lemon/nagamochi_ibaraki.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 08 Jan 2011 22:49:09 +0100
changeset 1032 62ba43576f85
child 978 eb252f805431
permissions -rw-r--r--
Doc group for TSP algorithms (#386)
deba@913
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@913
     2
 *
deba@913
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@913
     4
 *
deba@913
     5
 * Copyright (C) 2003-2010
deba@913
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@913
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@913
     8
 *
deba@913
     9
 * Permission to use, modify and distribute this software is granted
deba@913
    10
 * provided that this copyright notice appears in all copies. For
deba@913
    11
 * precise terms see the accompanying LICENSE file.
deba@913
    12
 *
deba@913
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@913
    14
 * express or implied, and with no claim as to its suitability for any
deba@913
    15
 * purpose.
deba@913
    16
 *
deba@913
    17
 */
deba@913
    18
deba@913
    19
#ifndef LEMON_NAGAMOCHI_IBARAKI_H
deba@913
    20
#define LEMON_NAGAMOCHI_IBARAKI_H
deba@913
    21
deba@913
    22
deba@913
    23
/// \ingroup min_cut
deba@913
    24
/// \file
deba@913
    25
/// \brief Implementation of the Nagamochi-Ibaraki algorithm.
deba@913
    26
deba@913
    27
#include <lemon/core.h>
deba@913
    28
#include <lemon/bin_heap.h>
deba@913
    29
#include <lemon/bucket_heap.h>
deba@913
    30
#include <lemon/maps.h>
deba@913
    31
#include <lemon/radix_sort.h>
deba@913
    32
#include <lemon/unionfind.h>
deba@913
    33
deba@913
    34
#include <cassert>
deba@913
    35
deba@913
    36
namespace lemon {
deba@913
    37
deba@913
    38
  /// \brief Default traits class for NagamochiIbaraki class.
deba@913
    39
  ///
deba@913
    40
  /// Default traits class for NagamochiIbaraki class.
deba@913
    41
  /// \param GR The undirected graph type.
deba@913
    42
  /// \param CM Type of capacity map.
deba@913
    43
  template <typename GR, typename CM>
deba@913
    44
  struct NagamochiIbarakiDefaultTraits {
deba@913
    45
    /// The type of the capacity map.
deba@913
    46
    typedef typename CM::Value Value;
deba@913
    47
deba@913
    48
    /// The undirected graph type the algorithm runs on.
deba@913
    49
    typedef GR Graph;
deba@913
    50
deba@913
    51
    /// \brief The type of the map that stores the edge capacities.
deba@913
    52
    ///
deba@913
    53
    /// The type of the map that stores the edge capacities.
deba@913
    54
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
deba@913
    55
    typedef CM CapacityMap;
deba@913
    56
deba@913
    57
    /// \brief Instantiates a CapacityMap.
deba@913
    58
    ///
deba@913
    59
    /// This function instantiates a \ref CapacityMap.
deba@913
    60
#ifdef DOXYGEN
deba@913
    61
    static CapacityMap *createCapacityMap(const Graph& graph)
deba@913
    62
#else
deba@913
    63
    static CapacityMap *createCapacityMap(const Graph&)
deba@913
    64
#endif
deba@913
    65
    {
deba@913
    66
        LEMON_ASSERT(false, "CapacityMap is not initialized");
deba@913
    67
        return 0; // ignore warnings
deba@913
    68
    }
deba@913
    69
deba@913
    70
    /// \brief The cross reference type used by heap.
deba@913
    71
    ///
deba@913
    72
    /// The cross reference type used by heap.
deba@913
    73
    /// Usually \c Graph::NodeMap<int>.
deba@913
    74
    typedef typename Graph::template NodeMap<int> HeapCrossRef;
deba@913
    75
deba@913
    76
    /// \brief Instantiates a HeapCrossRef.
deba@913
    77
    ///
deba@913
    78
    /// This function instantiates a \ref HeapCrossRef.
deba@913
    79
    /// \param g is the graph, to which we would like to define the
deba@913
    80
    /// \ref HeapCrossRef.
deba@913
    81
    static HeapCrossRef *createHeapCrossRef(const Graph& g) {
deba@913
    82
      return new HeapCrossRef(g);
deba@913
    83
    }
deba@913
    84
deba@913
    85
    /// \brief The heap type used by NagamochiIbaraki algorithm.
deba@913
    86
    ///
deba@913
    87
    /// The heap type used by NagamochiIbaraki algorithm. It has to
deba@913
    88
    /// maximize the priorities.
deba@913
    89
    ///
deba@913
    90
    /// \sa BinHeap
deba@913
    91
    /// \sa NagamochiIbaraki
deba@913
    92
    typedef BinHeap<Value, HeapCrossRef, std::greater<Value> > Heap;
deba@913
    93
deba@913
    94
    /// \brief Instantiates a Heap.
deba@913
    95
    ///
deba@913
    96
    /// This function instantiates a \ref Heap.
deba@913
    97
    /// \param r is the cross reference of the heap.
deba@913
    98
    static Heap *createHeap(HeapCrossRef& r) {
deba@913
    99
      return new Heap(r);
deba@913
   100
    }
deba@913
   101
  };
deba@913
   102
deba@913
   103
  /// \ingroup min_cut
deba@913
   104
  ///
deba@913
   105
  /// \brief Calculates the minimum cut in an undirected graph.
deba@913
   106
  ///
deba@913
   107
  /// Calculates the minimum cut in an undirected graph with the
deba@913
   108
  /// Nagamochi-Ibaraki algorithm. The algorithm separates the graph's
deba@913
   109
  /// nodes into two partitions with the minimum sum of edge capacities
deba@913
   110
  /// between the two partitions. The algorithm can be used to test
deba@913
   111
  /// the network reliability, especially to test how many links have
deba@913
   112
  /// to be destroyed in the network to split it to at least two
deba@913
   113
  /// distinict subnetworks.
deba@913
   114
  ///
deba@913
   115
  /// The complexity of the algorithm is \f$ O(nm\log(n)) \f$ but with
deba@913
   116
  /// \ref FibHeap "Fibonacci heap" it can be decreased to
deba@913
   117
  /// \f$ O(nm+n^2\log(n)) \f$.  When the edges have unit capacities,
deba@913
   118
  /// \c BucketHeap can be used which yields \f$ O(nm) \f$ time
deba@913
   119
  /// complexity.
deba@913
   120
  ///
deba@913
   121
  /// \warning The value type of the capacity map should be able to
deba@913
   122
  /// hold any cut value of the graph, otherwise the result can
deba@913
   123
  /// overflow.
deba@913
   124
  /// \note This capacity is supposed to be integer type.
deba@913
   125
#ifdef DOXYGEN
deba@913
   126
  template <typename GR, typename CM, typename TR>
deba@913
   127
#else
deba@913
   128
  template <typename GR,
deba@913
   129
            typename CM = typename GR::template EdgeMap<int>,
deba@913
   130
            typename TR = NagamochiIbarakiDefaultTraits<GR, CM> >
deba@913
   131
#endif
deba@913
   132
  class NagamochiIbaraki {
deba@913
   133
  public:
deba@913
   134
deba@913
   135
    typedef TR Traits;
deba@913
   136
    /// The type of the underlying graph.
deba@913
   137
    typedef typename Traits::Graph Graph;
deba@913
   138
deba@913
   139
    /// The type of the capacity map.
deba@913
   140
    typedef typename Traits::CapacityMap CapacityMap;
deba@913
   141
    /// The value type of the capacity map.
deba@913
   142
    typedef typename Traits::CapacityMap::Value Value;
deba@913
   143
deba@913
   144
    /// The heap type used by the algorithm.
deba@913
   145
    typedef typename Traits::Heap Heap;
deba@913
   146
    /// The cross reference type used for the heap.
deba@913
   147
    typedef typename Traits::HeapCrossRef HeapCrossRef;
deba@913
   148
deba@913
   149
    ///\name Named template parameters
deba@913
   150
deba@913
   151
    ///@{
deba@913
   152
deba@913
   153
    struct SetUnitCapacityTraits : public Traits {
deba@913
   154
      typedef ConstMap<typename Graph::Edge, Const<int, 1> > CapacityMap;
deba@913
   155
      static CapacityMap *createCapacityMap(const Graph&) {
deba@913
   156
        return new CapacityMap();
deba@913
   157
      }
deba@913
   158
    };
deba@913
   159
deba@913
   160
    /// \brief \ref named-templ-param "Named parameter" for setting
deba@913
   161
    /// the capacity map to a constMap<Edge, int, 1>() instance
deba@913
   162
    ///
deba@913
   163
    /// \ref named-templ-param "Named parameter" for setting
deba@913
   164
    /// the capacity map to a constMap<Edge, int, 1>() instance
deba@913
   165
    struct SetUnitCapacity
deba@913
   166
      : public NagamochiIbaraki<Graph, CapacityMap,
deba@913
   167
                                SetUnitCapacityTraits> {
deba@913
   168
      typedef NagamochiIbaraki<Graph, CapacityMap,
deba@913
   169
                               SetUnitCapacityTraits> Create;
deba@913
   170
    };
deba@913
   171
deba@913
   172
deba@913
   173
    template <class H, class CR>
deba@913
   174
    struct SetHeapTraits : public Traits {
deba@913
   175
      typedef CR HeapCrossRef;
deba@913
   176
      typedef H Heap;
deba@913
   177
      static HeapCrossRef *createHeapCrossRef(int num) {
deba@913
   178
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
deba@913
   179
        return 0; // ignore warnings
deba@913
   180
      }
deba@913
   181
      static Heap *createHeap(HeapCrossRef &) {
deba@913
   182
        LEMON_ASSERT(false, "Heap is not initialized");
deba@913
   183
        return 0; // ignore warnings
deba@913
   184
      }
deba@913
   185
    };
deba@913
   186
deba@913
   187
    /// \brief \ref named-templ-param "Named parameter" for setting
deba@913
   188
    /// heap and cross reference type
deba@913
   189
    ///
deba@913
   190
    /// \ref named-templ-param "Named parameter" for setting heap and
deba@913
   191
    /// cross reference type. The heap has to maximize the priorities.
deba@913
   192
    template <class H, class CR = RangeMap<int> >
deba@913
   193
    struct SetHeap
deba@913
   194
      : public NagamochiIbaraki<Graph, CapacityMap, SetHeapTraits<H, CR> > {
deba@913
   195
      typedef NagamochiIbaraki< Graph, CapacityMap, SetHeapTraits<H, CR> >
deba@913
   196
      Create;
deba@913
   197
    };
deba@913
   198
deba@913
   199
    template <class H, class CR>
deba@913
   200
    struct SetStandardHeapTraits : public Traits {
deba@913
   201
      typedef CR HeapCrossRef;
deba@913
   202
      typedef H Heap;
deba@913
   203
      static HeapCrossRef *createHeapCrossRef(int size) {
deba@913
   204
        return new HeapCrossRef(size);
deba@913
   205
      }
deba@913
   206
      static Heap *createHeap(HeapCrossRef &crossref) {
deba@913
   207
        return new Heap(crossref);
deba@913
   208
      }
deba@913
   209
    };
deba@913
   210
deba@913
   211
    /// \brief \ref named-templ-param "Named parameter" for setting
deba@913
   212
    /// heap and cross reference type with automatic allocation
deba@913
   213
    ///
deba@913
   214
    /// \ref named-templ-param "Named parameter" for setting heap and
deba@913
   215
    /// cross reference type with automatic allocation. They should
deba@913
   216
    /// have standard constructor interfaces to be able to
deba@913
   217
    /// automatically created by the algorithm (i.e. the graph should
deba@913
   218
    /// be passed to the constructor of the cross reference and the
deba@913
   219
    /// cross reference should be passed to the constructor of the
deba@913
   220
    /// heap). However, external heap and cross reference objects
deba@913
   221
    /// could also be passed to the algorithm using the \ref heap()
deba@913
   222
    /// function before calling \ref run() or \ref init(). The heap
deba@913
   223
    /// has to maximize the priorities.
deba@913
   224
    /// \sa SetHeap
deba@913
   225
    template <class H, class CR = RangeMap<int> >
deba@913
   226
    struct SetStandardHeap
deba@913
   227
      : public NagamochiIbaraki<Graph, CapacityMap,
deba@913
   228
                                SetStandardHeapTraits<H, CR> > {
deba@913
   229
      typedef NagamochiIbaraki<Graph, CapacityMap,
deba@913
   230
                               SetStandardHeapTraits<H, CR> > Create;
deba@913
   231
    };
deba@913
   232
deba@913
   233
    ///@}
deba@913
   234
deba@913
   235
deba@913
   236
  private:
deba@913
   237
deba@913
   238
    const Graph &_graph;
deba@913
   239
    const CapacityMap *_capacity;
deba@913
   240
    bool _local_capacity; // unit capacity
deba@913
   241
deba@913
   242
    struct ArcData {
deba@913
   243
      typename Graph::Node target;
deba@913
   244
      int prev, next;
deba@913
   245
    };
deba@913
   246
    struct EdgeData {
deba@913
   247
      Value capacity;
deba@913
   248
      Value cut;
deba@913
   249
    };
deba@913
   250
deba@913
   251
    struct NodeData {
deba@913
   252
      int first_arc;
deba@913
   253
      typename Graph::Node prev, next;
deba@913
   254
      int curr_arc;
deba@913
   255
      typename Graph::Node last_rep;
deba@913
   256
      Value sum;
deba@913
   257
    };
deba@913
   258
deba@913
   259
    typename Graph::template NodeMap<NodeData> *_nodes;
deba@913
   260
    std::vector<ArcData> _arcs;
deba@913
   261
    std::vector<EdgeData> _edges;
deba@913
   262
deba@913
   263
    typename Graph::Node _first_node;
deba@913
   264
    int _node_num;
deba@913
   265
deba@913
   266
    Value _min_cut;
deba@913
   267
deba@913
   268
    HeapCrossRef *_heap_cross_ref;
deba@913
   269
    bool _local_heap_cross_ref;
deba@913
   270
    Heap *_heap;
deba@913
   271
    bool _local_heap;
deba@913
   272
deba@913
   273
    typedef typename Graph::template NodeMap<typename Graph::Node> NodeList;
deba@913
   274
    NodeList *_next_rep;
deba@913
   275
deba@913
   276
    typedef typename Graph::template NodeMap<bool> MinCutMap;
deba@913
   277
    MinCutMap *_cut_map;
deba@913
   278
deba@913
   279
    void createStructures() {
deba@913
   280
      if (!_nodes) {
deba@913
   281
        _nodes = new (typename Graph::template NodeMap<NodeData>)(_graph);
deba@913
   282
      }
deba@913
   283
      if (!_capacity) {
deba@913
   284
        _local_capacity = true;
deba@913
   285
        _capacity = Traits::createCapacityMap(_graph);
deba@913
   286
      }
deba@913
   287
      if (!_heap_cross_ref) {
deba@913
   288
        _local_heap_cross_ref = true;
deba@913
   289
        _heap_cross_ref = Traits::createHeapCrossRef(_graph);
deba@913
   290
      }
deba@913
   291
      if (!_heap) {
deba@913
   292
        _local_heap = true;
deba@913
   293
        _heap = Traits::createHeap(*_heap_cross_ref);
deba@913
   294
      }
deba@913
   295
      if (!_next_rep) {
deba@913
   296
        _next_rep = new NodeList(_graph);
deba@913
   297
      }
deba@913
   298
      if (!_cut_map) {
deba@913
   299
        _cut_map = new MinCutMap(_graph);
deba@913
   300
      }
deba@913
   301
    }
deba@913
   302
deba@913
   303
  public :
deba@913
   304
deba@913
   305
    typedef NagamochiIbaraki Create;
deba@913
   306
deba@913
   307
deba@913
   308
    /// \brief Constructor.
deba@913
   309
    ///
deba@913
   310
    /// \param graph The graph the algorithm runs on.
deba@913
   311
    /// \param capacity The capacity map used by the algorithm.
deba@913
   312
    NagamochiIbaraki(const Graph& graph, const CapacityMap& capacity)
deba@913
   313
      : _graph(graph), _capacity(&capacity), _local_capacity(false),
deba@913
   314
        _nodes(0), _arcs(), _edges(), _min_cut(),
deba@913
   315
        _heap_cross_ref(0), _local_heap_cross_ref(false),
deba@913
   316
        _heap(0), _local_heap(false),
deba@913
   317
        _next_rep(0), _cut_map(0) {}
deba@913
   318
deba@913
   319
    /// \brief Constructor.
deba@913
   320
    ///
deba@913
   321
    /// This constructor can be used only when the Traits class
deba@913
   322
    /// defines how can the local capacity map be instantiated.
deba@913
   323
    /// If the SetUnitCapacity used the algorithm automatically
deba@913
   324
    /// constructs the capacity map.
deba@913
   325
    ///
deba@913
   326
    ///\param graph The graph the algorithm runs on.
deba@913
   327
    NagamochiIbaraki(const Graph& graph)
deba@913
   328
      : _graph(graph), _capacity(0), _local_capacity(false),
deba@913
   329
        _nodes(0), _arcs(), _edges(), _min_cut(),
deba@913
   330
        _heap_cross_ref(0), _local_heap_cross_ref(false),
deba@913
   331
        _heap(0), _local_heap(false),
deba@913
   332
        _next_rep(0), _cut_map(0) {}
deba@913
   333
deba@913
   334
    /// \brief Destructor.
deba@913
   335
    ///
deba@913
   336
    /// Destructor.
deba@913
   337
    ~NagamochiIbaraki() {
deba@913
   338
      if (_local_capacity) delete _capacity;
deba@913
   339
      if (_nodes) delete _nodes;
deba@913
   340
      if (_local_heap) delete _heap;
deba@913
   341
      if (_local_heap_cross_ref) delete _heap_cross_ref;
deba@913
   342
      if (_next_rep) delete _next_rep;
deba@913
   343
      if (_cut_map) delete _cut_map;
deba@913
   344
    }
deba@913
   345
deba@913
   346
    /// \brief Sets the heap and the cross reference used by algorithm.
deba@913
   347
    ///
deba@913
   348
    /// Sets the heap and the cross reference used by algorithm.
deba@913
   349
    /// If you don't use this function before calling \ref run(),
deba@913
   350
    /// it will allocate one. The destuctor deallocates this
deba@913
   351
    /// automatically allocated heap and cross reference, of course.
deba@913
   352
    /// \return <tt> (*this) </tt>
deba@913
   353
    NagamochiIbaraki &heap(Heap& hp, HeapCrossRef &cr)
deba@913
   354
    {
deba@913
   355
      if (_local_heap_cross_ref) {
deba@913
   356
        delete _heap_cross_ref;
deba@913
   357
        _local_heap_cross_ref = false;
deba@913
   358
      }
deba@913
   359
      _heap_cross_ref = &cr;
deba@913
   360
      if (_local_heap) {
deba@913
   361
        delete _heap;
deba@913
   362
        _local_heap = false;
deba@913
   363
      }
deba@913
   364
      _heap = &hp;
deba@913
   365
      return *this;
deba@913
   366
    }
deba@913
   367
deba@913
   368
    /// \name Execution control
deba@913
   369
    /// The simplest way to execute the algorithm is to use
deba@913
   370
    /// one of the member functions called \c run().
deba@913
   371
    /// \n
deba@913
   372
    /// If you need more control on the execution,
deba@913
   373
    /// first you must call \ref init() and then call the start()
deba@913
   374
    /// or proper times the processNextPhase() member functions.
deba@913
   375
deba@913
   376
    ///@{
deba@913
   377
deba@913
   378
    /// \brief Initializes the internal data structures.
deba@913
   379
    ///
deba@913
   380
    /// Initializes the internal data structures.
deba@913
   381
    void init() {
deba@913
   382
      createStructures();
deba@913
   383
deba@913
   384
      int edge_num = countEdges(_graph);
deba@913
   385
      _edges.resize(edge_num);
deba@913
   386
      _arcs.resize(2 * edge_num);
deba@913
   387
deba@913
   388
      typename Graph::Node prev = INVALID;
deba@913
   389
      _node_num = 0;
deba@913
   390
      for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
deba@913
   391
        (*_cut_map)[n] = false;
deba@913
   392
        (*_next_rep)[n] = INVALID;
deba@913
   393
        (*_nodes)[n].last_rep = n;
deba@913
   394
        (*_nodes)[n].first_arc = -1;
deba@913
   395
        (*_nodes)[n].curr_arc = -1;
deba@913
   396
        (*_nodes)[n].prev = prev;
deba@913
   397
        if (prev != INVALID) {
deba@913
   398
          (*_nodes)[prev].next = n;
deba@913
   399
        }
deba@913
   400
        (*_nodes)[n].next = INVALID;
deba@913
   401
        (*_nodes)[n].sum = 0;
deba@913
   402
        prev = n;
deba@913
   403
        ++_node_num;
deba@913
   404
      }
deba@913
   405
deba@913
   406
      _first_node = typename Graph::NodeIt(_graph);
deba@913
   407
deba@913
   408
      int index = 0;
deba@913
   409
      for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
deba@913
   410
        for (typename Graph::OutArcIt a(_graph, n); a != INVALID; ++a) {
deba@913
   411
          typename Graph::Node m = _graph.target(a);
deba@913
   412
          
deba@913
   413
          if (!(n < m)) continue;
deba@913
   414
deba@913
   415
          (*_nodes)[n].sum += (*_capacity)[a];
deba@913
   416
          (*_nodes)[m].sum += (*_capacity)[a];
deba@913
   417
          
deba@913
   418
          int c = (*_nodes)[m].curr_arc;
deba@913
   419
          if (c != -1 && _arcs[c ^ 1].target == n) {
deba@913
   420
            _edges[c >> 1].capacity += (*_capacity)[a];
deba@913
   421
          } else {
deba@913
   422
            _edges[index].capacity = (*_capacity)[a];
deba@913
   423
            
deba@913
   424
            _arcs[index << 1].prev = -1;
deba@913
   425
            if ((*_nodes)[n].first_arc != -1) {
deba@913
   426
              _arcs[(*_nodes)[n].first_arc].prev = (index << 1);
deba@913
   427
            }
deba@913
   428
            _arcs[index << 1].next = (*_nodes)[n].first_arc;
deba@913
   429
            (*_nodes)[n].first_arc = (index << 1);
deba@913
   430
            _arcs[index << 1].target = m;
deba@913
   431
deba@913
   432
            (*_nodes)[m].curr_arc = (index << 1);
deba@913
   433
            
deba@913
   434
            _arcs[(index << 1) | 1].prev = -1;
deba@913
   435
            if ((*_nodes)[m].first_arc != -1) {
deba@913
   436
              _arcs[(*_nodes)[m].first_arc].prev = ((index << 1) | 1);
deba@913
   437
            }
deba@913
   438
            _arcs[(index << 1) | 1].next = (*_nodes)[m].first_arc;
deba@913
   439
            (*_nodes)[m].first_arc = ((index << 1) | 1);
deba@913
   440
            _arcs[(index << 1) | 1].target = n;
deba@913
   441
            
deba@913
   442
            ++index;
deba@913
   443
          }
deba@913
   444
        }
deba@913
   445
      }
deba@913
   446
deba@913
   447
      typename Graph::Node cut_node = INVALID;
deba@913
   448
      _min_cut = std::numeric_limits<Value>::max();
deba@913
   449
deba@913
   450
      for (typename Graph::Node n = _first_node; 
deba@913
   451
           n != INVALID; n = (*_nodes)[n].next) {
deba@913
   452
        if ((*_nodes)[n].sum < _min_cut) {
deba@913
   453
          cut_node = n;
deba@913
   454
          _min_cut = (*_nodes)[n].sum;
deba@913
   455
        }
deba@913
   456
      }
deba@913
   457
      (*_cut_map)[cut_node] = true;
deba@913
   458
      if (_min_cut == 0) {
deba@913
   459
        _first_node = INVALID;
deba@913
   460
      }
deba@913
   461
    }
deba@913
   462
deba@913
   463
  public:
deba@913
   464
deba@913
   465
    /// \brief Processes the next phase
deba@913
   466
    ///
deba@913
   467
    /// Processes the next phase in the algorithm. It must be called
deba@913
   468
    /// at most one less the number of the nodes in the graph.
deba@913
   469
    ///
deba@913
   470
    ///\return %True when the algorithm finished.
deba@913
   471
    bool processNextPhase() {
deba@913
   472
      if (_first_node == INVALID) return true;
deba@913
   473
deba@913
   474
      _heap->clear();
deba@913
   475
      for (typename Graph::Node n = _first_node; 
deba@913
   476
           n != INVALID; n = (*_nodes)[n].next) {
deba@913
   477
        (*_heap_cross_ref)[n] = Heap::PRE_HEAP;
deba@913
   478
      }
deba@913
   479
deba@913
   480
      std::vector<typename Graph::Node> order;
deba@913
   481
      order.reserve(_node_num);
deba@913
   482
      int sep = 0;
deba@913
   483
deba@913
   484
      Value alpha = 0;
deba@913
   485
      Value pmc = std::numeric_limits<Value>::max();
deba@913
   486
deba@913
   487
      _heap->push(_first_node, static_cast<Value>(0));
deba@913
   488
      while (!_heap->empty()) {
deba@913
   489
        typename Graph::Node n = _heap->top();
deba@913
   490
        Value v = _heap->prio();
deba@913
   491
deba@913
   492
        _heap->pop();
deba@913
   493
        for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
deba@913
   494
          switch (_heap->state(_arcs[a].target)) {
deba@913
   495
          case Heap::PRE_HEAP: 
deba@913
   496
            {
deba@913
   497
              Value nv = _edges[a >> 1].capacity;
deba@913
   498
              _heap->push(_arcs[a].target, nv);
deba@913
   499
              _edges[a >> 1].cut = nv;
deba@913
   500
            } break;
deba@913
   501
          case Heap::IN_HEAP:
deba@913
   502
            {
deba@913
   503
              Value nv = _edges[a >> 1].capacity + (*_heap)[_arcs[a].target];
deba@913
   504
              _heap->decrease(_arcs[a].target, nv);
deba@913
   505
              _edges[a >> 1].cut = nv;
deba@913
   506
            } break;
deba@913
   507
          case Heap::POST_HEAP:
deba@913
   508
            break;
deba@913
   509
          }
deba@913
   510
        }
deba@913
   511
deba@913
   512
        alpha += (*_nodes)[n].sum;
deba@913
   513
        alpha -= 2 * v;
deba@913
   514
deba@913
   515
        order.push_back(n);
deba@913
   516
        if (!_heap->empty()) {
deba@913
   517
          if (alpha < pmc) {
deba@913
   518
            pmc = alpha;
deba@913
   519
            sep = order.size();
deba@913
   520
          }
deba@913
   521
        }
deba@913
   522
      }
deba@913
   523
deba@913
   524
      if (static_cast<int>(order.size()) < _node_num) {
deba@913
   525
        _first_node = INVALID;
deba@913
   526
        for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
deba@913
   527
          (*_cut_map)[n] = false;
deba@913
   528
        }
deba@913
   529
        for (int i = 0; i < static_cast<int>(order.size()); ++i) {
deba@913
   530
          typename Graph::Node n = order[i];
deba@913
   531
          while (n != INVALID) {
deba@913
   532
            (*_cut_map)[n] = true;
deba@913
   533
            n = (*_next_rep)[n];
deba@913
   534
          }
deba@913
   535
        }
deba@913
   536
        _min_cut = 0;
deba@913
   537
        return true;
deba@913
   538
      }
deba@913
   539
deba@913
   540
      if (pmc < _min_cut) {
deba@913
   541
        for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
deba@913
   542
          (*_cut_map)[n] = false;
deba@913
   543
        }
deba@913
   544
        for (int i = 0; i < sep; ++i) {
deba@913
   545
          typename Graph::Node n = order[i];
deba@913
   546
          while (n != INVALID) {
deba@913
   547
            (*_cut_map)[n] = true;
deba@913
   548
            n = (*_next_rep)[n];
deba@913
   549
          }
deba@913
   550
        }
deba@913
   551
        _min_cut = pmc;
deba@913
   552
      }
deba@913
   553
deba@913
   554
      for (typename Graph::Node n = _first_node;
deba@913
   555
           n != INVALID; n = (*_nodes)[n].next) {
deba@913
   556
        bool merged = false;
deba@913
   557
        for (int a = (*_nodes)[n].first_arc; a != -1; a = _arcs[a].next) {
deba@913
   558
          if (!(_edges[a >> 1].cut < pmc)) {
deba@913
   559
            if (!merged) {
deba@913
   560
              for (int b = (*_nodes)[n].first_arc; b != -1; b = _arcs[b].next) {
deba@913
   561
                (*_nodes)[_arcs[b].target].curr_arc = b;          
deba@913
   562
              }
deba@913
   563
              merged = true;
deba@913
   564
            }
deba@913
   565
            typename Graph::Node m = _arcs[a].target;
deba@913
   566
            int nb = 0;
deba@913
   567
            for (int b = (*_nodes)[m].first_arc; b != -1; b = nb) {
deba@913
   568
              nb = _arcs[b].next;
deba@913
   569
              if ((b ^ a) == 1) continue;
deba@913
   570
              typename Graph::Node o = _arcs[b].target;
deba@913
   571
              int c = (*_nodes)[o].curr_arc; 
deba@913
   572
              if (c != -1 && _arcs[c ^ 1].target == n) {
deba@913
   573
                _edges[c >> 1].capacity += _edges[b >> 1].capacity;
deba@913
   574
                (*_nodes)[n].sum += _edges[b >> 1].capacity;
deba@913
   575
                if (_edges[b >> 1].cut < _edges[c >> 1].cut) {
deba@913
   576
                  _edges[b >> 1].cut = _edges[c >> 1].cut;
deba@913
   577
                }
deba@913
   578
                if (_arcs[b ^ 1].prev != -1) {
deba@913
   579
                  _arcs[_arcs[b ^ 1].prev].next = _arcs[b ^ 1].next;
deba@913
   580
                } else {
deba@913
   581
                  (*_nodes)[o].first_arc = _arcs[b ^ 1].next;
deba@913
   582
                }
deba@913
   583
                if (_arcs[b ^ 1].next != -1) {
deba@913
   584
                  _arcs[_arcs[b ^ 1].next].prev = _arcs[b ^ 1].prev;
deba@913
   585
                }
deba@913
   586
              } else {
deba@913
   587
                if (_arcs[a].next != -1) {
deba@913
   588
                  _arcs[_arcs[a].next].prev = b;
deba@913
   589
                }
deba@913
   590
                _arcs[b].next = _arcs[a].next;
deba@913
   591
                _arcs[b].prev = a;
deba@913
   592
                _arcs[a].next = b;
deba@913
   593
                _arcs[b ^ 1].target = n;
deba@913
   594
deba@913
   595
                (*_nodes)[n].sum += _edges[b >> 1].capacity;
deba@913
   596
                (*_nodes)[o].curr_arc = b;
deba@913
   597
              }
deba@913
   598
            }
deba@913
   599
deba@913
   600
            if (_arcs[a].prev != -1) {
deba@913
   601
              _arcs[_arcs[a].prev].next = _arcs[a].next;
deba@913
   602
            } else {
deba@913
   603
              (*_nodes)[n].first_arc = _arcs[a].next;
deba@913
   604
            }            
deba@913
   605
            if (_arcs[a].next != -1) {
deba@913
   606
              _arcs[_arcs[a].next].prev = _arcs[a].prev;
deba@913
   607
            }
deba@913
   608
deba@913
   609
            (*_nodes)[n].sum -= _edges[a >> 1].capacity;
deba@913
   610
            (*_next_rep)[(*_nodes)[n].last_rep] = m;
deba@913
   611
            (*_nodes)[n].last_rep = (*_nodes)[m].last_rep;
deba@913
   612
            
deba@913
   613
            if ((*_nodes)[m].prev != INVALID) {
deba@913
   614
              (*_nodes)[(*_nodes)[m].prev].next = (*_nodes)[m].next;
deba@913
   615
            } else{
deba@913
   616
              _first_node = (*_nodes)[m].next;
deba@913
   617
            }
deba@913
   618
            if ((*_nodes)[m].next != INVALID) {
deba@913
   619
              (*_nodes)[(*_nodes)[m].next].prev = (*_nodes)[m].prev;
deba@913
   620
            }
deba@913
   621
            --_node_num;
deba@913
   622
          }
deba@913
   623
        }
deba@913
   624
      }
deba@913
   625
deba@913
   626
      if (_node_num == 1) {
deba@913
   627
        _first_node = INVALID;
deba@913
   628
        return true;
deba@913
   629
      }
deba@913
   630
deba@913
   631
      return false;
deba@913
   632
    }
deba@913
   633
deba@913
   634
    /// \brief Executes the algorithm.
deba@913
   635
    ///
deba@913
   636
    /// Executes the algorithm.
deba@913
   637
    ///
deba@913
   638
    /// \pre init() must be called
deba@913
   639
    void start() {
deba@913
   640
      while (!processNextPhase()) {}
deba@913
   641
    }
deba@913
   642
deba@913
   643
deba@913
   644
    /// \brief Runs %NagamochiIbaraki algorithm.
deba@913
   645
    ///
deba@913
   646
    /// This method runs the %Min cut algorithm
deba@913
   647
    ///
deba@913
   648
    /// \note mc.run(s) is just a shortcut of the following code.
deba@913
   649
    ///\code
deba@913
   650
    ///  mc.init();
deba@913
   651
    ///  mc.start();
deba@913
   652
    ///\endcode
deba@913
   653
    void run() {
deba@913
   654
      init();
deba@913
   655
      start();
deba@913
   656
    }
deba@913
   657
deba@913
   658
    ///@}
deba@913
   659
deba@913
   660
    /// \name Query Functions
deba@913
   661
    ///
deba@913
   662
    /// The result of the %NagamochiIbaraki
deba@913
   663
    /// algorithm can be obtained using these functions.\n
deba@913
   664
    /// Before the use of these functions, either run() or start()
deba@913
   665
    /// must be called.
deba@913
   666
deba@913
   667
    ///@{
deba@913
   668
deba@913
   669
    /// \brief Returns the min cut value.
deba@913
   670
    ///
deba@913
   671
    /// Returns the min cut value if the algorithm finished.
deba@913
   672
    /// After the first processNextPhase() it is a value of a
deba@913
   673
    /// valid cut in the graph.
deba@913
   674
    Value minCutValue() const {
deba@913
   675
      return _min_cut;
deba@913
   676
    }
deba@913
   677
deba@913
   678
    /// \brief Returns a min cut in a NodeMap.
deba@913
   679
    ///
deba@913
   680
    /// It sets the nodes of one of the two partitions to true and
deba@913
   681
    /// the other partition to false.
deba@913
   682
    /// \param cutMap A \ref concepts::WriteMap "writable" node map with
deba@913
   683
    /// \c bool (or convertible) value type.
deba@913
   684
    template <typename CutMap>
deba@913
   685
    Value minCutMap(CutMap& cutMap) const {
deba@913
   686
      for (typename Graph::NodeIt n(_graph); n != INVALID; ++n) {
deba@913
   687
        cutMap.set(n, (*_cut_map)[n]);
deba@913
   688
      }
deba@913
   689
      return minCutValue();
deba@913
   690
    }
deba@913
   691
deba@913
   692
    ///@}
deba@913
   693
deba@913
   694
  };
deba@913
   695
}
deba@913
   696
deba@913
   697
#endif