lemon/concepts/digraph.h
author Alpar Juttner <alpar@cs.elte.hu>
Fri, 22 Feb 2013 16:49:41 +0100
changeset 1016 97975184f4aa
parent 786 e20173729589
child 1049 7bf489cf624e
child 1084 8b2d4e5d96e4
permissions -rw-r--r--
Merge bugfix #445
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@57
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@57
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
deba@57
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@57
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@57
     8
 *
deba@57
     9
 * Permission to use, modify and distribute this software is granted
deba@57
    10
 * provided that this copyright notice appears in all copies. For
deba@57
    11
 * precise terms see the accompanying LICENSE file.
deba@57
    12
 *
deba@57
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@57
    14
 * express or implied, and with no claim as to its suitability for any
deba@57
    15
 * purpose.
deba@57
    16
 *
deba@57
    17
 */
deba@57
    18
deba@529
    19
#ifndef LEMON_CONCEPTS_DIGRAPH_H
deba@529
    20
#define LEMON_CONCEPTS_DIGRAPH_H
deba@57
    21
deba@57
    22
///\ingroup graph_concepts
deba@57
    23
///\file
deba@57
    24
///\brief The concept of directed graphs.
deba@57
    25
deba@220
    26
#include <lemon/core.h>
deba@57
    27
#include <lemon/concepts/maps.h>
deba@57
    28
#include <lemon/concept_check.h>
deba@57
    29
#include <lemon/concepts/graph_components.h>
deba@57
    30
deba@57
    31
namespace lemon {
deba@57
    32
  namespace concepts {
deba@57
    33
deba@57
    34
    /// \ingroup graph_concepts
deba@57
    35
    ///
deba@57
    36
    /// \brief Class describing the concept of directed graphs.
deba@57
    37
    ///
kpeter@734
    38
    /// This class describes the common interface of all directed
kpeter@734
    39
    /// graphs (digraphs).
deba@57
    40
    ///
kpeter@734
    41
    /// Like all concept classes, it only provides an interface
kpeter@734
    42
    /// without any sensible implementation. So any general algorithm for
kpeter@734
    43
    /// directed graphs should compile with this class, but it will not
kpeter@734
    44
    /// run properly, of course.
kpeter@734
    45
    /// An actual digraph implementation like \ref ListDigraph or
kpeter@734
    46
    /// \ref SmartDigraph may have additional functionality.
deba@57
    47
    ///
kpeter@734
    48
    /// \sa Graph
deba@57
    49
    class Digraph {
deba@57
    50
    private:
kpeter@734
    51
      /// Diraphs are \e not copy constructible. Use DigraphCopy instead.
kpeter@734
    52
      Digraph(const Digraph &) {}
kpeter@734
    53
      /// \brief Assignment of a digraph to another one is \e not allowed.
kpeter@734
    54
      /// Use DigraphCopy instead.
kpeter@734
    55
      void operator=(const Digraph &) {}
alpar@209
    56
kpeter@734
    57
    public:
kpeter@734
    58
      /// Default constructor.
kpeter@734
    59
      Digraph() { }
alpar@209
    60
kpeter@734
    61
      /// The node type of the digraph
deba@57
    62
deba@57
    63
      /// This class identifies a node of the digraph. It also serves
deba@57
    64
      /// as a base class of the node iterators,
kpeter@734
    65
      /// thus they convert to this type.
deba@57
    66
      class Node {
deba@57
    67
      public:
deba@57
    68
        /// Default constructor
deba@57
    69
kpeter@734
    70
        /// Default constructor.
kpeter@734
    71
        /// \warning It sets the object to an undefined value.
deba@57
    72
        Node() { }
deba@57
    73
        /// Copy constructor.
deba@57
    74
deba@57
    75
        /// Copy constructor.
deba@57
    76
        ///
deba@57
    77
        Node(const Node&) { }
deba@57
    78
kpeter@734
    79
        /// %Invalid constructor \& conversion.
deba@57
    80
kpeter@734
    81
        /// Initializes the object to be invalid.
deba@57
    82
        /// \sa Invalid for more details.
deba@57
    83
        Node(Invalid) { }
deba@57
    84
        /// Equality operator
deba@57
    85
kpeter@734
    86
        /// Equality operator.
kpeter@734
    87
        ///
deba@57
    88
        /// Two iterators are equal if and only if they point to the
kpeter@734
    89
        /// same object or both are \c INVALID.
deba@57
    90
        bool operator==(Node) const { return true; }
deba@57
    91
deba@57
    92
        /// Inequality operator
alpar@209
    93
kpeter@734
    94
        /// Inequality operator.
deba@57
    95
        bool operator!=(Node) const { return true; }
deba@57
    96
alpar@209
    97
        /// Artificial ordering operator.
alpar@209
    98
kpeter@734
    99
        /// Artificial ordering operator.
alpar@209
   100
        ///
kpeter@734
   101
        /// \note This operator only has to define some strict ordering of
kpeter@734
   102
        /// the nodes; this order has nothing to do with the iteration
kpeter@734
   103
        /// ordering of the nodes.
alpar@209
   104
        bool operator<(Node) const { return false; }
deba@57
   105
      };
alpar@209
   106
kpeter@734
   107
      /// Iterator class for the nodes.
deba@57
   108
kpeter@734
   109
      /// This iterator goes through each node of the digraph.
kpeter@786
   110
      /// Its usage is quite simple, for example, you can count the number
kpeter@734
   111
      /// of nodes in a digraph \c g of type \c %Digraph like this:
deba@57
   112
      ///\code
deba@57
   113
      /// int count=0;
deba@57
   114
      /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
deba@57
   115
      ///\endcode
deba@57
   116
      class NodeIt : public Node {
deba@57
   117
      public:
deba@57
   118
        /// Default constructor
deba@57
   119
kpeter@734
   120
        /// Default constructor.
kpeter@734
   121
        /// \warning It sets the iterator to an undefined value.
deba@57
   122
        NodeIt() { }
deba@57
   123
        /// Copy constructor.
alpar@209
   124
deba@57
   125
        /// Copy constructor.
deba@57
   126
        ///
deba@57
   127
        NodeIt(const NodeIt& n) : Node(n) { }
kpeter@734
   128
        /// %Invalid constructor \& conversion.
deba@57
   129
kpeter@734
   130
        /// Initializes the iterator to be invalid.
deba@57
   131
        /// \sa Invalid for more details.
deba@57
   132
        NodeIt(Invalid) { }
deba@57
   133
        /// Sets the iterator to the first node.
deba@57
   134
kpeter@734
   135
        /// Sets the iterator to the first node of the given digraph.
deba@57
   136
        ///
kpeter@734
   137
        explicit NodeIt(const Digraph&) { }
kpeter@734
   138
        /// Sets the iterator to the given node.
deba@57
   139
kpeter@734
   140
        /// Sets the iterator to the given node of the given digraph.
kpeter@734
   141
        ///
deba@57
   142
        NodeIt(const Digraph&, const Node&) { }
deba@57
   143
        /// Next node.
deba@57
   144
deba@57
   145
        /// Assign the iterator to the next node.
deba@57
   146
        ///
deba@57
   147
        NodeIt& operator++() { return *this; }
deba@57
   148
      };
alpar@209
   149
alpar@209
   150
kpeter@734
   151
      /// The arc type of the digraph
deba@57
   152
deba@57
   153
      /// This class identifies an arc of the digraph. It also serves
deba@57
   154
      /// as a base class of the arc iterators,
deba@57
   155
      /// thus they will convert to this type.
deba@57
   156
      class Arc {
deba@57
   157
      public:
deba@57
   158
        /// Default constructor
deba@57
   159
kpeter@734
   160
        /// Default constructor.
kpeter@734
   161
        /// \warning It sets the object to an undefined value.
deba@57
   162
        Arc() { }
deba@57
   163
        /// Copy constructor.
deba@57
   164
deba@57
   165
        /// Copy constructor.
deba@57
   166
        ///
deba@57
   167
        Arc(const Arc&) { }
kpeter@734
   168
        /// %Invalid constructor \& conversion.
deba@57
   169
kpeter@734
   170
        /// Initializes the object to be invalid.
kpeter@734
   171
        /// \sa Invalid for more details.
deba@57
   172
        Arc(Invalid) { }
deba@57
   173
        /// Equality operator
deba@57
   174
kpeter@734
   175
        /// Equality operator.
kpeter@734
   176
        ///
deba@57
   177
        /// Two iterators are equal if and only if they point to the
kpeter@734
   178
        /// same object or both are \c INVALID.
deba@57
   179
        bool operator==(Arc) const { return true; }
deba@57
   180
        /// Inequality operator
deba@57
   181
kpeter@734
   182
        /// Inequality operator.
deba@57
   183
        bool operator!=(Arc) const { return true; }
deba@57
   184
alpar@209
   185
        /// Artificial ordering operator.
alpar@209
   186
kpeter@734
   187
        /// Artificial ordering operator.
alpar@209
   188
        ///
kpeter@734
   189
        /// \note This operator only has to define some strict ordering of
kpeter@734
   190
        /// the arcs; this order has nothing to do with the iteration
kpeter@734
   191
        /// ordering of the arcs.
alpar@209
   192
        bool operator<(Arc) const { return false; }
deba@57
   193
      };
alpar@209
   194
kpeter@734
   195
      /// Iterator class for the outgoing arcs of a node.
deba@57
   196
deba@57
   197
      /// This iterator goes trough the \e outgoing arcs of a certain node
deba@57
   198
      /// of a digraph.
kpeter@786
   199
      /// Its usage is quite simple, for example, you can count the number
deba@57
   200
      /// of outgoing arcs of a node \c n
kpeter@734
   201
      /// in a digraph \c g of type \c %Digraph as follows.
deba@57
   202
      ///\code
deba@57
   203
      /// int count=0;
kpeter@734
   204
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
deba@57
   205
      ///\endcode
deba@57
   206
      class OutArcIt : public Arc {
deba@57
   207
      public:
deba@57
   208
        /// Default constructor
deba@57
   209
kpeter@734
   210
        /// Default constructor.
kpeter@734
   211
        /// \warning It sets the iterator to an undefined value.
deba@57
   212
        OutArcIt() { }
deba@57
   213
        /// Copy constructor.
deba@57
   214
deba@57
   215
        /// Copy constructor.
deba@57
   216
        ///
deba@57
   217
        OutArcIt(const OutArcIt& e) : Arc(e) { }
kpeter@734
   218
        /// %Invalid constructor \& conversion.
deba@57
   219
kpeter@734
   220
        /// Initializes the iterator to be invalid.
kpeter@734
   221
        /// \sa Invalid for more details.
kpeter@734
   222
        OutArcIt(Invalid) { }
kpeter@734
   223
        /// Sets the iterator to the first outgoing arc.
kpeter@734
   224
kpeter@734
   225
        /// Sets the iterator to the first outgoing arc of the given node.
deba@57
   226
        ///
kpeter@734
   227
        OutArcIt(const Digraph&, const Node&) { }
kpeter@734
   228
        /// Sets the iterator to the given arc.
alpar@209
   229
kpeter@734
   230
        /// Sets the iterator to the given arc of the given digraph.
kpeter@734
   231
        ///
deba@57
   232
        OutArcIt(const Digraph&, const Arc&) { }
kpeter@734
   233
        /// Next outgoing arc
alpar@209
   234
alpar@209
   235
        /// Assign the iterator to the next
deba@57
   236
        /// outgoing arc of the corresponding node.
deba@57
   237
        OutArcIt& operator++() { return *this; }
deba@57
   238
      };
deba@57
   239
kpeter@734
   240
      /// Iterator class for the incoming arcs of a node.
deba@57
   241
deba@57
   242
      /// This iterator goes trough the \e incoming arcs of a certain node
deba@57
   243
      /// of a digraph.
kpeter@786
   244
      /// Its usage is quite simple, for example, you can count the number
kpeter@734
   245
      /// of incoming arcs of a node \c n
kpeter@734
   246
      /// in a digraph \c g of type \c %Digraph as follows.
deba@57
   247
      ///\code
deba@57
   248
      /// int count=0;
kpeter@734
   249
      /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
deba@57
   250
      ///\endcode
deba@57
   251
      class InArcIt : public Arc {
deba@57
   252
      public:
deba@57
   253
        /// Default constructor
deba@57
   254
kpeter@734
   255
        /// Default constructor.
kpeter@734
   256
        /// \warning It sets the iterator to an undefined value.
deba@57
   257
        InArcIt() { }
deba@57
   258
        /// Copy constructor.
deba@57
   259
deba@57
   260
        /// Copy constructor.
deba@57
   261
        ///
deba@57
   262
        InArcIt(const InArcIt& e) : Arc(e) { }
kpeter@734
   263
        /// %Invalid constructor \& conversion.
deba@57
   264
kpeter@734
   265
        /// Initializes the iterator to be invalid.
kpeter@734
   266
        /// \sa Invalid for more details.
kpeter@734
   267
        InArcIt(Invalid) { }
kpeter@734
   268
        /// Sets the iterator to the first incoming arc.
kpeter@734
   269
kpeter@734
   270
        /// Sets the iterator to the first incoming arc of the given node.
deba@57
   271
        ///
kpeter@734
   272
        InArcIt(const Digraph&, const Node&) { }
kpeter@734
   273
        /// Sets the iterator to the given arc.
alpar@209
   274
kpeter@734
   275
        /// Sets the iterator to the given arc of the given digraph.
kpeter@734
   276
        ///
deba@57
   277
        InArcIt(const Digraph&, const Arc&) { }
deba@57
   278
        /// Next incoming arc
deba@57
   279
kpeter@734
   280
        /// Assign the iterator to the next
kpeter@734
   281
        /// incoming arc of the corresponding node.
deba@57
   282
        InArcIt& operator++() { return *this; }
deba@57
   283
      };
deba@57
   284
kpeter@734
   285
      /// Iterator class for the arcs.
kpeter@734
   286
kpeter@734
   287
      /// This iterator goes through each arc of the digraph.
kpeter@786
   288
      /// Its usage is quite simple, for example, you can count the number
kpeter@734
   289
      /// of arcs in a digraph \c g of type \c %Digraph as follows:
deba@57
   290
      ///\code
deba@57
   291
      /// int count=0;
kpeter@734
   292
      /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;
deba@57
   293
      ///\endcode
deba@57
   294
      class ArcIt : public Arc {
deba@57
   295
      public:
deba@57
   296
        /// Default constructor
deba@57
   297
kpeter@734
   298
        /// Default constructor.
kpeter@734
   299
        /// \warning It sets the iterator to an undefined value.
deba@57
   300
        ArcIt() { }
deba@57
   301
        /// Copy constructor.
deba@57
   302
deba@57
   303
        /// Copy constructor.
deba@57
   304
        ///
deba@57
   305
        ArcIt(const ArcIt& e) : Arc(e) { }
kpeter@734
   306
        /// %Invalid constructor \& conversion.
deba@57
   307
kpeter@734
   308
        /// Initializes the iterator to be invalid.
kpeter@734
   309
        /// \sa Invalid for more details.
kpeter@734
   310
        ArcIt(Invalid) { }
kpeter@734
   311
        /// Sets the iterator to the first arc.
kpeter@734
   312
kpeter@734
   313
        /// Sets the iterator to the first arc of the given digraph.
deba@57
   314
        ///
kpeter@734
   315
        explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
kpeter@734
   316
        /// Sets the iterator to the given arc.
alpar@209
   317
kpeter@734
   318
        /// Sets the iterator to the given arc of the given digraph.
kpeter@734
   319
        ///
alpar@209
   320
        ArcIt(const Digraph&, const Arc&) { }
kpeter@734
   321
        /// Next arc
alpar@209
   322
deba@57
   323
        /// Assign the iterator to the next arc.
kpeter@734
   324
        ///
deba@57
   325
        ArcIt& operator++() { return *this; }
deba@57
   326
      };
deba@57
   327
kpeter@734
   328
      /// \brief The source node of the arc.
deba@57
   329
      ///
kpeter@734
   330
      /// Returns the source node of the given arc.
deba@57
   331
      Node source(Arc) const { return INVALID; }
deba@57
   332
kpeter@734
   333
      /// \brief The target node of the arc.
kpeter@734
   334
      ///
kpeter@734
   335
      /// Returns the target node of the given arc.
kpeter@734
   336
      Node target(Arc) const { return INVALID; }
kpeter@734
   337
kpeter@734
   338
      /// \brief The ID of the node.
kpeter@734
   339
      ///
kpeter@734
   340
      /// Returns the ID of the given node.
alpar@209
   341
      int id(Node) const { return -1; }
deba@61
   342
kpeter@734
   343
      /// \brief The ID of the arc.
kpeter@734
   344
      ///
kpeter@734
   345
      /// Returns the ID of the given arc.
alpar@209
   346
      int id(Arc) const { return -1; }
deba@61
   347
kpeter@734
   348
      /// \brief The node with the given ID.
deba@61
   349
      ///
kpeter@734
   350
      /// Returns the node with the given ID.
kpeter@734
   351
      /// \pre The argument should be a valid node ID in the digraph.
alpar@209
   352
      Node nodeFromId(int) const { return INVALID; }
deba@61
   353
kpeter@734
   354
      /// \brief The arc with the given ID.
deba@61
   355
      ///
kpeter@734
   356
      /// Returns the arc with the given ID.
kpeter@734
   357
      /// \pre The argument should be a valid arc ID in the digraph.
alpar@209
   358
      Arc arcFromId(int) const { return INVALID; }
deba@61
   359
kpeter@734
   360
      /// \brief An upper bound on the node IDs.
kpeter@734
   361
      ///
kpeter@734
   362
      /// Returns an upper bound on the node IDs.
alpar@209
   363
      int maxNodeId() const { return -1; }
deba@61
   364
kpeter@734
   365
      /// \brief An upper bound on the arc IDs.
kpeter@734
   366
      ///
kpeter@734
   367
      /// Returns an upper bound on the arc IDs.
alpar@209
   368
      int maxArcId() const { return -1; }
deba@61
   369
deba@57
   370
      void first(Node&) const {}
deba@57
   371
      void next(Node&) const {}
deba@57
   372
deba@57
   373
      void first(Arc&) const {}
deba@57
   374
      void next(Arc&) const {}
deba@57
   375
deba@57
   376
deba@57
   377
      void firstIn(Arc&, const Node&) const {}
deba@57
   378
      void nextIn(Arc&) const {}
deba@57
   379
deba@57
   380
      void firstOut(Arc&, const Node&) const {}
deba@57
   381
      void nextOut(Arc&) const {}
deba@57
   382
deba@61
   383
      // The second parameter is dummy.
deba@61
   384
      Node fromId(int, Node) const { return INVALID; }
deba@61
   385
      // The second parameter is dummy.
deba@61
   386
      Arc fromId(int, Arc) const { return INVALID; }
deba@61
   387
deba@61
   388
      // Dummy parameter.
alpar@209
   389
      int maxId(Node) const { return -1; }
deba@61
   390
      // Dummy parameter.
alpar@209
   391
      int maxId(Arc) const { return -1; }
deba@61
   392
kpeter@734
   393
      /// \brief The opposite node on the arc.
kpeter@734
   394
      ///
kpeter@734
   395
      /// Returns the opposite node on the given arc.
kpeter@734
   396
      Node oppositeNode(Node, Arc) const { return INVALID; }
kpeter@734
   397
deba@57
   398
      /// \brief The base node of the iterator.
deba@57
   399
      ///
kpeter@734
   400
      /// Returns the base node of the given outgoing arc iterator
kpeter@734
   401
      /// (i.e. the source node of the corresponding arc).
kpeter@734
   402
      Node baseNode(OutArcIt) const { return INVALID; }
deba@57
   403
deba@57
   404
      /// \brief The running node of the iterator.
deba@57
   405
      ///
kpeter@734
   406
      /// Returns the running node of the given outgoing arc iterator
kpeter@734
   407
      /// (i.e. the target node of the corresponding arc).
kpeter@734
   408
      Node runningNode(OutArcIt) const { return INVALID; }
deba@57
   409
deba@57
   410
      /// \brief The base node of the iterator.
deba@57
   411
      ///
kpeter@734
   412
      /// Returns the base node of the given incomming arc iterator
kpeter@734
   413
      /// (i.e. the target node of the corresponding arc).
kpeter@734
   414
      Node baseNode(InArcIt) const { return INVALID; }
deba@57
   415
deba@57
   416
      /// \brief The running node of the iterator.
deba@57
   417
      ///
kpeter@734
   418
      /// Returns the running node of the given incomming arc iterator
kpeter@734
   419
      /// (i.e. the source node of the corresponding arc).
kpeter@734
   420
      Node runningNode(InArcIt) const { return INVALID; }
deba@57
   421
kpeter@734
   422
      /// \brief Standard graph map type for the nodes.
deba@57
   423
      ///
kpeter@734
   424
      /// Standard graph map type for the nodes.
kpeter@734
   425
      /// It conforms to the ReferenceMap concept.
alpar@209
   426
      template<class T>
kpeter@580
   427
      class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
deba@57
   428
      public:
deba@57
   429
kpeter@734
   430
        /// Constructor
kpeter@734
   431
        explicit NodeMap(const Digraph&) { }
kpeter@734
   432
        /// Constructor with given initial value
deba@57
   433
        NodeMap(const Digraph&, T) { }
deba@57
   434
kpeter@263
   435
      private:
deba@57
   436
        ///Copy constructor
alpar@877
   437
        NodeMap(const NodeMap& nm) :
kpeter@580
   438
          ReferenceMap<Node, T, T&, const T&>(nm) { }
deba@57
   439
        ///Assignment operator
deba@57
   440
        template <typename CMap>
alpar@209
   441
        NodeMap& operator=(const CMap&) {
deba@57
   442
          checkConcept<ReadMap<Node, T>, CMap>();
alpar@209
   443
          return *this;
deba@57
   444
        }
deba@57
   445
      };
deba@57
   446
kpeter@734
   447
      /// \brief Standard graph map type for the arcs.
deba@57
   448
      ///
kpeter@734
   449
      /// Standard graph map type for the arcs.
kpeter@734
   450
      /// It conforms to the ReferenceMap concept.
alpar@209
   451
      template<class T>
kpeter@580
   452
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
deba@57
   453
      public:
deba@57
   454
kpeter@734
   455
        /// Constructor
kpeter@734
   456
        explicit ArcMap(const Digraph&) { }
kpeter@734
   457
        /// Constructor with given initial value
deba@57
   458
        ArcMap(const Digraph&, T) { }
kpeter@734
   459
kpeter@263
   460
      private:
deba@57
   461
        ///Copy constructor
kpeter@580
   462
        ArcMap(const ArcMap& em) :
kpeter@580
   463
          ReferenceMap<Arc, T, T&, const T&>(em) { }
deba@57
   464
        ///Assignment operator
deba@57
   465
        template <typename CMap>
alpar@209
   466
        ArcMap& operator=(const CMap&) {
deba@57
   467
          checkConcept<ReadMap<Arc, T>, CMap>();
alpar@209
   468
          return *this;
deba@57
   469
        }
deba@57
   470
      };
deba@57
   471
deba@125
   472
      template <typename _Digraph>
deba@57
   473
      struct Constraints {
deba@57
   474
        void constraints() {
kpeter@580
   475
          checkConcept<BaseDigraphComponent, _Digraph>();
deba@125
   476
          checkConcept<IterableDigraphComponent<>, _Digraph>();
alpar@209
   477
          checkConcept<IDableDigraphComponent<>, _Digraph>();
deba@125
   478
          checkConcept<MappableDigraphComponent<>, _Digraph>();
deba@57
   479
        }
deba@57
   480
      };
deba@57
   481
deba@57
   482
    };
alpar@209
   483
alpar@209
   484
  } //namespace concepts
deba@57
   485
} //namespace lemon
deba@57
   486
deba@57
   487
deba@57
   488
deba@529
   489
#endif