kpeter@1033
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
kpeter@1033
|
2 |
*
|
kpeter@1033
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
kpeter@1033
|
4 |
*
|
kpeter@1033
|
5 |
* Copyright (C) 2003-2010
|
kpeter@1033
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
kpeter@1033
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
kpeter@1033
|
8 |
*
|
kpeter@1033
|
9 |
* Permission to use, modify and distribute this software is granted
|
kpeter@1033
|
10 |
* provided that this copyright notice appears in all copies. For
|
kpeter@1033
|
11 |
* precise terms see the accompanying LICENSE file.
|
kpeter@1033
|
12 |
*
|
kpeter@1033
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
kpeter@1033
|
14 |
* express or implied, and with no claim as to its suitability for any
|
kpeter@1033
|
15 |
* purpose.
|
kpeter@1033
|
16 |
*
|
kpeter@1033
|
17 |
*/
|
kpeter@1033
|
18 |
|
f4c3@1031
|
19 |
#ifndef LEMON_NEAREST_NEIGHBOUR_TSP_H
|
f4c3@1031
|
20 |
#define LEMON_NEAREST_NEIGHBOUR_TSP_H
|
f4c3@1031
|
21 |
|
kpeter@1033
|
22 |
/// \ingroup tsp
|
kpeter@1033
|
23 |
/// \file
|
kpeter@1033
|
24 |
/// \brief Nearest neighbor algorithm for symmetric TSP
|
kpeter@1033
|
25 |
|
f4c3@1031
|
26 |
#include <deque>
|
kpeter@1034
|
27 |
#include <vector>
|
kpeter@1033
|
28 |
#include <limits>
|
f4c3@1031
|
29 |
#include <lemon/full_graph.h>
|
f4c3@1031
|
30 |
#include <lemon/maps.h>
|
f4c3@1031
|
31 |
|
f4c3@1031
|
32 |
namespace lemon {
|
f4c3@1031
|
33 |
|
kpeter@1034
|
34 |
/// \ingroup tsp
|
kpeter@1034
|
35 |
///
|
kpeter@1033
|
36 |
/// \brief Nearest neighbor algorithm for symmetric TSP.
|
kpeter@1033
|
37 |
///
|
kpeter@1033
|
38 |
/// NearestNeighborTsp implements the nearest neighbor heuristic for solving
|
kpeter@1033
|
39 |
/// symmetric \ref tsp "TSP".
|
kpeter@1033
|
40 |
///
|
kpeter@1033
|
41 |
/// This is probably the simplest TSP heuristic.
|
kpeter@1033
|
42 |
/// It starts with a minimum cost edge and at each step, it connects the
|
kpeter@1033
|
43 |
/// nearest unvisited node to the current path.
|
kpeter@1033
|
44 |
/// Finally, it connects the two end points of the path to form a tour.
|
kpeter@1033
|
45 |
///
|
kpeter@1033
|
46 |
/// This method runs in O(n<sup>2</sup>) time.
|
kpeter@1036
|
47 |
/// It quickly finds a relatively short tour for most TSP instances,
|
kpeter@1036
|
48 |
/// but it could also yield a really bad (or even the worst) solution
|
kpeter@1036
|
49 |
/// in special cases.
|
kpeter@1033
|
50 |
///
|
kpeter@1033
|
51 |
/// \tparam CM Type of the cost map.
|
f4c3@1031
|
52 |
template <typename CM>
|
kpeter@1033
|
53 |
class NearestNeighborTsp
|
kpeter@1033
|
54 |
{
|
kpeter@1033
|
55 |
public:
|
kpeter@1033
|
56 |
|
kpeter@1033
|
57 |
/// Type of the cost map
|
kpeter@1033
|
58 |
typedef CM CostMap;
|
kpeter@1033
|
59 |
/// Type of the edge costs
|
kpeter@1033
|
60 |
typedef typename CM::Value Cost;
|
kpeter@1033
|
61 |
|
f4c3@1031
|
62 |
private:
|
kpeter@1033
|
63 |
|
f4c3@1031
|
64 |
GRAPH_TYPEDEFS(FullGraph);
|
f4c3@1031
|
65 |
|
kpeter@1033
|
66 |
const FullGraph &_gr;
|
kpeter@1033
|
67 |
const CostMap &_cost;
|
kpeter@1033
|
68 |
Cost _sum;
|
kpeter@1034
|
69 |
std::vector<Node> _path;
|
kpeter@1033
|
70 |
|
f4c3@1031
|
71 |
public:
|
f4c3@1031
|
72 |
|
kpeter@1033
|
73 |
/// \brief Constructor
|
kpeter@1033
|
74 |
///
|
kpeter@1033
|
75 |
/// Constructor.
|
kpeter@1033
|
76 |
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
|
kpeter@1033
|
77 |
/// \param cost The cost map.
|
kpeter@1033
|
78 |
NearestNeighborTsp(const FullGraph &gr, const CostMap &cost)
|
kpeter@1033
|
79 |
: _gr(gr), _cost(cost) {}
|
kpeter@1033
|
80 |
|
kpeter@1033
|
81 |
/// \name Execution Control
|
kpeter@1033
|
82 |
/// @{
|
kpeter@1033
|
83 |
|
kpeter@1033
|
84 |
/// \brief Runs the algorithm.
|
kpeter@1033
|
85 |
///
|
kpeter@1033
|
86 |
/// This function runs the algorithm.
|
kpeter@1033
|
87 |
///
|
kpeter@1033
|
88 |
/// \return The total cost of the found tour.
|
f4c3@1031
|
89 |
Cost run() {
|
f4c3@1031
|
90 |
_path.clear();
|
kpeter@1034
|
91 |
if (_gr.nodeNum() == 0) {
|
kpeter@1034
|
92 |
return _sum = 0;
|
kpeter@1034
|
93 |
}
|
kpeter@1033
|
94 |
else if (_gr.nodeNum() == 1) {
|
kpeter@1033
|
95 |
_path.push_back(_gr(0));
|
kpeter@1033
|
96 |
return _sum = 0;
|
kpeter@1033
|
97 |
}
|
kpeter@1033
|
98 |
|
kpeter@1034
|
99 |
std::deque<Node> path_dq;
|
f4c3@1031
|
100 |
Edge min_edge1 = INVALID,
|
f4c3@1031
|
101 |
min_edge2 = INVALID;
|
kpeter@1033
|
102 |
|
f4c3@1031
|
103 |
min_edge1 = mapMin(_gr, _cost);
|
kpeter@1033
|
104 |
Node n1 = _gr.u(min_edge1),
|
f4c3@1031
|
105 |
n2 = _gr.v(min_edge1);
|
kpeter@1034
|
106 |
path_dq.push_back(n1);
|
kpeter@1034
|
107 |
path_dq.push_back(n2);
|
f4c3@1031
|
108 |
|
kpeter@1033
|
109 |
FullGraph::NodeMap<bool> used(_gr, false);
|
f4c3@1031
|
110 |
used[n1] = true;
|
f4c3@1031
|
111 |
used[n2] = true;
|
f4c3@1031
|
112 |
|
f4c3@1031
|
113 |
min_edge1 = INVALID;
|
kpeter@1034
|
114 |
while (int(path_dq.size()) != _gr.nodeNum()) {
|
f4c3@1031
|
115 |
if (min_edge1 == INVALID) {
|
kpeter@1033
|
116 |
for (IncEdgeIt e(_gr, n1); e != INVALID; ++e) {
|
kpeter@1033
|
117 |
if (!used[_gr.runningNode(e)] &&
|
kpeter@1033
|
118 |
(_cost[e] < _cost[min_edge1] || min_edge1 == INVALID)) {
|
kpeter@1033
|
119 |
min_edge1 = e;
|
f4c3@1031
|
120 |
}
|
f4c3@1031
|
121 |
}
|
f4c3@1031
|
122 |
}
|
f4c3@1031
|
123 |
|
f4c3@1031
|
124 |
if (min_edge2 == INVALID) {
|
kpeter@1033
|
125 |
for (IncEdgeIt e(_gr, n2); e != INVALID; ++e) {
|
kpeter@1033
|
126 |
if (!used[_gr.runningNode(e)] &&
|
kpeter@1033
|
127 |
(_cost[e] < _cost[min_edge2] || min_edge2 == INVALID)) {
|
kpeter@1033
|
128 |
min_edge2 = e;
|
f4c3@1031
|
129 |
}
|
f4c3@1031
|
130 |
}
|
f4c3@1031
|
131 |
}
|
f4c3@1031
|
132 |
|
kpeter@1033
|
133 |
if (_cost[min_edge1] < _cost[min_edge2]) {
|
kpeter@1033
|
134 |
n1 = _gr.oppositeNode(n1, min_edge1);
|
kpeter@1034
|
135 |
path_dq.push_front(n1);
|
f4c3@1031
|
136 |
|
f4c3@1031
|
137 |
used[n1] = true;
|
f4c3@1031
|
138 |
min_edge1 = INVALID;
|
f4c3@1031
|
139 |
|
kpeter@1033
|
140 |
if (_gr.u(min_edge2) == n1 || _gr.v(min_edge2) == n1)
|
f4c3@1031
|
141 |
min_edge2 = INVALID;
|
f4c3@1031
|
142 |
} else {
|
kpeter@1033
|
143 |
n2 = _gr.oppositeNode(n2, min_edge2);
|
kpeter@1034
|
144 |
path_dq.push_back(n2);
|
f4c3@1031
|
145 |
|
f4c3@1031
|
146 |
used[n2] = true;
|
f4c3@1031
|
147 |
min_edge2 = INVALID;
|
f4c3@1031
|
148 |
|
kpeter@1033
|
149 |
if (_gr.u(min_edge1) == n2 || _gr.v(min_edge1) == n2)
|
f4c3@1031
|
150 |
min_edge1 = INVALID;
|
f4c3@1031
|
151 |
}
|
f4c3@1031
|
152 |
}
|
f4c3@1031
|
153 |
|
kpeter@1034
|
154 |
n1 = path_dq.back();
|
kpeter@1034
|
155 |
n2 = path_dq.front();
|
kpeter@1034
|
156 |
_path.push_back(n2);
|
kpeter@1034
|
157 |
_sum = _cost[_gr.edge(n1, n2)];
|
kpeter@1034
|
158 |
for (int i = 1; i < int(path_dq.size()); ++i) {
|
kpeter@1034
|
159 |
n1 = n2;
|
kpeter@1034
|
160 |
n2 = path_dq[i];
|
kpeter@1034
|
161 |
_path.push_back(n2);
|
kpeter@1034
|
162 |
_sum += _cost[_gr.edge(n1, n2)];
|
kpeter@1033
|
163 |
}
|
f4c3@1031
|
164 |
|
f4c3@1031
|
165 |
return _sum;
|
f4c3@1031
|
166 |
}
|
f4c3@1031
|
167 |
|
kpeter@1033
|
168 |
/// @}
|
kpeter@1033
|
169 |
|
kpeter@1033
|
170 |
/// \name Query Functions
|
kpeter@1033
|
171 |
/// @{
|
kpeter@1033
|
172 |
|
kpeter@1033
|
173 |
/// \brief The total cost of the found tour.
|
kpeter@1033
|
174 |
///
|
kpeter@1033
|
175 |
/// This function returns the total cost of the found tour.
|
kpeter@1033
|
176 |
///
|
kpeter@1033
|
177 |
/// \pre run() must be called before using this function.
|
kpeter@1033
|
178 |
Cost tourCost() const {
|
kpeter@1033
|
179 |
return _sum;
|
f4c3@1031
|
180 |
}
|
f4c3@1031
|
181 |
|
kpeter@1033
|
182 |
/// \brief Returns a const reference to the node sequence of the
|
kpeter@1033
|
183 |
/// found tour.
|
kpeter@1033
|
184 |
///
|
kpeter@1034
|
185 |
/// This function returns a const reference to a vector
|
kpeter@1033
|
186 |
/// that stores the node sequence of the found tour.
|
kpeter@1033
|
187 |
///
|
kpeter@1033
|
188 |
/// \pre run() must be called before using this function.
|
kpeter@1034
|
189 |
const std::vector<Node>& tourNodes() const {
|
f4c3@1031
|
190 |
return _path;
|
f4c3@1031
|
191 |
}
|
kpeter@1033
|
192 |
|
kpeter@1033
|
193 |
/// \brief Gives back the node sequence of the found tour.
|
kpeter@1033
|
194 |
///
|
kpeter@1033
|
195 |
/// This function copies the node sequence of the found tour into
|
kpeter@1037
|
196 |
/// an STL container through the given output iterator. The
|
kpeter@1037
|
197 |
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
|
kpeter@1037
|
198 |
/// For example,
|
kpeter@1037
|
199 |
/// \code
|
kpeter@1037
|
200 |
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
|
kpeter@1037
|
201 |
/// tsp.tourNodes(nodes.begin());
|
kpeter@1037
|
202 |
/// \endcode
|
kpeter@1037
|
203 |
/// or
|
kpeter@1037
|
204 |
/// \code
|
kpeter@1037
|
205 |
/// std::list<FullGraph::Node> nodes;
|
kpeter@1037
|
206 |
/// tsp.tourNodes(std::back_inserter(nodes));
|
kpeter@1037
|
207 |
/// \endcode
|
kpeter@1033
|
208 |
///
|
kpeter@1033
|
209 |
/// \pre run() must be called before using this function.
|
kpeter@1037
|
210 |
template <typename Iterator>
|
kpeter@1037
|
211 |
void tourNodes(Iterator out) const {
|
kpeter@1037
|
212 |
std::copy(_path.begin(), _path.end(), out);
|
kpeter@1033
|
213 |
}
|
kpeter@1033
|
214 |
|
kpeter@1033
|
215 |
/// \brief Gives back the found tour as a path.
|
kpeter@1033
|
216 |
///
|
kpeter@1033
|
217 |
/// This function copies the found tour as a list of arcs/edges into
|
kpeter@1033
|
218 |
/// the given \ref concept::Path "path structure".
|
kpeter@1033
|
219 |
///
|
kpeter@1033
|
220 |
/// \pre run() must be called before using this function.
|
kpeter@1033
|
221 |
template <typename Path>
|
kpeter@1033
|
222 |
void tour(Path &path) const {
|
kpeter@1033
|
223 |
path.clear();
|
kpeter@1033
|
224 |
for (int i = 0; i < int(_path.size()) - 1; ++i) {
|
kpeter@1033
|
225 |
path.addBack(_gr.arc(_path[i], _path[i+1]));
|
f4c3@1031
|
226 |
}
|
kpeter@1033
|
227 |
if (int(_path.size()) >= 2) {
|
kpeter@1033
|
228 |
path.addBack(_gr.arc(_path.back(), _path.front()));
|
kpeter@1033
|
229 |
}
|
f4c3@1031
|
230 |
}
|
f4c3@1031
|
231 |
|
kpeter@1033
|
232 |
/// @}
|
kpeter@1033
|
233 |
|
f4c3@1031
|
234 |
};
|
f4c3@1031
|
235 |
|
f4c3@1031
|
236 |
}; // namespace lemon
|
f4c3@1031
|
237 |
|
f4c3@1031
|
238 |
#endif
|