@806
   753
              _excess[i] -= c;
kpeter@806
   754
              _excess[_target[j]] += c;
kpeter@806
   755
            } else {
kpeter@806
   756
              _res_cap[j] = 0;
kpeter@806
   757
            }
kpeter@806
   758
          }
kpeter@806
   759
        }
kpeter@806
   760
      } else {
kpeter@806
   761
        for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   762
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
kpeter@806
   763
        }
kpeter@806
   764
      }
kpeter@805
   765
kpeter@806
   766
      // Handle negative costs
kpeter@811
   767
      for (int i = 0; i != _root; ++i) {
kpeter@811
   768
        last_out = _first_out[i+1] - 1;
kpeter@811
   769
        for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@811
   770
          Value rc = _res_cap[j];
kpeter@811
   771
          if (_cost[j] < 0 && rc > 0) {
kpeter@811
   772
            if (rc >= MAX) return UNBOUNDED;
kpeter@811
   773
            _excess[i] -= rc;
kpeter@811
   774
            _excess[_target[j]] += rc;
kpeter@811
   775
            _res_cap[j] = 0;
kpeter@811
   776
            _res_cap[_reverse[j]] += rc;
kpeter@806
   777
          }
kpeter@806
   778
        }
kpeter@806
   779
      }
alpar@877
   780
kpeter@806
   781
      // Handle GEQ supply type
kpeter@806
   782
      if (_sum_supply < 0) {
kpeter@806
   783
        _pi[_root] = 0;
kpeter@806
   784
        _excess[_root] = -_sum_supply;
kpeter@806
   785
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@811
   786
          int ra = _reverse[a];
kpeter@811
   787
          _res_cap[a] = -_sum_supply + 1;
kpeter@811
   788
          _res_cap[ra] = 0;
kpeter@806
   789
          _cost[a] = 0;
kpeter@811
   790
          _cost[ra] = 0;
kpeter@806
   791
        }
kpeter@806
   792
      } else {
kpeter@806
   793
        _pi[_root] = 0;
kpeter@806
   794
        _excess[_root] = 0;
kpeter@806
   795
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@811
   796
          int ra = _reverse[a];
kpeter@806
   797
          _res_cap[a] = 1;
kpeter@811
   798
          _res_cap[ra] = 0;
kpeter@806
   799
          _cost[a] = 0;
kpeter@811
   800
          _cost[ra] = 0;
kpeter@806
   801
        }
kpeter@806
   802
      }
kpeter@806
   803
kpeter@806
   804
      // Initialize delta value
kpeter@810
   805
      if (_factor > 1) {
kpeter@805
   806
        // With scaling
kpeter@839
   807
        Value max_sup = 0, max_dem = 0, max_cap = 0;
kpeter@839
   808
        for (int i = 0; i != _root; ++i) {
kpeter@811
   809
          Value ex = _excess[i];
kpeter@811
   810
          if ( ex > max_sup) max_sup =  ex;
kpeter@811
   811
          if (-ex > max_dem) max_dem = -ex;
kpeter@839
   812
          int last_out = _first_out[i+1] - 1;
kpeter@839
   813
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@839
   814
            if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
kpeter@839
   815
          }
kpeter@805
   816
        }
kpeter@805
   817
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
kpeter@810
   818
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
kpeter@805
   819
      } else {
kpeter@805
   820
        // Without scaling
kpeter@805
   821
        _delta = 1;
kpeter@805
   822
      }
kpeter@805
   823
kpeter@806
   824
      return OPTIMAL;
kpeter@805
   825
    }
kpeter@805
   826
kpeter@806
   827
    ProblemType start() {
kpeter@806
   828
      // Execute the algorithm
kpeter@806
   829
      ProblemType pt;
kpeter@805
   830
      if (_delta > 1)
kpeter@806
   831
        pt = startWithScaling();
kpeter@805
   832
      else
kpeter@806
   833
        pt = startWithoutScaling();
kpeter@806
   834
kpeter@806
   835
      // Handle non-zero lower bounds
kpeter@806
   836
      if (_have_lower) {
kpeter@811
   837
        int limit = _first_out[_root];
kpeter@811
   838
        for (int j = 0; j != limit; ++j) {
kpeter@806
   839
          if (!_forward[j]) _res_cap[j] += _lower[j];
kpeter@806
   840
        }
kpeter@806
   841
      }
kpeter@806
   842
kpeter@806
   843
      // Shift potentials if necessary
kpeter@806
   844
      Cost pr = _pi[_root];
kpeter@806
   845
      if (_sum_supply < 0 || pr > 0) {
kpeter@806
   846
        for (int i = 0; i != _node_num; ++i) {
kpeter@806
   847
          _pi[i] -= pr;
alpar@877
   848
        }
kpeter@806
   849
      }
alpar@877
   850
kpeter@806
   851
      return pt;
kpeter@805
   852
    }
kpeter@805
   853
kpeter@806
   854
    // Execute the capacity scaling algorithm
kpeter@806
   855
    ProblemType startWithScaling() {
kpeter@807
   856
      // Perform capacity scaling phases
kpeter@806
   857
      int s, t;
kpeter@806
   858
      ResidualDijkstra _dijkstra(*this);
kpeter@805
   859
      while (true) {
kpeter@806
   860
        // Saturate all arcs not satisfying the optimality condition
kpeter@811
   861
        int last_out;
kpeter@806
   862
        for (int u = 0; u != _node_num; ++u) {
kpeter@811
   863
          last_out = _sum_supply < 0 ?
kpeter@811
   864
            _first_out[u+1] : _first_out[u+1] - 1;
kpeter@811
   865
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@806
   866
            int v = _target[a];
kpeter@806
   867
            Cost c = _cost[a] + _pi[u] - _pi[v];
kpeter@806
   868
            Value rc = _res_cap[a];
kpeter@806
   869
            if (c < 0 && rc >= _delta) {
kpeter@806
   870
              _excess[u] -= rc;
kpeter@806
   871
              _excess[v] += rc;
kpeter@806
   872
              _res_cap[a] = 0;
kpeter@806
   873
              _res_cap[_reverse[a]] += rc;
kpeter@806
   874
            }
kpeter@805
   875
          }
kpeter@805
   876
        }
kpeter@805
   877
kpeter@806
   878
        // Find excess nodes and deficit nodes
kpeter@805
   879
        _excess_nodes.clear();
kpeter@805
   880
        _deficit_nodes.clear();
kpeter@806
   881
        for (int u = 0; u != _node_num; ++u) {
kpeter@811
   882
          Value ex = _excess[u];
kpeter@811
   883
          if (ex >=  _delta) _excess_nodes.push_back(u);
kpeter@811
   884
          if (ex <= -_delta) _deficit_nodes.push_back(u);
kpeter@805
   885
        }
kpeter@805
   886
        int next_node = 0, next_def_node = 0;
kpeter@805
   887
kpeter@806
   888
        // Find augmenting shortest paths
kpeter@805
   889
        while (next_node < int(_excess_nodes.size())) {
kpeter@806
   890
          // Check deficit nodes
kpeter@805
   891
          if (_delta > 1) {
kpeter@805
   892
            bool delta_deficit = false;
kpeter@805
   893
            for ( ; next_def_node < int(_deficit_nodes.size());
kpeter@805
   894
                    ++next_def_node ) {
kpeter@805
   895
              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
kpeter@805
   896
                delta_deficit = true;
kpeter@805
   897
                break;
kpeter@805
   898
              }
kpeter@805
   899
            }
kpeter@805
   900
            if (!delta_deficit) break;
kpeter@805
   901
          }
kpeter@805
   902
kpeter@806
   903
          // Run Dijkstra in the residual network
kpeter@805
   904
          s = _excess_nodes[next_node];
kpeter@806
   905
          if ((t = _dijkstra.run(s, _delta)) == -1) {
kpeter@805
   906
            if (_delta > 1) {
kpeter@805
   907
              ++next_node;
kpeter@805
   908
              continue;
kpeter@805
   909
            }
kpeter@806
   910
            return INFEASIBLE;
kpeter@805
   911
          }
kpeter@805
   912
kpeter@806
   913
          // Augment along a shortest path from s to t
kpeter@806
   914
          Value d = std::min(_excess[s], -_excess[t]);
kpeter@806
   915
          int u = t;
kpeter@806
   916
          int a;
kpeter@805
   917
          if (d > _delta) {
kpeter@806
   918
            while ((a = _pred[u]) != -1) {
kpeter@806
   919
              if (_res_cap[a] < d) d = _res_cap[a];
kpeter@806
   920
              u = _source[a];
kpeter@805
   921
            }
kpeter@805
   922
          }
kpeter@805
   923
          u = t;
kpeter@806
   924
          while ((a = _pred[u]) != -1) {
kpeter@806
   925
            _res_cap[a] -= d;
kpeter@806
   926
            _res_cap[_reverse[a]] += d;
kpeter@806
   927
            u = _source[a];
kpeter@805
   928
          }
kpeter@805
   929
          _excess[s] -= d;
kpeter@805
   930
          _excess[t] += d;
kpeter@805
   931
kpeter@805
   932
          if (_excess[s] < _delta) ++next_node;
kpeter@805
   933
        }
kpeter@805
   934
kpeter@805
   935
        if (_delta == 1) break;
kpeter@810
   936
        _delta = _delta <= _factor ? 1 : _delta / _factor;
kpeter@805
   937
      }
kpeter@805
   938
kpeter@806
   939
      return OPTIMAL;
kpeter@805
   940
    }
kpeter@805
   941
kpeter@806
   942
    // Execute the successive shortest path algorithm
kpeter@806
   943
    ProblemType startWithoutScaling() {
kpeter@806
   944
      // Find excess nodes
kpeter@806
   945
      _excess_nodes.clear();
kpeter@806
   946
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   947
        if (_excess[i] > 0) _excess_nodes.push_back(i);
kpeter@806
   948
      }
kpeter@806
   949
      if (_excess_nodes.size() == 0) return OPTIMAL;
kpeter@805
   950
      int next_node = 0;
kpeter@805
   951
kpeter@806
   952
      // Find shortest paths
kpeter@806
   953
      int s, t;
kpeter@806
   954
      ResidualDijkstra _dijkstra(*this);
kpeter@805
   955
      while ( _excess[_excess_nodes[next_node]] > 0 ||
kpeter@805
   956
              ++next_node < int(_excess_nodes.size()) )
kpeter@805
   957
      {
kpeter@806
   958
        // Run Dijkstra in the residual network
kpeter@805
   959
        s = _excess_nodes[next_node];
kpeter@806
   960
        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
kpeter@805
   961
kpeter@806
   962
        // Augment along a shortest path from s to t
kpeter@806
   963
        Value d = std::min(_excess[s], -_excess[t]);
kpeter@806
   964
        int u = t;
kpeter@806
   965
        int a;
kpeter@805
   966
        if (d > 1) {
kpeter@806
   967
          while ((a = _pred[u]) != -1) {
kpeter@806
   968
            if (_res_cap[a] < d) d = _res_cap[a];
kpeter@806
   969
            u = _source[a];
kpeter@805
   970
          }
kpeter@805
   971
        }
kpeter@805
   972
        u = t;
kpeter@806
   973
        while ((a = _pred[u]) != -1) {
kpeter@806
   974
          _res_cap[a] -= d;
kpeter@806
   975
          _res_cap[_reverse[a]] += d;
kpeter@806
   976
          u = _source[a];
kpeter@805
   977
        }
kpeter@805
   978
        _excess[s] -= d;
kpeter@805
   979
        _excess[t] += d;
kpeter@805
   980
      }
kpeter@805
   981
kpeter@806
   982
      return OPTIMAL;
kpeter@805
   983
    }
kpeter@805
   984
kpeter@805
   985
  }; //class CapacityScaling
kpeter@805
   986
kpeter@805
   987
  ///@}
kpeter@805
   988
kpeter@805
   989
} //namespace lemon
kpeter@805
   990
kpeter@805
   991
#endif //LEMON_CAPACITY_SCALING_H