lemon/adaptors.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 14 Apr 2009 10:40:33 +0100
changeset 583 99a31b399b59
parent 559 c5fd2d996909
child 617 4137ef9aacc6
permissions -rw-r--r--
Merge
deba@416
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@414
     2
 *
deba@416
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@414
     4
 *
alpar@454
     5
 * Copyright (C) 2003-2009
deba@414
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@414
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@414
     8
 *
deba@414
     9
 * Permission to use, modify and distribute this software is granted
deba@414
    10
 * provided that this copyright notice appears in all copies. For
deba@414
    11
 * precise terms see the accompanying LICENSE file.
deba@414
    12
 *
deba@414
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@414
    14
 * express or implied, and with no claim as to its suitability for any
deba@414
    15
 * purpose.
deba@414
    16
 *
deba@414
    17
 */
deba@414
    18
deba@416
    19
#ifndef LEMON_ADAPTORS_H
deba@416
    20
#define LEMON_ADAPTORS_H
deba@416
    21
deba@416
    22
/// \ingroup graph_adaptors
deba@416
    23
/// \file
kpeter@451
    24
/// \brief Adaptor classes for digraphs and graphs
deba@414
    25
///
deba@416
    26
/// This file contains several useful adaptors for digraphs and graphs.
deba@414
    27
deba@414
    28
#include <lemon/core.h>
deba@414
    29
#include <lemon/maps.h>
deba@414
    30
#include <lemon/bits/variant.h>
deba@414
    31
deba@414
    32
#include <lemon/bits/graph_adaptor_extender.h>
deba@519
    33
#include <lemon/bits/map_extender.h>
deba@414
    34
#include <lemon/tolerance.h>
deba@414
    35
deba@414
    36
#include <algorithm>
deba@414
    37
deba@414
    38
namespace lemon {
deba@414
    39
deba@488
    40
#ifdef _MSC_VER
deba@488
    41
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
deba@488
    42
#else
deba@488
    43
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
deba@488
    44
#endif
deba@488
    45
deba@488
    46
  template<typename DGR>
deba@414
    47
  class DigraphAdaptorBase {
deba@414
    48
  public:
deba@488
    49
    typedef DGR Digraph;
deba@414
    50
    typedef DigraphAdaptorBase Adaptor;
deba@414
    51
deba@414
    52
  protected:
deba@488
    53
    DGR* _digraph;
deba@414
    54
    DigraphAdaptorBase() : _digraph(0) { }
deba@488
    55
    void initialize(DGR& digraph) { _digraph = &digraph; }
deba@414
    56
deba@414
    57
  public:
deba@488
    58
    DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
deba@488
    59
deba@488
    60
    typedef typename DGR::Node Node;
deba@488
    61
    typedef typename DGR::Arc Arc;
deba@416
    62
deba@414
    63
    void first(Node& i) const { _digraph->first(i); }
deba@414
    64
    void first(Arc& i) const { _digraph->first(i); }
deba@414
    65
    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
deba@414
    66
    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
deba@414
    67
deba@414
    68
    void next(Node& i) const { _digraph->next(i); }
deba@414
    69
    void next(Arc& i) const { _digraph->next(i); }
deba@414
    70
    void nextIn(Arc& i) const { _digraph->nextIn(i); }
deba@414
    71
    void nextOut(Arc& i) const { _digraph->nextOut(i); }
deba@414
    72
deba@414
    73
    Node source(const Arc& a) const { return _digraph->source(a); }
deba@414
    74
    Node target(const Arc& a) const { return _digraph->target(a); }
deba@414
    75
deba@488
    76
    typedef NodeNumTagIndicator<DGR> NodeNumTag;
deba@414
    77
    int nodeNum() const { return _digraph->nodeNum(); }
deba@416
    78
deba@488
    79
    typedef ArcNumTagIndicator<DGR> ArcNumTag;
deba@414
    80
    int arcNum() const { return _digraph->arcNum(); }
deba@414
    81
deba@488
    82
    typedef FindArcTagIndicator<DGR> FindArcTag;
kpeter@448
    83
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
deba@414
    84
      return _digraph->findArc(u, v, prev);
deba@414
    85
    }
deba@416
    86
deba@414
    87
    Node addNode() { return _digraph->addNode(); }
deba@414
    88
    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
deba@414
    89
kpeter@448
    90
    void erase(const Node& n) { _digraph->erase(n); }
kpeter@448
    91
    void erase(const Arc& a) { _digraph->erase(a); }
kpeter@448
    92
kpeter@448
    93
    void clear() { _digraph->clear(); }
deba@416
    94
deba@414
    95
    int id(const Node& n) const { return _digraph->id(n); }
deba@414
    96
    int id(const Arc& a) const { return _digraph->id(a); }
deba@414
    97
deba@414
    98
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
deba@414
    99
    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
deba@414
   100
deba@414
   101
    int maxNodeId() const { return _digraph->maxNodeId(); }
deba@414
   102
    int maxArcId() const { return _digraph->maxArcId(); }
deba@414
   103
deba@488
   104
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
deba@416
   105
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
deba@414
   106
deba@488
   107
    typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
deba@416
   108
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
deba@416
   109
deba@488
   110
    template <typename V>
deba@488
   111
    class NodeMap : public DGR::template NodeMap<V> {
deba@414
   112
    public:
deba@414
   113
deba@488
   114
      typedef typename DGR::template NodeMap<V> Parent;
deba@414
   115
deba@416
   116
      explicit NodeMap(const Adaptor& adaptor)
deba@416
   117
        : Parent(*adaptor._digraph) {}
deba@414
   118
deba@488
   119
      NodeMap(const Adaptor& adaptor, const V& value)
deba@416
   120
        : Parent(*adaptor._digraph, value) { }
deba@414
   121
deba@414
   122
    private:
deba@414
   123
      NodeMap& operator=(const NodeMap& cmap) {
deba@414
   124
        return operator=<NodeMap>(cmap);
deba@414
   125
      }
deba@414
   126
deba@414
   127
      template <typename CMap>
deba@414
   128
      NodeMap& operator=(const CMap& cmap) {
deba@414
   129
        Parent::operator=(cmap);
deba@414
   130
        return *this;
deba@414
   131
      }
deba@416
   132
deba@414
   133
    };
deba@414
   134
deba@488
   135
    template <typename V>
deba@488
   136
    class ArcMap : public DGR::template ArcMap<V> {
deba@414
   137
    public:
deba@416
   138
deba@488
   139
      typedef typename DGR::template ArcMap<V> Parent;
deba@488
   140
deba@488
   141
      explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
deba@416
   142
        : Parent(*adaptor._digraph) {}
deba@414
   143
deba@488
   144
      ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
deba@416
   145
        : Parent(*adaptor._digraph, value) {}
deba@414
   146
deba@414
   147
    private:
deba@414
   148
      ArcMap& operator=(const ArcMap& cmap) {
deba@414
   149
        return operator=<ArcMap>(cmap);
deba@414
   150
      }
deba@414
   151
deba@414
   152
      template <typename CMap>
deba@414
   153
      ArcMap& operator=(const CMap& cmap) {
deba@414
   154
        Parent::operator=(cmap);
deba@414
   155
        return *this;
deba@414
   156
      }
deba@414
   157
deba@414
   158
    };
deba@414
   159
deba@414
   160
  };
deba@414
   161
deba@488
   162
  template<typename GR>
deba@416
   163
  class GraphAdaptorBase {
deba@416
   164
  public:
deba@488
   165
    typedef GR Graph;
deba@416
   166
deba@416
   167
  protected:
deba@488
   168
    GR* _graph;
deba@416
   169
deba@416
   170
    GraphAdaptorBase() : _graph(0) {}
deba@416
   171
deba@488
   172
    void initialize(GR& graph) { _graph = &graph; }
deba@416
   173
deba@416
   174
  public:
deba@488
   175
    GraphAdaptorBase(GR& graph) : _graph(&graph) {}
deba@488
   176
deba@488
   177
    typedef typename GR::Node Node;
deba@488
   178
    typedef typename GR::Arc Arc;
deba@488
   179
    typedef typename GR::Edge Edge;
deba@416
   180
deba@416
   181
    void first(Node& i) const { _graph->first(i); }
deba@416
   182
    void first(Arc& i) const { _graph->first(i); }
deba@416
   183
    void first(Edge& i) const { _graph->first(i); }
deba@416
   184
    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
deba@416
   185
    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
deba@416
   186
    void firstInc(Edge &i, bool &d, const Node &n) const {
deba@416
   187
      _graph->firstInc(i, d, n);
deba@416
   188
    }
deba@416
   189
deba@416
   190
    void next(Node& i) const { _graph->next(i); }
deba@416
   191
    void next(Arc& i) const { _graph->next(i); }
deba@416
   192
    void next(Edge& i) const { _graph->next(i); }
deba@416
   193
    void nextIn(Arc& i) const { _graph->nextIn(i); }
deba@416
   194
    void nextOut(Arc& i) const { _graph->nextOut(i); }
deba@416
   195
    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
deba@416
   196
deba@416
   197
    Node u(const Edge& e) const { return _graph->u(e); }
deba@416
   198
    Node v(const Edge& e) const { return _graph->v(e); }
deba@416
   199
deba@416
   200
    Node source(const Arc& a) const { return _graph->source(a); }
deba@416
   201
    Node target(const Arc& a) const { return _graph->target(a); }
deba@416
   202
deba@416
   203
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
deba@416
   204
    int nodeNum() const { return _graph->nodeNum(); }
deba@416
   205
kpeter@446
   206
    typedef ArcNumTagIndicator<Graph> ArcNumTag;
kpeter@446
   207
    int arcNum() const { return _graph->arcNum(); }
kpeter@446
   208
deba@416
   209
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
deba@416
   210
    int edgeNum() const { return _graph->edgeNum(); }
deba@416
   211
kpeter@446
   212
    typedef FindArcTagIndicator<Graph> FindArcTag;
kpeter@448
   213
    Arc findArc(const Node& u, const Node& v,
kpeter@448
   214
                const Arc& prev = INVALID) const {
deba@416
   215
      return _graph->findArc(u, v, prev);
deba@416
   216
    }
kpeter@446
   217
kpeter@446
   218
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
kpeter@448
   219
    Edge findEdge(const Node& u, const Node& v,
kpeter@448
   220
                  const Edge& prev = INVALID) const {
deba@416
   221
      return _graph->findEdge(u, v, prev);
deba@416
   222
    }
deba@416
   223
deba@416
   224
    Node addNode() { return _graph->addNode(); }
deba@416
   225
    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
deba@416
   226
deba@416
   227
    void erase(const Node& i) { _graph->erase(i); }
deba@416
   228
    void erase(const Edge& i) { _graph->erase(i); }
deba@416
   229
deba@416
   230
    void clear() { _graph->clear(); }
deba@416
   231
deba@416
   232
    bool direction(const Arc& a) const { return _graph->direction(a); }
deba@416
   233
    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
deba@416
   234
deba@416
   235
    int id(const Node& v) const { return _graph->id(v); }
deba@416
   236
    int id(const Arc& a) const { return _graph->id(a); }
deba@416
   237
    int id(const Edge& e) const { return _graph->id(e); }
deba@416
   238
deba@416
   239
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
deba@416
   240
    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
deba@416
   241
    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
deba@416
   242
deba@416
   243
    int maxNodeId() const { return _graph->maxNodeId(); }
deba@416
   244
    int maxArcId() const { return _graph->maxArcId(); }
deba@416
   245
    int maxEdgeId() const { return _graph->maxEdgeId(); }
deba@416
   246
deba@488
   247
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
deba@416
   248
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
deba@416
   249
deba@488
   250
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
deba@416
   251
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
deba@416
   252
deba@488
   253
    typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
deba@416
   254
    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
deba@416
   255
deba@488
   256
    template <typename V>
deba@488
   257
    class NodeMap : public GR::template NodeMap<V> {
deba@416
   258
    public:
deba@488
   259
      typedef typename GR::template NodeMap<V> Parent;
deba@488
   260
      explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
deba@416
   261
        : Parent(*adapter._graph) {}
deba@488
   262
      NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
deba@416
   263
        : Parent(*adapter._graph, value) {}
deba@416
   264
deba@416
   265
    private:
deba@416
   266
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
   267
        return operator=<NodeMap>(cmap);
deba@416
   268
      }
deba@416
   269
deba@416
   270
      template <typename CMap>
deba@416
   271
      NodeMap& operator=(const CMap& cmap) {
deba@416
   272
        Parent::operator=(cmap);
deba@416
   273
        return *this;
deba@416
   274
      }
deba@416
   275
deba@416
   276
    };
deba@416
   277
deba@488
   278
    template <typename V>
deba@488
   279
    class ArcMap : public GR::template ArcMap<V> {
deba@416
   280
    public:
deba@488
   281
      typedef typename GR::template ArcMap<V> Parent;
deba@488
   282
      explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
deba@416
   283
        : Parent(*adapter._graph) {}
deba@488
   284
      ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
deba@416
   285
        : Parent(*adapter._graph, value) {}
deba@416
   286
deba@416
   287
    private:
deba@416
   288
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
   289
        return operator=<ArcMap>(cmap);
deba@416
   290
      }
deba@416
   291
deba@416
   292
      template <typename CMap>
deba@416
   293
      ArcMap& operator=(const CMap& cmap) {
deba@416
   294
        Parent::operator=(cmap);
deba@416
   295
        return *this;
deba@416
   296
      }
deba@416
   297
    };
deba@416
   298
deba@488
   299
    template <typename V>
deba@488
   300
    class EdgeMap : public GR::template EdgeMap<V> {
deba@416
   301
    public:
deba@488
   302
      typedef typename GR::template EdgeMap<V> Parent;
deba@488
   303
      explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
deba@416
   304
        : Parent(*adapter._graph) {}
deba@488
   305
      EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
deba@416
   306
        : Parent(*adapter._graph, value) {}
deba@416
   307
deba@416
   308
    private:
deba@416
   309
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@416
   310
        return operator=<EdgeMap>(cmap);
deba@416
   311
      }
deba@416
   312
deba@416
   313
      template <typename CMap>
deba@416
   314
      EdgeMap& operator=(const CMap& cmap) {
deba@416
   315
        Parent::operator=(cmap);
deba@416
   316
        return *this;
deba@416
   317
      }
deba@416
   318
    };
deba@416
   319
deba@416
   320
  };
deba@414
   321
deba@488
   322
  template <typename DGR>
deba@488
   323
  class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
deba@414
   324
  public:
deba@488
   325
    typedef DGR Digraph;
deba@488
   326
    typedef DigraphAdaptorBase<DGR> Parent;
deba@414
   327
  protected:
deba@416
   328
    ReverseDigraphBase() : Parent() { }
deba@414
   329
  public:
deba@414
   330
    typedef typename Parent::Node Node;
deba@414
   331
    typedef typename Parent::Arc Arc;
deba@414
   332
deba@414
   333
    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
deba@414
   334
    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
deba@414
   335
deba@414
   336
    void nextIn(Arc& a) const { Parent::nextOut(a); }
deba@414
   337
    void nextOut(Arc& a) const { Parent::nextIn(a); }
deba@414
   338
deba@414
   339
    Node source(const Arc& a) const { return Parent::target(a); }
deba@414
   340
    Node target(const Arc& a) const { return Parent::source(a); }
deba@414
   341
deba@416
   342
    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
deba@416
   343
deba@488
   344
    typedef FindArcTagIndicator<DGR> FindArcTag;
deba@416
   345
    Arc findArc(const Node& u, const Node& v,
kpeter@448
   346
                const Arc& prev = INVALID) const {
deba@414
   347
      return Parent::findArc(v, u, prev);
deba@414
   348
    }
deba@414
   349
deba@414
   350
  };
deba@416
   351
deba@416
   352
  /// \ingroup graph_adaptors
deba@414
   353
  ///
kpeter@451
   354
  /// \brief Adaptor class for reversing the orientation of the arcs in
kpeter@451
   355
  /// a digraph.
deba@414
   356
  ///
kpeter@451
   357
  /// ReverseDigraph can be used for reversing the arcs in a digraph.
kpeter@451
   358
  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
deba@414
   359
  ///
kpeter@451
   360
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
   361
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
   362
  /// parameter is set to be \c const.
kpeter@451
   363
  ///
deba@488
   364
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
   365
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
   366
  /// It can also be specified to be \c const.
kpeter@451
   367
  ///
kpeter@451
   368
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
kpeter@451
   369
  /// digraph are convertible to each other.
deba@488
   370
  template<typename DGR>
kpeter@453
   371
#ifdef DOXYGEN
kpeter@453
   372
  class ReverseDigraph {
kpeter@453
   373
#else
deba@416
   374
  class ReverseDigraph :
deba@488
   375
    public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
kpeter@453
   376
#endif
deba@414
   377
  public:
kpeter@453
   378
    /// The type of the adapted digraph.
deba@488
   379
    typedef DGR Digraph;
deba@488
   380
    typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
deba@414
   381
  protected:
deba@416
   382
    ReverseDigraph() { }
deba@414
   383
  public:
deba@415
   384
deba@415
   385
    /// \brief Constructor
deba@415
   386
    ///
kpeter@451
   387
    /// Creates a reverse digraph adaptor for the given digraph.
deba@488
   388
    explicit ReverseDigraph(DGR& digraph) {
deba@488
   389
      Parent::initialize(digraph);
deba@414
   390
    }
deba@414
   391
  };
deba@414
   392
kpeter@451
   393
  /// \brief Returns a read-only ReverseDigraph adaptor
deba@414
   394
  ///
kpeter@451
   395
  /// This function just returns a read-only \ref ReverseDigraph adaptor.
kpeter@451
   396
  /// \ingroup graph_adaptors
kpeter@451
   397
  /// \relates ReverseDigraph
deba@488
   398
  template<typename DGR>
deba@488
   399
  ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
deba@488
   400
    return ReverseDigraph<const DGR>(digraph);
deba@414
   401
  }
deba@414
   402
kpeter@451
   403
deba@488
   404
  template <typename DGR, typename NF, typename AF, bool ch = true>
deba@488
   405
  class SubDigraphBase : public DigraphAdaptorBase<DGR> {
deba@414
   406
  public:
deba@488
   407
    typedef DGR Digraph;
deba@488
   408
    typedef NF NodeFilterMap;
deba@488
   409
    typedef AF ArcFilterMap;
deba@414
   410
deba@416
   411
    typedef SubDigraphBase Adaptor;
deba@488
   412
    typedef DigraphAdaptorBase<DGR> Parent;
deba@414
   413
  protected:
deba@488
   414
    NF* _node_filter;
deba@488
   415
    AF* _arc_filter;
deba@416
   416
    SubDigraphBase()
deba@414
   417
      : Parent(), _node_filter(0), _arc_filter(0) { }
deba@414
   418
deba@488
   419
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
deba@488
   420
      Parent::initialize(digraph);
deba@414
   421
      _node_filter = &node_filter;
deba@488
   422
      _arc_filter = &arc_filter;      
deba@414
   423
    }
deba@414
   424
deba@414
   425
  public:
deba@414
   426
deba@414
   427
    typedef typename Parent::Node Node;
deba@414
   428
    typedef typename Parent::Arc Arc;
deba@414
   429
deba@416
   430
    void first(Node& i) const {
deba@416
   431
      Parent::first(i);
deba@416
   432
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   433
    }
deba@414
   434
deba@416
   435
    void first(Arc& i) const {
deba@416
   436
      Parent::first(i);
deba@416
   437
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   438
                              || !(*_node_filter)[Parent::source(i)]
deba@416
   439
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   440
        Parent::next(i);
deba@414
   441
    }
deba@414
   442
deba@416
   443
    void firstIn(Arc& i, const Node& n) const {
deba@416
   444
      Parent::firstIn(i, n);
deba@416
   445
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   446
                              || !(*_node_filter)[Parent::source(i)]))
deba@416
   447
        Parent::nextIn(i);
deba@414
   448
    }
deba@414
   449
deba@416
   450
    void firstOut(Arc& i, const Node& n) const {
deba@416
   451
      Parent::firstOut(i, n);
deba@416
   452
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   453
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   454
        Parent::nextOut(i);
deba@414
   455
    }
deba@414
   456
deba@416
   457
    void next(Node& i) const {
deba@416
   458
      Parent::next(i);
deba@416
   459
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   460
    }
deba@414
   461
deba@416
   462
    void next(Arc& i) const {
deba@416
   463
      Parent::next(i);
deba@416
   464
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   465
                              || !(*_node_filter)[Parent::source(i)]
deba@416
   466
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   467
        Parent::next(i);
deba@414
   468
    }
deba@414
   469
deba@416
   470
    void nextIn(Arc& i) const {
deba@416
   471
      Parent::nextIn(i);
deba@416
   472
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   473
                              || !(*_node_filter)[Parent::source(i)]))
deba@416
   474
        Parent::nextIn(i);
deba@414
   475
    }
deba@414
   476
deba@416
   477
    void nextOut(Arc& i) const {
deba@416
   478
      Parent::nextOut(i);
deba@416
   479
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   480
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   481
        Parent::nextOut(i);
deba@414
   482
    }
deba@414
   483
kpeter@452
   484
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
kpeter@452
   485
    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
kpeter@452
   486
kpeter@452
   487
    bool status(const Node& n) const { return (*_node_filter)[n]; }
kpeter@452
   488
    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
deba@414
   489
deba@414
   490
    typedef False NodeNumTag;
kpeter@446
   491
    typedef False ArcNumTag;
kpeter@446
   492
deba@488
   493
    typedef FindArcTagIndicator<DGR> FindArcTag;
deba@416
   494
    Arc findArc(const Node& source, const Node& target,
kpeter@448
   495
                const Arc& prev = INVALID) const {
deba@414
   496
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
deba@414
   497
        return INVALID;
deba@414
   498
      }
deba@414
   499
      Arc arc = Parent::findArc(source, target, prev);
deba@414
   500
      while (arc != INVALID && !(*_arc_filter)[arc]) {
deba@414
   501
        arc = Parent::findArc(source, target, arc);
deba@414
   502
      }
deba@414
   503
      return arc;
deba@414
   504
    }
deba@414
   505
deba@488
   506
  public:
deba@488
   507
deba@488
   508
    template <typename V>
deba@488
   509
    class NodeMap 
deba@488
   510
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, 
deba@488
   511
	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
deba@414
   512
    public:
deba@488
   513
      typedef V Value;
deba@488
   514
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
deba@488
   515
	    LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
deba@488
   516
deba@488
   517
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
deba@488
   518
        : Parent(adaptor) {}
deba@488
   519
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
deba@488
   520
        : Parent(adaptor, value) {}
deba@416
   521
deba@414
   522
    private:
deba@414
   523
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
   524
        return operator=<NodeMap>(cmap);
deba@414
   525
      }
deba@416
   526
deba@414
   527
      template <typename CMap>
deba@414
   528
      NodeMap& operator=(const CMap& cmap) {
deba@488
   529
        Parent::operator=(cmap);
deba@416
   530
        return *this;
deba@414
   531
      }
deba@414
   532
    };
deba@414
   533
deba@488
   534
    template <typename V>
deba@488
   535
    class ArcMap 
deba@488
   536
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
deba@488
   537
	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
deba@414
   538
    public:
deba@488
   539
      typedef V Value;
deba@488
   540
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
deba@488
   541
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
deba@488
   542
deba@488
   543
      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
deba@488
   544
        : Parent(adaptor) {}
deba@488
   545
      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
deba@488
   546
        : Parent(adaptor, value) {}
deba@416
   547
deba@414
   548
    private:
deba@414
   549
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
   550
        return operator=<ArcMap>(cmap);
deba@414
   551
      }
deba@416
   552
deba@414
   553
      template <typename CMap>
deba@414
   554
      ArcMap& operator=(const CMap& cmap) {
deba@488
   555
        Parent::operator=(cmap);
deba@416
   556
        return *this;
deba@414
   557
      }
deba@414
   558
    };
deba@414
   559
deba@414
   560
  };
deba@414
   561
deba@488
   562
  template <typename DGR, typename NF, typename AF>
deba@488
   563
  class SubDigraphBase<DGR, NF, AF, false>
deba@488
   564
    : public DigraphAdaptorBase<DGR> {
deba@414
   565
  public:
deba@488
   566
    typedef DGR Digraph;
deba@488
   567
    typedef NF NodeFilterMap;
deba@488
   568
    typedef AF ArcFilterMap;
deba@414
   569
deba@416
   570
    typedef SubDigraphBase Adaptor;
deba@414
   571
    typedef DigraphAdaptorBase<Digraph> Parent;
deba@414
   572
  protected:
deba@488
   573
    NF* _node_filter;
deba@488
   574
    AF* _arc_filter;
deba@416
   575
    SubDigraphBase()
deba@414
   576
      : Parent(), _node_filter(0), _arc_filter(0) { }
deba@414
   577
deba@488
   578
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
deba@488
   579
      Parent::initialize(digraph);
deba@414
   580
      _node_filter = &node_filter;
deba@488
   581
      _arc_filter = &arc_filter;      
deba@414
   582
    }
deba@414
   583
deba@414
   584
  public:
deba@414
   585
deba@414
   586
    typedef typename Parent::Node Node;
deba@414
   587
    typedef typename Parent::Arc Arc;
deba@414
   588
deba@416
   589
    void first(Node& i) const {
deba@416
   590
      Parent::first(i);
deba@416
   591
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   592
    }
deba@414
   593
deba@416
   594
    void first(Arc& i) const {
deba@416
   595
      Parent::first(i);
deba@416
   596
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
deba@414
   597
    }
deba@414
   598
deba@416
   599
    void firstIn(Arc& i, const Node& n) const {
deba@416
   600
      Parent::firstIn(i, n);
deba@416
   601
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
deba@414
   602
    }
deba@414
   603
deba@416
   604
    void firstOut(Arc& i, const Node& n) const {
deba@416
   605
      Parent::firstOut(i, n);
deba@416
   606
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
deba@414
   607
    }
deba@414
   608
deba@416
   609
    void next(Node& i) const {
deba@416
   610
      Parent::next(i);
deba@416
   611
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   612
    }
deba@416
   613
    void next(Arc& i) const {
deba@416
   614
      Parent::next(i);
deba@416
   615
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
deba@414
   616
    }
deba@416
   617
    void nextIn(Arc& i) const {
deba@416
   618
      Parent::nextIn(i);
deba@416
   619
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
deba@414
   620
    }
deba@414
   621
deba@416
   622
    void nextOut(Arc& i) const {
deba@416
   623
      Parent::nextOut(i);
deba@416
   624
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
deba@414
   625
    }
deba@414
   626
kpeter@452
   627
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
kpeter@452
   628
    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
kpeter@452
   629
kpeter@452
   630
    bool status(const Node& n) const { return (*_node_filter)[n]; }
kpeter@452
   631
    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
deba@414
   632
deba@414
   633
    typedef False NodeNumTag;
kpeter@446
   634
    typedef False ArcNumTag;
kpeter@446
   635
deba@488
   636
    typedef FindArcTagIndicator<DGR> FindArcTag;
deba@416
   637
    Arc findArc(const Node& source, const Node& target,
kpeter@448
   638
                const Arc& prev = INVALID) const {
deba@414
   639
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
deba@414
   640
        return INVALID;
deba@414
   641
      }
deba@414
   642
      Arc arc = Parent::findArc(source, target, prev);
deba@414
   643
      while (arc != INVALID && !(*_arc_filter)[arc]) {
deba@414
   644
        arc = Parent::findArc(source, target, arc);
deba@414
   645
      }
deba@414
   646
      return arc;
deba@414
   647
    }
deba@414
   648
deba@488
   649
    template <typename V>
deba@488
   650
    class NodeMap 
deba@488
   651
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
deba@488
   652
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
deba@414
   653
    public:
deba@488
   654
      typedef V Value;
deba@488
   655
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, 
deba@488
   656
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
deba@488
   657
deba@488
   658
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
deba@488
   659
        : Parent(adaptor) {}
deba@488
   660
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
deba@488
   661
        : Parent(adaptor, value) {}
deba@416
   662
deba@414
   663
    private:
deba@414
   664
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
   665
        return operator=<NodeMap>(cmap);
deba@414
   666
      }
deba@416
   667
deba@414
   668
      template <typename CMap>
deba@414
   669
      NodeMap& operator=(const CMap& cmap) {
deba@488
   670
        Parent::operator=(cmap);
deba@416
   671
        return *this;
deba@414
   672
      }
deba@414
   673
    };
deba@414
   674
deba@488
   675
    template <typename V>
deba@488
   676
    class ArcMap 
deba@488
   677
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
deba@488
   678
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
deba@414
   679
    public:
deba@488
   680
      typedef V Value;
deba@488
   681
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
deba@488
   682
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
deba@488
   683
deba@488
   684
      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
deba@488
   685
        : Parent(adaptor) {}
deba@488
   686
      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
deba@488
   687
        : Parent(adaptor, value) {}
deba@416
   688
deba@414
   689
    private:
deba@414
   690
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
   691
        return operator=<ArcMap>(cmap);
deba@414
   692
      }
deba@416
   693
deba@414
   694
      template <typename CMap>
deba@414
   695
      ArcMap& operator=(const CMap& cmap) {
deba@488
   696
        Parent::operator=(cmap);
deba@416
   697
        return *this;
deba@414
   698
      }
deba@414
   699
    };
deba@414
   700
deba@414
   701
  };
deba@414
   702
deba@414
   703
  /// \ingroup graph_adaptors
deba@414
   704
  ///
kpeter@451
   705
  /// \brief Adaptor class for hiding nodes and arcs in a digraph
deba@416
   706
  ///
kpeter@451
   707
  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
kpeter@451
   708
  /// A \c bool node map and a \c bool arc map must be specified, which
kpeter@451
   709
  /// define the filters for nodes and arcs.
kpeter@451
   710
  /// Only the nodes and arcs with \c true filter value are
kpeter@453
   711
  /// shown in the subdigraph. The arcs that are incident to hidden
kpeter@453
   712
  /// nodes are also filtered out.
kpeter@453
   713
  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
deba@416
   714
  ///
kpeter@451
   715
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
   716
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
   717
  /// parameter is set to be \c const.
kpeter@451
   718
  ///
deba@488
   719
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
   720
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
   721
  /// It can also be specified to be \c const.
kpeter@453
   722
  /// \tparam NF The type of the node filter map.
kpeter@453
   723
  /// It must be a \c bool (or convertible) node map of the
kpeter@453
   724
  /// adapted digraph. The default type is
deba@488
   725
  /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
kpeter@453
   726
  /// \tparam AF The type of the arc filter map.
kpeter@453
   727
  /// It must be \c bool (or convertible) arc map of the
kpeter@453
   728
  /// adapted digraph. The default type is
deba@488
   729
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
kpeter@451
   730
  ///
kpeter@451
   731
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
kpeter@451
   732
  /// digraph are convertible to each other.
deba@416
   733
  ///
deba@416
   734
  /// \see FilterNodes
deba@416
   735
  /// \see FilterArcs
kpeter@451
   736
#ifdef DOXYGEN
deba@488
   737
  template<typename DGR, typename NF, typename AF>
kpeter@453
   738
  class SubDigraph {
kpeter@451
   739
#else
deba@488
   740
  template<typename DGR,
deba@488
   741
           typename NF = typename DGR::template NodeMap<bool>,
deba@488
   742
           typename AF = typename DGR::template ArcMap<bool> >
kpeter@453
   743
  class SubDigraph :
deba@488
   744
    public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
kpeter@451
   745
#endif
deba@414
   746
  public:
kpeter@451
   747
    /// The type of the adapted digraph.
deba@488
   748
    typedef DGR Digraph;
kpeter@451
   749
    /// The type of the node filter map.
kpeter@453
   750
    typedef NF NodeFilterMap;
kpeter@451
   751
    /// The type of the arc filter map.
kpeter@453
   752
    typedef AF ArcFilterMap;
kpeter@453
   753
deba@488
   754
    typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
kpeter@453
   755
      Parent;
deba@414
   756
deba@415
   757
    typedef typename Parent::Node Node;
deba@415
   758
    typedef typename Parent::Arc Arc;
deba@415
   759
deba@414
   760
  protected:
deba@416
   761
    SubDigraph() { }
deba@414
   762
  public:
deba@414
   763
deba@415
   764
    /// \brief Constructor
deba@415
   765
    ///
kpeter@451
   766
    /// Creates a subdigraph for the given digraph with the
kpeter@451
   767
    /// given node and arc filter maps.
deba@488
   768
    SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
deba@488
   769
      Parent::initialize(digraph, node_filter, arc_filter);
deba@414
   770
    }
deba@414
   771
kpeter@452
   772
    /// \brief Sets the status of the given node
deba@415
   773
    ///
kpeter@452
   774
    /// This function sets the status of the given node.
kpeter@451
   775
    /// It is done by simply setting the assigned value of \c n
kpeter@452
   776
    /// to \c v in the node filter map.
kpeter@452
   777
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
   778
kpeter@452
   779
    /// \brief Sets the status of the given arc
deba@415
   780
    ///
kpeter@452
   781
    /// This function sets the status of the given arc.
kpeter@451
   782
    /// It is done by simply setting the assigned value of \c a
kpeter@452
   783
    /// to \c v in the arc filter map.
kpeter@452
   784
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
kpeter@452
   785
kpeter@452
   786
    /// \brief Returns the status of the given node
deba@415
   787
    ///
kpeter@452
   788
    /// This function returns the status of the given node.
kpeter@452
   789
    /// It is \c true if the given node is enabled (i.e. not hidden).
kpeter@452
   790
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
   791
kpeter@452
   792
    /// \brief Returns the status of the given arc
deba@415
   793
    ///
kpeter@452
   794
    /// This function returns the status of the given arc.
kpeter@452
   795
    /// It is \c true if the given arc is enabled (i.e. not hidden).
kpeter@452
   796
    bool status(const Arc& a) const { return Parent::status(a); }
kpeter@452
   797
kpeter@452
   798
    /// \brief Disables the given node
deba@415
   799
    ///
kpeter@452
   800
    /// This function disables the given node in the subdigraph,
kpeter@452
   801
    /// so the iteration jumps over it.
kpeter@452
   802
    /// It is the same as \ref status() "status(n, false)".
kpeter@452
   803
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
   804
kpeter@452
   805
    /// \brief Disables the given arc
deba@415
   806
    ///
kpeter@452
   807
    /// This function disables the given arc in the subdigraph,
kpeter@452
   808
    /// so the iteration jumps over it.
kpeter@452
   809
    /// It is the same as \ref status() "status(a, false)".
kpeter@452
   810
    void disable(const Arc& a) const { Parent::status(a, false); }
kpeter@452
   811
kpeter@452
   812
    /// \brief Enables the given node
kpeter@452
   813
    ///
kpeter@452
   814
    /// This function enables the given node in the subdigraph.
kpeter@452
   815
    /// It is the same as \ref status() "status(n, true)".
kpeter@452
   816
    void enable(const Node& n) const { Parent::status(n, true); }
kpeter@452
   817
kpeter@452
   818
    /// \brief Enables the given arc
kpeter@452
   819
    ///
kpeter@452
   820
    /// This function enables the given arc in the subdigraph.
kpeter@452
   821
    /// It is the same as \ref status() "status(a, true)".
kpeter@452
   822
    void enable(const Arc& a) const { Parent::status(a, true); }
deba@415
   823
deba@414
   824
  };
deba@414
   825
kpeter@451
   826
  /// \brief Returns a read-only SubDigraph adaptor
deba@414
   827
  ///
kpeter@451
   828
  /// This function just returns a read-only \ref SubDigraph adaptor.
kpeter@451
   829
  /// \ingroup graph_adaptors
kpeter@451
   830
  /// \relates SubDigraph
deba@488
   831
  template<typename DGR, typename NF, typename AF>
deba@488
   832
  SubDigraph<const DGR, NF, AF>
deba@488
   833
  subDigraph(const DGR& digraph,
deba@488
   834
             NF& node_filter, AF& arc_filter) {
deba@488
   835
    return SubDigraph<const DGR, NF, AF>
deba@488
   836
      (digraph, node_filter, arc_filter);
deba@414
   837
  }
deba@414
   838
deba@488
   839
  template<typename DGR, typename NF, typename AF>
deba@488
   840
  SubDigraph<const DGR, const NF, AF>
deba@488
   841
  subDigraph(const DGR& digraph,
deba@488
   842
             const NF& node_filter, AF& arc_filter) {
deba@488
   843
    return SubDigraph<const DGR, const NF, AF>
deba@488
   844
      (digraph, node_filter, arc_filter);
deba@414
   845
  }
deba@414
   846
deba@488
   847
  template<typename DGR, typename NF, typename AF>
deba@488
   848
  SubDigraph<const DGR, NF, const AF>
deba@488
   849
  subDigraph(const DGR& digraph,
deba@488
   850
             NF& node_filter, const AF& arc_filter) {
deba@488
   851
    return SubDigraph<const DGR, NF, const AF>
deba@488
   852
      (digraph, node_filter, arc_filter);
deba@414
   853
  }
deba@414
   854
deba@488
   855
  template<typename DGR, typename NF, typename AF>
deba@488
   856
  SubDigraph<const DGR, const NF, const AF>
deba@488
   857
  subDigraph(const DGR& digraph,
deba@488
   858
             const NF& node_filter, const AF& arc_filter) {
deba@488
   859
    return SubDigraph<const DGR, const NF, const AF>
deba@488
   860
      (digraph, node_filter, arc_filter);
deba@414
   861
  }
deba@414
   862
deba@414
   863
deba@488
   864
  template <typename GR, typename NF, typename EF, bool ch = true>
deba@488
   865
  class SubGraphBase : public GraphAdaptorBase<GR> {
deba@416
   866
  public:
deba@488
   867
    typedef GR Graph;
deba@488
   868
    typedef NF NodeFilterMap;
deba@488
   869
    typedef EF EdgeFilterMap;
kpeter@449
   870
deba@416
   871
    typedef SubGraphBase Adaptor;
deba@488
   872
    typedef GraphAdaptorBase<GR> Parent;
deba@416
   873
  protected:
deba@416
   874
deba@488
   875
    NF* _node_filter;
deba@488
   876
    EF* _edge_filter;
deba@416
   877
deba@416
   878
    SubGraphBase()
deba@488
   879
      : Parent(), _node_filter(0), _edge_filter(0) { }
deba@488
   880
deba@488
   881
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
deba@488
   882
      Parent::initialize(graph);
deba@488
   883
      _node_filter = &node_filter;
deba@488
   884
      _edge_filter = &edge_filter;
deba@416
   885
    }
deba@416
   886
deba@416
   887
  public:
deba@416
   888
deba@416
   889
    typedef typename Parent::Node Node;
deba@416
   890
    typedef typename Parent::Arc Arc;
deba@416
   891
    typedef typename Parent::Edge Edge;
deba@416
   892
deba@416
   893
    void first(Node& i) const {
deba@416
   894
      Parent::first(i);
deba@488
   895
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
   896
    }
deba@416
   897
deba@416
   898
    void first(Arc& i) const {
deba@416
   899
      Parent::first(i);
deba@488
   900
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   901
                            || !(*_node_filter)[Parent::source(i)]
deba@488
   902
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   903
        Parent::next(i);
deba@416
   904
    }
deba@416
   905
deba@416
   906
    void first(Edge& i) const {
deba@416
   907
      Parent::first(i);
deba@488
   908
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   909
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   910
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   911
        Parent::next(i);
deba@416
   912
    }
deba@416
   913
deba@416
   914
    void firstIn(Arc& i, const Node& n) const {
deba@416
   915
      Parent::firstIn(i, n);
deba@488
   916
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   917
                            || !(*_node_filter)[Parent::source(i)]))
deba@416
   918
        Parent::nextIn(i);
deba@416
   919
    }
deba@416
   920
deba@416
   921
    void firstOut(Arc& i, const Node& n) const {
deba@416
   922
      Parent::firstOut(i, n);
deba@488
   923
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   924
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   925
        Parent::nextOut(i);
deba@416
   926
    }
deba@416
   927
deba@416
   928
    void firstInc(Edge& i, bool& d, const Node& n) const {
deba@416
   929
      Parent::firstInc(i, d, n);
deba@488
   930
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   931
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   932
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   933
        Parent::nextInc(i, d);
deba@416
   934
    }
deba@416
   935
deba@416
   936
    void next(Node& i) const {
deba@416
   937
      Parent::next(i);
deba@488
   938
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
   939
    }
deba@416
   940
deba@416
   941
    void next(Arc& i) const {
deba@416
   942
      Parent::next(i);
deba@488
   943
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   944
                            || !(*_node_filter)[Parent::source(i)]
deba@488
   945
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   946
        Parent::next(i);
deba@416
   947
    }
deba@416
   948
deba@416
   949
    void next(Edge& i) const {
deba@416
   950
      Parent::next(i);
deba@488
   951
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   952
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   953
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   954
        Parent::next(i);
deba@416
   955
    }
deba@416
   956
deba@416
   957
    void nextIn(Arc& i) const {
deba@416
   958
      Parent::nextIn(i);
deba@488
   959
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   960
                            || !(*_node_filter)[Parent::source(i)]))
deba@416
   961
        Parent::nextIn(i);
deba@416
   962
    }
deba@416
   963
deba@416
   964
    void nextOut(Arc& i) const {
deba@416
   965
      Parent::nextOut(i);
deba@488
   966
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   967
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   968
        Parent::nextOut(i);
deba@416
   969
    }
deba@416
   970
deba@416
   971
    void nextInc(Edge& i, bool& d) const {
deba@416
   972
      Parent::nextInc(i, d);
deba@488
   973
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   974
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   975
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   976
        Parent::nextInc(i, d);
deba@416
   977
    }
deba@416
   978
deba@488
   979
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
deba@488
   980
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
deba@488
   981
deba@488
   982
    bool status(const Node& n) const { return (*_node_filter)[n]; }
deba@488
   983
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
deba@416
   984
deba@416
   985
    typedef False NodeNumTag;
kpeter@446
   986
    typedef False ArcNumTag;
deba@416
   987
    typedef False EdgeNumTag;
deba@416
   988
kpeter@446
   989
    typedef FindArcTagIndicator<Graph> FindArcTag;
deba@416
   990
    Arc findArc(const Node& u, const Node& v,
kpeter@448
   991
                const Arc& prev = INVALID) const {
deba@488
   992
      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
deba@416
   993
        return INVALID;
deba@416
   994
      }
deba@416
   995
      Arc arc = Parent::findArc(u, v, prev);
deba@488
   996
      while (arc != INVALID && !(*_edge_filter)[arc]) {
deba@416
   997
        arc = Parent::findArc(u, v, arc);
deba@416
   998
      }
deba@416
   999
      return arc;
deba@416
  1000
    }
kpeter@446
  1001
kpeter@446
  1002
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@416
  1003
    Edge findEdge(const Node& u, const Node& v,
kpeter@448
  1004
                  const Edge& prev = INVALID) const {
deba@488
  1005
      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
deba@416
  1006
        return INVALID;
deba@416
  1007
      }
deba@416
  1008
      Edge edge = Parent::findEdge(u, v, prev);
deba@488
  1009
      while (edge != INVALID && !(*_edge_filter)[edge]) {
deba@416
  1010
        edge = Parent::findEdge(u, v, edge);
deba@416
  1011
      }
deba@416
  1012
      return edge;
deba@416
  1013
    }
deba@416
  1014
deba@488
  1015
    template <typename V>
deba@488
  1016
    class NodeMap 
deba@488
  1017
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
deba@488
  1018
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
deba@416
  1019
    public:
deba@488
  1020
      typedef V Value;
deba@488
  1021
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
deba@488
  1022
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
deba@488
  1023
deba@488
  1024
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
deba@488
  1025
        : Parent(adaptor) {}
deba@488
  1026
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
deba@488
  1027
        : Parent(adaptor, value) {}
deba@416
  1028
deba@416
  1029
    private:
deba@416
  1030
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  1031
        return operator=<NodeMap>(cmap);
deba@416
  1032
      }
deba@416
  1033
deba@416
  1034
      template <typename CMap>
deba@416
  1035
      NodeMap& operator=(const CMap& cmap) {
deba@488
  1036
        Parent::operator=(cmap);
deba@416
  1037
        return *this;
deba@416
  1038
      }
deba@416
  1039
    };
deba@416
  1040
deba@488
  1041
    template <typename V>
deba@488
  1042
    class ArcMap 
deba@488
  1043
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
deba@488
  1044
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
deba@416
  1045
    public:
deba@488
  1046
      typedef V Value;
deba@488
  1047
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
deba@488
  1048
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
deba@488
  1049
deba@488
  1050
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
deba@488
  1051
        : Parent(adaptor) {}
deba@488
  1052
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
deba@488
  1053
        : Parent(adaptor, value) {}
deba@416
  1054
deba@416
  1055
    private:
deba@416
  1056
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  1057
        return operator=<ArcMap>(cmap);
deba@416
  1058
      }
deba@416
  1059
deba@416
  1060
      template <typename CMap>
deba@416
  1061
      ArcMap& operator=(const CMap& cmap) {
deba@488
  1062
        Parent::operator=(cmap);
deba@416
  1063
        return *this;
deba@416
  1064
      }
deba@416
  1065
    };
deba@416
  1066
deba@488
  1067
    template <typename V>
deba@488
  1068
    class EdgeMap 
deba@488
  1069
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
deba@488
  1070
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
deba@416
  1071
    public:
deba@488
  1072
      typedef V Value;
deba@488
  1073
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
deba@488
  1074
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
deba@488
  1075
deba@488
  1076
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
deba@488
  1077
        : Parent(adaptor) {}
deba@488
  1078
deba@488
  1079
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
deba@488
  1080
        : Parent(adaptor, value) {}
deba@416
  1081
deba@416
  1082
    private:
deba@416
  1083
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@416
  1084
        return operator=<EdgeMap>(cmap);
deba@416
  1085
      }
deba@416
  1086
deba@416
  1087
      template <typename CMap>
deba@416
  1088
      EdgeMap& operator=(const CMap& cmap) {
deba@488
  1089
        Parent::operator=(cmap);
deba@416
  1090
        return *this;
deba@416
  1091
      }
deba@416
  1092
    };
deba@416
  1093
deba@416
  1094
  };
deba@416
  1095
deba@488
  1096
  template <typename GR, typename NF, typename EF>
deba@488
  1097
  class SubGraphBase<GR, NF, EF, false>
deba@488
  1098
    : public GraphAdaptorBase<GR> {
deba@416
  1099
  public:
deba@488
  1100
    typedef GR Graph;
deba@488
  1101
    typedef NF NodeFilterMap;
deba@488
  1102
    typedef EF EdgeFilterMap;
kpeter@449
  1103
deba@416
  1104
    typedef SubGraphBase Adaptor;
deba@488
  1105
    typedef GraphAdaptorBase<GR> Parent;
deba@416
  1106
  protected:
deba@488
  1107
    NF* _node_filter;
deba@488
  1108
    EF* _edge_filter;
deba@488
  1109
    SubGraphBase() 
deba@488
  1110
	  : Parent(), _node_filter(0), _edge_filter(0) { }
deba@488
  1111
deba@488
  1112
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
deba@488
  1113
      Parent::initialize(graph);
deba@488
  1114
      _node_filter = &node_filter;
deba@488
  1115
      _edge_filter = &edge_filter;
deba@416
  1116
    }
deba@416
  1117
deba@416
  1118
  public:
deba@416
  1119
deba@416
  1120
    typedef typename Parent::Node Node;
deba@416
  1121
    typedef typename Parent::Arc Arc;
deba@416
  1122
    typedef typename Parent::Edge Edge;
deba@416
  1123
deba@416
  1124
    void first(Node& i) const {
deba@416
  1125
      Parent::first(i);
deba@488
  1126
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
  1127
    }
deba@416
  1128
deba@416
  1129
    void first(Arc& i) const {
deba@416
  1130
      Parent::first(i);
deba@488
  1131
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1132
    }
deba@416
  1133
deba@416
  1134
    void first(Edge& i) const {
deba@416
  1135
      Parent::first(i);
deba@488
  1136
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1137
    }
deba@416
  1138
deba@416
  1139
    void firstIn(Arc& i, const Node& n) const {
deba@416
  1140
      Parent::firstIn(i, n);
deba@488
  1141
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
deba@416
  1142
    }
deba@416
  1143
deba@416
  1144
    void firstOut(Arc& i, const Node& n) const {
deba@416
  1145
      Parent::firstOut(i, n);
deba@488
  1146
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
deba@416
  1147
    }
deba@416
  1148
deba@416
  1149
    void firstInc(Edge& i, bool& d, const Node& n) const {
deba@416
  1150
      Parent::firstInc(i, d, n);
deba@488
  1151
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
deba@416
  1152
    }
deba@416
  1153
deba@416
  1154
    void next(Node& i) const {
deba@416
  1155
      Parent::next(i);
deba@488
  1156
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
  1157
    }
deba@416
  1158
    void next(Arc& i) const {
deba@416
  1159
      Parent::next(i);
deba@488
  1160
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1161
    }
deba@416
  1162
    void next(Edge& i) const {
deba@416
  1163
      Parent::next(i);
deba@488
  1164
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1165
    }
deba@416
  1166
    void nextIn(Arc& i) const {
deba@416
  1167
      Parent::nextIn(i);
deba@488
  1168
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
deba@416
  1169
    }
deba@416
  1170
deba@416
  1171
    void nextOut(Arc& i) const {
deba@416
  1172
      Parent::nextOut(i);
deba@488
  1173
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
deba@416
  1174
    }
deba@416
  1175
    void nextInc(Edge& i, bool& d) const {
deba@416
  1176
      Parent::nextInc(i, d);
deba@488
  1177
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
deba@416
  1178
    }
deba@416
  1179
deba@488
  1180
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
deba@488
  1181
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
deba@488
  1182
deba@488
  1183
    bool status(const Node& n) const { return (*_node_filter)[n]; }
deba@488
  1184
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
deba@416
  1185
deba@416
  1186
    typedef False NodeNumTag;
kpeter@446
  1187
    typedef False ArcNumTag;
deba@416
  1188
    typedef False EdgeNumTag;
deba@416
  1189
kpeter@446
  1190
    typedef FindArcTagIndicator<Graph> FindArcTag;
deba@416
  1191
    Arc findArc(const Node& u, const Node& v,
kpeter@448
  1192
                const Arc& prev = INVALID) const {
deba@416
  1193
      Arc arc = Parent::findArc(u, v, prev);
deba@488
  1194
      while (arc != INVALID && !(*_edge_filter)[arc]) {
deba@416
  1195
        arc = Parent::findArc(u, v, arc);
deba@416
  1196
      }
deba@416
  1197
      return arc;
deba@416
  1198
    }
kpeter@446
  1199
kpeter@446
  1200
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@416
  1201
    Edge findEdge(const Node& u, const Node& v,
kpeter@448
  1202
                  const Edge& prev = INVALID) const {
deba@416
  1203
      Edge edge = Parent::findEdge(u, v, prev);
deba@488
  1204
      while (edge != INVALID && !(*_edge_filter)[edge]) {
deba@416
  1205
        edge = Parent::findEdge(u, v, edge);
deba@416
  1206
      }
deba@416
  1207
      return edge;
deba@416
  1208
    }
deba@416
  1209
deba@488
  1210
    template <typename V>
deba@488
  1211
    class NodeMap 
deba@488
  1212
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
deba@488
  1213
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
deba@416
  1214
    public:
deba@488
  1215
      typedef V Value;
deba@488
  1216
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
deba@488
  1217
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
deba@488
  1218
deba@488
  1219
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
deba@488
  1220
        : Parent(adaptor) {}
deba@488
  1221
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
deba@488
  1222
        : Parent(adaptor, value) {}
deba@416
  1223
deba@416
  1224
    private:
deba@416
  1225
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  1226
        return operator=<NodeMap>(cmap);
deba@416
  1227
      }
deba@416
  1228
deba@416
  1229
      template <typename CMap>
deba@416
  1230
      NodeMap& operator=(const CMap& cmap) {
deba@488
  1231
        Parent::operator=(cmap);
deba@416
  1232
        return *this;
deba@416
  1233
      }
deba@416
  1234
    };
deba@416
  1235
deba@488
  1236
    template <typename V>
deba@488
  1237
    class ArcMap 
deba@488
  1238
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
deba@488
  1239
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
deba@416
  1240
    public:
deba@488
  1241
      typedef V Value;
deba@488
  1242
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
deba@488
  1243
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
deba@488
  1244
deba@488
  1245
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
deba@488
  1246
        : Parent(adaptor) {}
deba@488
  1247
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
deba@488
  1248
        : Parent(adaptor, value) {}
deba@416
  1249
deba@416
  1250
    private:
deba@416
  1251
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  1252
        return operator=<ArcMap>(cmap);
deba@416
  1253
      }
deba@416
  1254
deba@416
  1255
      template <typename CMap>
deba@416
  1256
      ArcMap& operator=(const CMap& cmap) {
deba@488
  1257
        Parent::operator=(cmap);
deba@416
  1258
        return *this;
deba@416
  1259
      }
deba@416
  1260
    };
deba@416
  1261
deba@488
  1262
    template <typename V>
deba@488
  1263
    class EdgeMap 
deba@488
  1264
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
deba@488
  1265
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
deba@416
  1266
    public:
deba@488
  1267
      typedef V Value;
deba@488
  1268
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
deba@488
  1269
		  LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
deba@488
  1270
deba@488
  1271
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
deba@488
  1272
        : Parent(adaptor) {}
deba@488
  1273
deba@488
  1274
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
deba@488
  1275
        : Parent(adaptor, value) {}
deba@416
  1276
deba@416
  1277
    private:
deba@416
  1278
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@416
  1279
        return operator=<EdgeMap>(cmap);
deba@416
  1280
      }
deba@416
  1281
deba@416
  1282
      template <typename CMap>
deba@416
  1283
      EdgeMap& operator=(const CMap& cmap) {
deba@488
  1284
        Parent::operator=(cmap);
deba@416
  1285
        return *this;
deba@416
  1286
      }
deba@416
  1287
    };
deba@416
  1288
deba@416
  1289
  };
deba@416
  1290
deba@416
  1291
  /// \ingroup graph_adaptors
deba@414
  1292
  ///
kpeter@451
  1293
  /// \brief Adaptor class for hiding nodes and edges in an undirected
kpeter@451
  1294
  /// graph.
deba@414
  1295
  ///
kpeter@451
  1296
  /// SubGraph can be used for hiding nodes and edges in a graph.
kpeter@451
  1297
  /// A \c bool node map and a \c bool edge map must be specified, which
kpeter@451
  1298
  /// define the filters for nodes and edges.
kpeter@451
  1299
  /// Only the nodes and edges with \c true filter value are
kpeter@453
  1300
  /// shown in the subgraph. The edges that are incident to hidden
kpeter@453
  1301
  /// nodes are also filtered out.
kpeter@453
  1302
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
deba@416
  1303
  ///
kpeter@451
  1304
  /// The adapted graph can also be modified through this adaptor
kpeter@453
  1305
  /// by adding or removing nodes or edges, unless the \c GR template
kpeter@451
  1306
  /// parameter is set to be \c const.
kpeter@451
  1307
  ///
kpeter@453
  1308
  /// \tparam GR The type of the adapted graph.
kpeter@451
  1309
  /// It must conform to the \ref concepts::Graph "Graph" concept.
kpeter@451
  1310
  /// It can also be specified to be \c const.
kpeter@453
  1311
  /// \tparam NF The type of the node filter map.
kpeter@453
  1312
  /// It must be a \c bool (or convertible) node map of the
kpeter@453
  1313
  /// adapted graph. The default type is
kpeter@453
  1314
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
kpeter@453
  1315
  /// \tparam EF The type of the edge filter map.
kpeter@453
  1316
  /// It must be a \c bool (or convertible) edge map of the
kpeter@453
  1317
  /// adapted graph. The default type is
kpeter@453
  1318
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
kpeter@451
  1319
  ///
kpeter@451
  1320
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
kpeter@451
  1321
  /// adapted graph are convertible to each other.
deba@416
  1322
  ///
deba@416
  1323
  /// \see FilterNodes
deba@416
  1324
  /// \see FilterEdges
kpeter@451
  1325
#ifdef DOXYGEN
kpeter@453
  1326
  template<typename GR, typename NF, typename EF>
kpeter@453
  1327
  class SubGraph {
kpeter@451
  1328
#else
kpeter@453
  1329
  template<typename GR,
kpeter@453
  1330
           typename NF = typename GR::template NodeMap<bool>,
kpeter@453
  1331
           typename EF = typename GR::template EdgeMap<bool> >
kpeter@453
  1332
  class SubGraph :
kpeter@453
  1333
    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
kpeter@451
  1334
#endif
deba@414
  1335
  public:
kpeter@451
  1336
    /// The type of the adapted graph.
kpeter@453
  1337
    typedef GR Graph;
kpeter@451
  1338
    /// The type of the node filter map.
kpeter@453
  1339
    typedef NF NodeFilterMap;
kpeter@451
  1340
    /// The type of the edge filter map.
kpeter@453
  1341
    typedef EF EdgeFilterMap;
kpeter@453
  1342
deba@488
  1343
    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
kpeter@453
  1344
      Parent;
deba@414
  1345
deba@415
  1346
    typedef typename Parent::Node Node;
deba@416
  1347
    typedef typename Parent::Edge Edge;
deba@415
  1348
deba@414
  1349
  protected:
deba@416
  1350
    SubGraph() { }
deba@414
  1351
  public:
deba@414
  1352
deba@415
  1353
    /// \brief Constructor
deba@415
  1354
    ///
kpeter@451
  1355
    /// Creates a subgraph for the given graph with the given node
kpeter@451
  1356
    /// and edge filter maps.
deba@488
  1357
    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
deba@488
  1358
      initialize(graph, node_filter, edge_filter);
deba@414
  1359
    }
deba@414
  1360
kpeter@452
  1361
    /// \brief Sets the status of the given node
deba@415
  1362
    ///
kpeter@452
  1363
    /// This function sets the status of the given node.
kpeter@451
  1364
    /// It is done by simply setting the assigned value of \c n
kpeter@452
  1365
    /// to \c v in the node filter map.
kpeter@452
  1366
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
  1367
kpeter@452
  1368
    /// \brief Sets the status of the given edge
deba@416
  1369
    ///
kpeter@452
  1370
    /// This function sets the status of the given edge.
kpeter@451
  1371
    /// It is done by simply setting the assigned value of \c e
kpeter@452
  1372
    /// to \c v in the edge filter map.
kpeter@452
  1373
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
kpeter@452
  1374
kpeter@452
  1375
    /// \brief Returns the status of the given node
deba@415
  1376
    ///
kpeter@452
  1377
    /// This function returns the status of the given node.
kpeter@452
  1378
    /// It is \c true if the given node is enabled (i.e. not hidden).
kpeter@452
  1379
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
  1380
kpeter@452
  1381
    /// \brief Returns the status of the given edge
deba@416
  1382
    ///
kpeter@452
  1383
    /// This function returns the status of the given edge.
kpeter@452
  1384
    /// It is \c true if the given edge is enabled (i.e. not hidden).
kpeter@452
  1385
    bool status(const Edge& e) const { return Parent::status(e); }
kpeter@452
  1386
kpeter@452
  1387
    /// \brief Disables the given node
deba@415
  1388
    ///
kpeter@452
  1389
    /// This function disables the given node in the subdigraph,
kpeter@452
  1390
    /// so the iteration jumps over it.
kpeter@452
  1391
    /// It is the same as \ref status() "status(n, false)".
kpeter@452
  1392
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
  1393
kpeter@452
  1394
    /// \brief Disables the given edge
deba@415
  1395
    ///
kpeter@452
  1396
    /// This function disables the given edge in the subgraph,
kpeter@452
  1397
    /// so the iteration jumps over it.
kpeter@452
  1398
    /// It is the same as \ref status() "status(e, false)".
kpeter@452
  1399
    void disable(const Edge& e) const { Parent::status(e, false); }
kpeter@452
  1400
kpeter@452
  1401
    /// \brief Enables the given node
kpeter@452
  1402
    ///
kpeter@452
  1403
    /// This function enables the given node in the subdigraph.
kpeter@452
  1404
    /// It is the same as \ref status() "status(n, true)".
kpeter@452
  1405
    void enable(const Node& n) const { Parent::status(n, true); }
kpeter@452
  1406
kpeter@452
  1407
    /// \brief Enables the given edge
kpeter@452
  1408
    ///
kpeter@452
  1409
    /// This function enables the given edge in the subgraph.
kpeter@452
  1410
    /// It is the same as \ref status() "status(e, true)".
kpeter@452
  1411
    void enable(const Edge& e) const { Parent::status(e, true); }
kpeter@452
  1412
deba@414
  1413
  };
deba@414
  1414
kpeter@451
  1415
  /// \brief Returns a read-only SubGraph adaptor
deba@414
  1416
  ///
kpeter@451
  1417
  /// This function just returns a read-only \ref SubGraph adaptor.
kpeter@451
  1418
  /// \ingroup graph_adaptors
kpeter@451
  1419
  /// \relates SubGraph
kpeter@453
  1420
  template<typename GR, typename NF, typename EF>
kpeter@453
  1421
  SubGraph<const GR, NF, EF>
deba@488
  1422
  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
kpeter@453
  1423
    return SubGraph<const GR, NF, EF>
deba@488
  1424
      (graph, node_filter, edge_filter);
deba@416
  1425
  }
deba@416
  1426
kpeter@453
  1427
  template<typename GR, typename NF, typename EF>
kpeter@453
  1428
  SubGraph<const GR, const NF, EF>
deba@488
  1429
  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
kpeter@453
  1430
    return SubGraph<const GR, const NF, EF>
deba@488
  1431
      (graph, node_filter, edge_filter);
deba@416
  1432
  }
deba@416
  1433
kpeter@453
  1434
  template<typename GR, typename NF, typename EF>
kpeter@453
  1435
  SubGraph<const GR, NF, const EF>
deba@488
  1436
  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
kpeter@453
  1437
    return SubGraph<const GR, NF, const EF>
deba@488
  1438
      (graph, node_filter, edge_filter);
deba@416
  1439
  }
deba@416
  1440
kpeter@453
  1441
  template<typename GR, typename NF, typename EF>
kpeter@453
  1442
  SubGraph<const GR, const NF, const EF>
deba@488
  1443
  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
kpeter@453
  1444
    return SubGraph<const GR, const NF, const EF>
deba@488
  1445
      (graph, node_filter, edge_filter);
deba@416
  1446
  }
deba@416
  1447
kpeter@451
  1448
deba@416
  1449
  /// \ingroup graph_adaptors
deba@416
  1450
  ///
kpeter@451
  1451
  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
deba@416
  1452
  ///
kpeter@451
  1453
  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
kpeter@451
  1454
  /// graph. A \c bool node map must be specified, which defines the filter
kpeter@451
  1455
  /// for the nodes. Only the nodes with \c true filter value and the
kpeter@451
  1456
  /// arcs/edges incident to nodes both with \c true filter value are shown
kpeter@451
  1457
  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
kpeter@451
  1458
  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
kpeter@453
  1459
  /// depending on the \c GR template parameter.
deba@416
  1460
  ///
kpeter@451
  1461
  /// The adapted (di)graph can also be modified through this adaptor
kpeter@453
  1462
  /// by adding or removing nodes or arcs/edges, unless the \c GR template
kpeter@451
  1463
  /// parameter is set to be \c const.
kpeter@451
  1464
  ///
kpeter@453
  1465
  /// \tparam GR The type of the adapted digraph or graph.
kpeter@451
  1466
  /// It must conform to the \ref concepts::Digraph "Digraph" concept
kpeter@451
  1467
  /// or the \ref concepts::Graph "Graph" concept.
kpeter@451
  1468
  /// It can also be specified to be \c const.
kpeter@453
  1469
  /// \tparam NF The type of the node filter map.
kpeter@453
  1470
  /// It must be a \c bool (or convertible) node map of the
kpeter@453
  1471
  /// adapted (di)graph. The default type is
kpeter@453
  1472
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
kpeter@451
  1473
  ///
kpeter@451
  1474
  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
kpeter@451
  1475
  /// adapted (di)graph are convertible to each other.
deba@416
  1476
#ifdef DOXYGEN
kpeter@453
  1477
  template<typename GR, typename NF>
kpeter@453
  1478
  class FilterNodes {
deba@416
  1479
#else
kpeter@453
  1480
  template<typename GR,
kpeter@453
  1481
           typename NF = typename GR::template NodeMap<bool>,
deba@416
  1482
           typename Enable = void>
kpeter@453
  1483
  class FilterNodes :
kpeter@453
  1484
    public DigraphAdaptorExtender<
deba@488
  1485
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
deba@488
  1486
                     true> > {
deba@416
  1487
#endif
deba@416
  1488
  public:
deba@416
  1489
kpeter@453
  1490
    typedef GR Digraph;
kpeter@453
  1491
    typedef NF NodeFilterMap;
kpeter@453
  1492
kpeter@453
  1493
    typedef DigraphAdaptorExtender<
deba@488
  1494
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, 
deba@488
  1495
                     true> > Parent;
deba@416
  1496
deba@416
  1497
    typedef typename Parent::Node Node;
deba@416
  1498
deba@416
  1499
  protected:
deba@488
  1500
    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
deba@488
  1501
deba@488
  1502
    FilterNodes() : const_true_map() {}
deba@416
  1503
deba@416
  1504
  public:
deba@416
  1505
deba@416
  1506
    /// \brief Constructor
deba@416
  1507
    ///
kpeter@451
  1508
    /// Creates a subgraph for the given digraph or graph with the
deba@416
  1509
    /// given node filter map.
deba@488
  1510
    FilterNodes(GR& graph, NF& node_filter) 
deba@488
  1511
      : Parent(), const_true_map()
kpeter@453
  1512
    {
deba@488
  1513
      Parent::initialize(graph, node_filter, const_true_map);
deba@416
  1514
    }
deba@416
  1515
kpeter@452
  1516
    /// \brief Sets the status of the given node
deba@416
  1517
    ///
kpeter@452
  1518
    /// This function sets the status of the given node.
kpeter@451
  1519
    /// It is done by simply setting the assigned value of \c n
kpeter@452
  1520
    /// to \c v in the node filter map.
kpeter@452
  1521
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
  1522
kpeter@452
  1523
    /// \brief Returns the status of the given node
deba@416
  1524
    ///
kpeter@452
  1525
    /// This function returns the status of the given node.
kpeter@452
  1526
    /// It is \c true if the given node is enabled (i.e. not hidden).
kpeter@452
  1527
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
  1528
kpeter@452
  1529
    /// \brief Disables the given node
deba@416
  1530
    ///
kpeter@452
  1531
    /// This function disables the given node, so the iteration
kpeter@452
  1532
    /// jumps over it.
kpeter@452
  1533
    /// It is the same as \ref status() "status(n, false)".
kpeter@452
  1534
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
  1535
kpeter@452
  1536
    /// \brief Enables the given node
kpeter@452
  1537
    ///
kpeter@452
  1538
    /// This function enables the given node.
kpeter@452
  1539
    /// It is the same as \ref status() "status(n, true)".
kpeter@452
  1540
    void enable(const Node& n) const { Parent::status(n, true); }
deba@416
  1541
deba@416
  1542
  };
deba@416
  1543
kpeter@453
  1544
  template<typename GR, typename NF>
kpeter@453
  1545
  class FilterNodes<GR, NF,
kpeter@453
  1546
                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
kpeter@453
  1547
    public GraphAdaptorExtender<
deba@488
  1548
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
deba@488
  1549
                   true> > {
kpeter@453
  1550
deba@416
  1551
  public:
kpeter@453
  1552
    typedef GR Graph;
kpeter@453
  1553
    typedef NF NodeFilterMap;
kpeter@453
  1554
    typedef GraphAdaptorExtender<
deba@488
  1555
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
deba@488
  1556
                   true> > Parent;
deba@416
  1557
deba@416
  1558
    typedef typename Parent::Node Node;
deba@416
  1559
  protected:
deba@488
  1560
    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
deba@488
  1561
deba@488
  1562
    FilterNodes() : const_true_map() {}
deba@416
  1563
deba@416
  1564
  public:
deba@416
  1565
deba@488
  1566
    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
deba@488
  1567
      Parent(), const_true_map() {
deba@488
  1568
      Parent::initialize(graph, node_filter, const_true_map);
deba@416
  1569
    }
deba@416
  1570
kpeter@452
  1571
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
  1572
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
  1573
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
  1574
    void enable(const Node& n) const { Parent::status(n, true); }
deba@416
  1575
deba@416
  1576
  };
deba@416
  1577
deba@416
  1578
kpeter@451
  1579
  /// \brief Returns a read-only FilterNodes adaptor
deba@416
  1580
  ///
kpeter@451
  1581
  /// This function just returns a read-only \ref FilterNodes adaptor.
kpeter@451
  1582
  /// \ingroup graph_adaptors
kpeter@451
  1583
  /// \relates FilterNodes
kpeter@453
  1584
  template<typename GR, typename NF>
kpeter@453
  1585
  FilterNodes<const GR, NF>
deba@488
  1586
  filterNodes(const GR& graph, NF& node_filter) {
deba@488
  1587
    return FilterNodes<const GR, NF>(graph, node_filter);
deba@414
  1588
  }
deba@414
  1589
kpeter@453
  1590
  template<typename GR, typename NF>
kpeter@453
  1591
  FilterNodes<const GR, const NF>
deba@488
  1592
  filterNodes(const GR& graph, const NF& node_filter) {
deba@488
  1593
    return FilterNodes<const GR, const NF>(graph, node_filter);
deba@414
  1594
  }
deba@414
  1595
deba@416
  1596
  /// \ingroup graph_adaptors
deba@414
  1597
  ///
kpeter@451
  1598
  /// \brief Adaptor class for hiding arcs in a digraph.
deba@414
  1599
  ///
kpeter@451
  1600
  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
kpeter@451
  1601
  /// A \c bool arc map must be specified, which defines the filter for
kpeter@451
  1602
  /// the arcs. Only the arcs with \c true filter value are shown in the
kpeter@451
  1603
  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
kpeter@451
  1604
  /// "Digraph" concept.
deba@414
  1605
  ///
kpeter@451
  1606
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
  1607
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
  1608
  /// parameter is set to be \c const.
kpeter@451
  1609
  ///
deba@488
  1610
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  1611
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  1612
  /// It can also be specified to be \c const.
kpeter@453
  1613
  /// \tparam AF The type of the arc filter map.
kpeter@453
  1614
  /// It must be a \c bool (or convertible) arc map of the
kpeter@453
  1615
  /// adapted digraph. The default type is
deba@488
  1616
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
kpeter@451
  1617
  ///
kpeter@451
  1618
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
kpeter@451
  1619
  /// digraph are convertible to each other.
kpeter@451
  1620
#ifdef DOXYGEN
deba@488
  1621
  template<typename DGR,
kpeter@453
  1622
           typename AF>
kpeter@453
  1623
  class FilterArcs {
kpeter@451
  1624
#else
deba@488
  1625
  template<typename DGR,
deba@488
  1626
           typename AF = typename DGR::template ArcMap<bool> >
kpeter@453
  1627
  class FilterArcs :
kpeter@453
  1628
    public DigraphAdaptorExtender<
deba@488
  1629
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
deba@488
  1630
                     AF, false> > {
kpeter@451
  1631
#endif
deba@414
  1632
  public:
kpeter@453
  1633
    /// The type of the adapted digraph.
deba@488
  1634
    typedef DGR Digraph;
kpeter@453
  1635
    /// The type of the arc filter map.
kpeter@453
  1636
    typedef AF ArcFilterMap;
kpeter@453
  1637
kpeter@453
  1638
    typedef DigraphAdaptorExtender<
deba@488
  1639
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, 
deba@488
  1640
                     AF, false> > Parent;
deba@415
  1641
deba@415
  1642
    typedef typename Parent::Arc Arc;
deba@415
  1643
deba@414
  1644
  protected:
deba@488
  1645
    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
deba@488
  1646
deba@488
  1647
    FilterArcs() : const_true_map() {}
deba@414
  1648
deba@414
  1649
  public:
deba@414
  1650
deba@415
  1651
    /// \brief Constructor
deba@415
  1652
    ///
kpeter@451
  1653
    /// Creates a subdigraph for the given digraph with the given arc
kpeter@451
  1654
    /// filter map.
deba@488
  1655
    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
deba@488
  1656
      : Parent(), const_true_map() {
deba@488
  1657
      Parent::initialize(digraph, const_true_map, arc_filter);
deba@414
  1658
    }
deba@414
  1659
kpeter@452
  1660
    /// \brief Sets the status of the given arc
deba@415
  1661
    ///
kpeter@452
  1662
    /// This function sets the status of the given arc.
kpeter@451
  1663
    /// It is done by simply setting the assigned value of \c a
kpeter@452
  1664
    /// to \c v in the arc filter map.
kpeter@452
  1665
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
kpeter@452
  1666
kpeter@452
  1667
    /// \brief Returns the status of the given arc
deba@415
  1668
    ///
kpeter@452
  1669
    /// This function returns the status of the given arc.
kpeter@452
  1670
    /// It is \c true if the given arc is enabled (i.e. not hidden).
kpeter@452
  1671
    bool status(const Arc& a) const { return Parent::status(a); }
kpeter@452
  1672
kpeter@452
  1673
    /// \brief Disables the given arc
deba@415
  1674
    ///
kpeter@452
  1675
    /// This function disables the given arc in the subdigraph,
kpeter@452
  1676
    /// so the iteration jumps over it.
kpeter@452
  1677
    /// It is the same as \ref status() "status(a, false)".
kpeter@452
  1678
    void disable(const Arc& a) const { Parent::status(a, false); }
kpeter@452
  1679
kpeter@452
  1680
    /// \brief Enables the given arc
kpeter@452
  1681
    ///
kpeter@452
  1682
    /// This function enables the given arc in the subdigraph.
kpeter@452
  1683
    /// It is the same as \ref status() "status(a, true)".
kpeter@452
  1684
    void enable(const Arc& a) const { Parent::status(a, true); }
deba@415
  1685
deba@414
  1686
  };
deba@414
  1687
kpeter@451
  1688
  /// \brief Returns a read-only FilterArcs adaptor
deba@414
  1689
  ///
kpeter@451
  1690
  /// This function just returns a read-only \ref FilterArcs adaptor.
kpeter@451
  1691
  /// \ingroup graph_adaptors
kpeter@451
  1692
  /// \relates FilterArcs
deba@488
  1693
  template<typename DGR, typename AF>
deba@488
  1694
  FilterArcs<const DGR, AF>
deba@488
  1695
  filterArcs(const DGR& digraph, AF& arc_filter) {
deba@488
  1696
    return FilterArcs<const DGR, AF>(digraph, arc_filter);
deba@414
  1697
  }
deba@414
  1698
deba@488
  1699
  template<typename DGR, typename AF>
deba@488
  1700
  FilterArcs<const DGR, const AF>
deba@488
  1701
  filterArcs(const DGR& digraph, const AF& arc_filter) {
deba@488
  1702
    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
deba@414
  1703
  }
deba@414
  1704
deba@416
  1705
  /// \ingroup graph_adaptors
deba@416
  1706
  ///
kpeter@451
  1707
  /// \brief Adaptor class for hiding edges in a graph.
deba@416
  1708
  ///
kpeter@451
  1709
  /// FilterEdges adaptor can be used for hiding edges in a graph.
kpeter@451
  1710
  /// A \c bool edge map must be specified, which defines the filter for
kpeter@451
  1711
  /// the edges. Only the edges with \c true filter value are shown in the
kpeter@451
  1712
  /// subgraph. This adaptor conforms to the \ref concepts::Graph
kpeter@451
  1713
  /// "Graph" concept.
deba@416
  1714
  ///
kpeter@451
  1715
  /// The adapted graph can also be modified through this adaptor
kpeter@453
  1716
  /// by adding or removing nodes or edges, unless the \c GR template
kpeter@451
  1717
  /// parameter is set to be \c const.
kpeter@451
  1718
  ///
kpeter@453
  1719
  /// \tparam GR The type of the adapted graph.
kpeter@451
  1720
  /// It must conform to the \ref concepts::Graph "Graph" concept.
kpeter@451
  1721
  /// It can also be specified to be \c const.
kpeter@453
  1722
  /// \tparam EF The type of the edge filter map.
kpeter@453
  1723
  /// It must be a \c bool (or convertible) edge map of the
kpeter@453
  1724
  /// adapted graph. The default type is
kpeter@453
  1725
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
kpeter@451
  1726
  ///
kpeter@451
  1727
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
kpeter@451
  1728
  /// adapted graph are convertible to each other.
kpeter@451
  1729
#ifdef DOXYGEN
kpeter@453
  1730
  template<typename GR,
kpeter@453
  1731
           typename EF>
kpeter@453
  1732
  class FilterEdges {
kpeter@451
  1733
#else
kpeter@453
  1734
  template<typename GR,
kpeter@453
  1735
           typename EF = typename GR::template EdgeMap<bool> >
kpeter@453
  1736
  class FilterEdges :
kpeter@453
  1737
    public GraphAdaptorExtender<
deba@488
  1738
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, 
deba@488
  1739
                   EF, false> > {
kpeter@451
  1740
#endif
deba@416
  1741
  public:
kpeter@453
  1742
    /// The type of the adapted graph.
kpeter@453
  1743
    typedef GR Graph;
kpeter@453
  1744
    /// The type of the edge filter map.
kpeter@453
  1745
    typedef EF EdgeFilterMap;
kpeter@453
  1746
kpeter@453
  1747
    typedef GraphAdaptorExtender<
deba@488
  1748
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, 
deba@488
  1749
                   EF, false> > Parent;
kpeter@453
  1750
deba@416
  1751
    typedef typename Parent::Edge Edge;
kpeter@453
  1752
deba@416
  1753
  protected:
deba@488
  1754
    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
deba@416
  1755
deba@416
  1756
    FilterEdges() : const_true_map(true) {
deba@416
  1757
      Parent::setNodeFilterMap(const_true_map);
deba@416
  1758
    }
deba@416
  1759
deba@416
  1760
  public:
deba@416
  1761
deba@416
  1762
    /// \brief Constructor
deba@416
  1763
    ///
kpeter@451
  1764
    /// Creates a subgraph for the given graph with the given edge
kpeter@451
  1765
    /// filter map.
deba@488
  1766
    FilterEdges(GR& graph, EF& edge_filter) 
deba@488
  1767
      : Parent(), const_true_map() {
deba@488
  1768
      Parent::initialize(graph, const_true_map, edge_filter);
deba@416
  1769
    }
deba@416
  1770
kpeter@452
  1771
    /// \brief Sets the status of the given edge
deba@416
  1772
    ///
kpeter@452
  1773
    /// This function sets the status of the given edge.
kpeter@451
  1774
    /// It is done by simply setting the assigned value of \c e
kpeter@452
  1775
    /// to \c v in the edge filter map.
kpeter@452
  1776
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
kpeter@452
  1777
kpeter@452
  1778
    /// \brief Returns the status of the given edge
deba@416
  1779
    ///
kpeter@452
  1780
    /// This function returns the status of the given edge.
kpeter@452
  1781
    /// It is \c true if the given edge is enabled (i.e. not hidden).
kpeter@452
  1782
    bool status(const Edge& e) const { return Parent::status(e); }
kpeter@452
  1783
kpeter@452
  1784
    /// \brief Disables the given edge
deba@416
  1785
    ///
kpeter@452
  1786
    /// This function disables the given edge in the subgraph,
kpeter@452
  1787
    /// so the iteration jumps over it.
kpeter@452
  1788
    /// It is the same as \ref status() "status(e, false)".
kpeter@452
  1789
    void disable(const Edge& e) const { Parent::status(e, false); }
kpeter@452
  1790
kpeter@452
  1791
    /// \brief Enables the given edge
kpeter@452
  1792
    ///
kpeter@452
  1793
    /// This function enables the given edge in the subgraph.
kpeter@452
  1794
    /// It is the same as \ref status() "status(e, true)".
kpeter@452
  1795
    void enable(const Edge& e) const { Parent::status(e, true); }
deba@416
  1796
deba@416
  1797
  };
deba@416
  1798
kpeter@451
  1799
  /// \brief Returns a read-only FilterEdges adaptor
deba@416
  1800
  ///
kpeter@451
  1801
  /// This function just returns a read-only \ref FilterEdges adaptor.
kpeter@451
  1802
  /// \ingroup graph_adaptors
kpeter@451
  1803
  /// \relates FilterEdges
kpeter@453
  1804
  template<typename GR, typename EF>
kpeter@453
  1805
  FilterEdges<const GR, EF>
deba@488
  1806
  filterEdges(const GR& graph, EF& edge_filter) {
deba@488
  1807
    return FilterEdges<const GR, EF>(graph, edge_filter);
deba@416
  1808
  }
deba@416
  1809
kpeter@453
  1810
  template<typename GR, typename EF>
kpeter@453
  1811
  FilterEdges<const GR, const EF>
deba@488
  1812
  filterEdges(const GR& graph, const EF& edge_filter) {
deba@488
  1813
    return FilterEdges<const GR, const EF>(graph, edge_filter);
deba@416
  1814
  }
deba@416
  1815
kpeter@451
  1816
deba@488
  1817
  template <typename DGR>
deba@416
  1818
  class UndirectorBase {
deba@414
  1819
  public:
deba@488
  1820
    typedef DGR Digraph;
deba@416
  1821
    typedef UndirectorBase Adaptor;
deba@414
  1822
deba@414
  1823
    typedef True UndirectedTag;
deba@414
  1824
deba@414
  1825
    typedef typename Digraph::Arc Edge;
deba@414
  1826
    typedef typename Digraph::Node Node;
deba@414
  1827
deba@414
  1828
    class Arc : public Edge {
deba@416
  1829
      friend class UndirectorBase;
deba@414
  1830
    protected:
deba@414
  1831
      bool _forward;
deba@414
  1832
deba@414
  1833
      Arc(const Edge& edge, bool forward) :
deba@414
  1834
        Edge(edge), _forward(forward) {}
deba@414
  1835
deba@414
  1836
    public:
deba@414
  1837
      Arc() {}
deba@414
  1838
deba@414
  1839
      Arc(Invalid) : Edge(INVALID), _forward(true) {}
deba@414
  1840
deba@414
  1841
      bool operator==(const Arc &other) const {
deba@416
  1842
        return _forward == other._forward &&
deba@416
  1843
          static_cast<const Edge&>(*this) == static_cast<const Edge&>(other);
deba@414
  1844
      }
deba@414
  1845
      bool operator!=(const Arc &other) const {
deba@416
  1846
        return _forward != other._forward ||
deba@416
  1847
          static_cast<const Edge&>(*this) != static_cast<const Edge&>(other);
deba@414
  1848
      }
deba@414
  1849
      bool operator<(const Arc &other) const {
deba@416
  1850
        return _forward < other._forward ||
deba@416
  1851
          (_forward == other._forward &&
deba@416
  1852
           static_cast<const Edge&>(*this) < static_cast<const Edge&>(other));
deba@414
  1853
      }
deba@414
  1854
    };
deba@414
  1855
deba@414
  1856
    void first(Node& n) const {
deba@414
  1857
      _digraph->first(n);
deba@414
  1858
    }
deba@414
  1859
deba@414
  1860
    void next(Node& n) const {
deba@414
  1861
      _digraph->next(n);
deba@414
  1862
    }
deba@414
  1863
deba@414
  1864
    void first(Arc& a) const {
deba@414
  1865
      _digraph->first(a);
deba@414
  1866
      a._forward = true;
deba@414
  1867
    }
deba@414
  1868
deba@414
  1869
    void next(Arc& a) const {
deba@414
  1870
      if (a._forward) {
deba@416
  1871
        a._forward = false;
deba@414
  1872
      } else {
deba@416
  1873
        _digraph->next(a);
deba@416
  1874
        a._forward = true;
deba@414
  1875
      }
deba@414
  1876
    }
deba@414
  1877
deba@414
  1878
    void first(Edge& e) const {
deba@414
  1879
      _digraph->first(e);
deba@414
  1880
    }
deba@414
  1881
deba@414
  1882
    void next(Edge& e) const {
deba@414
  1883
      _digraph->next(e);
deba@414
  1884
    }
deba@414
  1885
deba@414
  1886
    void firstOut(Arc& a, const Node& n) const {
deba@414
  1887
      _digraph->firstIn(a, n);
deba@414
  1888
      if( static_cast<const Edge&>(a) != INVALID ) {
deba@416
  1889
        a._forward = false;
deba@414
  1890
      } else {
deba@416
  1891
        _digraph->firstOut(a, n);
deba@416
  1892
        a._forward = true;
deba@414
  1893
      }
deba@414
  1894
    }
deba@414
  1895
    void nextOut(Arc &a) const {
deba@414
  1896
      if (!a._forward) {
deba@416
  1897
        Node n = _digraph->target(a);
deba@416
  1898
        _digraph->nextIn(a);
deba@416
  1899
        if (static_cast<const Edge&>(a) == INVALID ) {
deba@416
  1900
          _digraph->firstOut(a, n);
deba@416
  1901
          a._forward = true;
deba@416
  1902
        }
deba@414
  1903
      }
deba@414
  1904
      else {
deba@416
  1905
        _digraph->nextOut(a);
deba@414
  1906
      }
deba@414
  1907
    }
deba@414
  1908
deba@414
  1909
    void firstIn(Arc &a, const Node &n) const {
deba@414
  1910
      _digraph->firstOut(a, n);
deba@414
  1911
      if (static_cast<const Edge&>(a) != INVALID ) {
deba@416
  1912
        a._forward = false;
deba@414
  1913
      } else {
deba@416
  1914
        _digraph->firstIn(a, n);
deba@416
  1915
        a._forward = true;
deba@414
  1916
      }
deba@414
  1917
    }
deba@414
  1918
    void nextIn(Arc &a) const {
deba@414
  1919
      if (!a._forward) {
deba@416
  1920
        Node n = _digraph->source(a);
deba@416
  1921
        _digraph->nextOut(a);
deba@416
  1922
        if( static_cast<const Edge&>(a) == INVALID ) {
deba@416
  1923
          _digraph->firstIn(a, n);
deba@416
  1924
          a._forward = true;
deba@416
  1925
        }
deba@414
  1926
      }
deba@414
  1927
      else {
deba@416
  1928
        _digraph->nextIn(a);
deba@414
  1929
      }
deba@414
  1930
    }
deba@414
  1931
deba@414
  1932
    void firstInc(Edge &e, bool &d, const Node &n) const {
deba@414
  1933
      d = true;
deba@414
  1934
      _digraph->firstOut(e, n);
deba@414
  1935
      if (e != INVALID) return;
deba@414
  1936
      d = false;
deba@414
  1937
      _digraph->firstIn(e, n);
deba@414
  1938
    }
deba@414
  1939
deba@414
  1940
    void nextInc(Edge &e, bool &d) const {
deba@414
  1941
      if (d) {
deba@416
  1942
        Node s = _digraph->source(e);
deba@416
  1943
        _digraph->nextOut(e);
deba@416
  1944
        if (e != INVALID) return;
deba@416
  1945
        d = false;
deba@416
  1946
        _digraph->firstIn(e, s);
deba@414
  1947
      } else {
deba@416
  1948
        _digraph->nextIn(e);
deba@414
  1949
      }
deba@414
  1950
    }
deba@414
  1951
deba@414
  1952
    Node u(const Edge& e) const {
deba@414
  1953
      return _digraph->source(e);
deba@414
  1954
    }
deba@414
  1955
deba@414
  1956
    Node v(const Edge& e) const {
deba@414
  1957
      return _digraph->target(e);
deba@414
  1958
    }
deba@414
  1959
deba@414
  1960
    Node source(const Arc &a) const {
deba@414
  1961
      return a._forward ? _digraph->source(a) : _digraph->target(a);
deba@414
  1962
    }
deba@414
  1963
deba@414
  1964
    Node target(const Arc &a) const {
deba@414
  1965
      return a._forward ? _digraph->target(a) : _digraph->source(a);
deba@414
  1966
    }
deba@414
  1967
deba@414
  1968
    static Arc direct(const Edge &e, bool d) {
deba@414
  1969
      return Arc(e, d);
deba@414
  1970
    }
deba@414
  1971
    Arc direct(const Edge &e, const Node& n) const {
deba@414
  1972
      return Arc(e, _digraph->source(e) == n);
deba@414
  1973
    }
deba@414
  1974
deba@414
  1975
    static bool direction(const Arc &a) { return a._forward; }
deba@414
  1976
deba@414
  1977
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
deba@414
  1978
    Arc arcFromId(int ix) const {
deba@414
  1979
      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
deba@414
  1980
    }
deba@414
  1981
    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
deba@414
  1982
deba@414
  1983
    int id(const Node &n) const { return _digraph->id(n); }
deba@414
  1984
    int id(const Arc &a) const {
deba@414
  1985
      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
deba@414
  1986
    }
deba@414
  1987
    int id(const Edge &e) const { return _digraph->id(e); }
deba@414
  1988
deba@414
  1989
    int maxNodeId() const { return _digraph->maxNodeId(); }
deba@414
  1990
    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
deba@414
  1991
    int maxEdgeId() const { return _digraph->maxArcId(); }
deba@414
  1992
deba@414
  1993
    Node addNode() { return _digraph->addNode(); }
deba@416
  1994
    Edge addEdge(const Node& u, const Node& v) {
deba@416
  1995
      return _digraph->addArc(u, v);
deba@414
  1996
    }
deba@414
  1997
deba@414
  1998
    void erase(const Node& i) { _digraph->erase(i); }
deba@414
  1999
    void erase(const Edge& i) { _digraph->erase(i); }
deba@416
  2000
deba@414
  2001
    void clear() { _digraph->clear(); }
deba@414
  2002
deba@414
  2003
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
kpeter@449
  2004
    int nodeNum() const { return _digraph->nodeNum(); }
kpeter@446
  2005
kpeter@446
  2006
    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
deba@414
  2007
    int arcNum() const { return 2 * _digraph->arcNum(); }
kpeter@446
  2008
kpeter@446
  2009
    typedef ArcNumTag EdgeNumTag;
deba@414
  2010
    int edgeNum() const { return _digraph->arcNum(); }
deba@414
  2011
kpeter@446
  2012
    typedef FindArcTagIndicator<Digraph> FindArcTag;
deba@414
  2013
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
deba@414
  2014
      if (p == INVALID) {
deba@416
  2015
        Edge arc = _digraph->findArc(s, t);
deba@416
  2016
        if (arc != INVALID) return direct(arc, true);
deba@416
  2017
        arc = _digraph->findArc(t, s);
deba@416
  2018
        if (arc != INVALID) return direct(arc, false);
deba@414
  2019
      } else if (direction(p)) {
deba@416
  2020
        Edge arc = _digraph->findArc(s, t, p);
deba@416
  2021
        if (arc != INVALID) return direct(arc, true);
deba@416
  2022
        arc = _digraph->findArc(t, s);
deba@416
  2023
        if (arc != INVALID) return direct(arc, false);
deba@414
  2024
      } else {
deba@416
  2025
        Edge arc = _digraph->findArc(t, s, p);
deba@416
  2026
        if (arc != INVALID) return direct(arc, false);
deba@414
  2027
      }
deba@414
  2028
      return INVALID;
deba@414
  2029
    }
deba@414
  2030
kpeter@446
  2031
    typedef FindArcTag FindEdgeTag;
deba@414
  2032
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
deba@414
  2033
      if (s != t) {
deba@414
  2034
        if (p == INVALID) {
deba@414
  2035
          Edge arc = _digraph->findArc(s, t);
deba@414
  2036
          if (arc != INVALID) return arc;
deba@414
  2037
          arc = _digraph->findArc(t, s);
deba@414
  2038
          if (arc != INVALID) return arc;
kpeter@449
  2039
        } else if (_digraph->source(p) == s) {
deba@414
  2040
          Edge arc = _digraph->findArc(s, t, p);
deba@414
  2041
          if (arc != INVALID) return arc;
deba@414
  2042
          arc = _digraph->findArc(t, s);
deba@416
  2043
          if (arc != INVALID) return arc;
deba@414
  2044
        } else {
deba@414
  2045
          Edge arc = _digraph->findArc(t, s, p);
deba@416
  2046
          if (arc != INVALID) return arc;
deba@414
  2047
        }
deba@414
  2048
      } else {
deba@414
  2049
        return _digraph->findArc(s, t, p);
deba@414
  2050
      }
deba@414
  2051
      return INVALID;
deba@414
  2052
    }
deba@414
  2053
deba@414
  2054
  private:
deba@416
  2055
deba@488
  2056
    template <typename V>
deba@414
  2057
    class ArcMapBase {
deba@414
  2058
    private:
deba@416
  2059
deba@488
  2060
      typedef typename DGR::template ArcMap<V> MapImpl;
deba@416
  2061
deba@414
  2062
    public:
deba@414
  2063
deba@414
  2064
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
deba@414
  2065
deba@488
  2066
      typedef V Value;
deba@414
  2067
      typedef Arc Key;
kpeter@449
  2068
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
kpeter@449
  2069
      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
kpeter@449
  2070
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
kpeter@449
  2071
      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
deba@416
  2072
deba@488
  2073
      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
deba@416
  2074
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
deba@416
  2075
deba@488
  2076
      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
deba@488
  2077
        : _forward(*adaptor._digraph, value), 
deba@488
  2078
          _backward(*adaptor._digraph, value) {}
deba@488
  2079
deba@488
  2080
      void set(const Arc& a, const V& value) {
deba@416
  2081
        if (direction(a)) {
deba@488
  2082
          _forward.set(a, value);
deba@416
  2083
        } else {
deba@488
  2084
          _backward.set(a, value);
deba@414
  2085
        }
deba@414
  2086
      }
deba@414
  2087
kpeter@449
  2088
      ConstReturnValue operator[](const Arc& a) const {
deba@416
  2089
        if (direction(a)) {
deba@416
  2090
          return _forward[a];
deba@416
  2091
        } else {
deba@416
  2092
          return _backward[a];
deba@414
  2093
        }
deba@414
  2094
      }
deba@414
  2095
kpeter@449
  2096
      ReturnValue operator[](const Arc& a) {
deba@416
  2097
        if (direction(a)) {
deba@416
  2098
          return _forward[a];
deba@416
  2099
        } else {
deba@416
  2100
          return _backward[a];
deba@416
  2101
        }
deba@416
  2102
      }
deba@416
  2103
deba@414
  2104
    protected:
deba@414
  2105
deba@416
  2106
      MapImpl _forward, _backward;
deba@414
  2107
deba@414
  2108
    };
deba@414
  2109
deba@414
  2110
  public:
deba@414
  2111
deba@488
  2112
    template <typename V>
deba@488
  2113
    class NodeMap : public DGR::template NodeMap<V> {
deba@414
  2114
    public:
deba@414
  2115
deba@488
  2116
      typedef V Value;
deba@488
  2117
      typedef typename DGR::template NodeMap<Value> Parent;
deba@488
  2118
deba@488
  2119
      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
deba@416
  2120
        : Parent(*adaptor._digraph) {}
deba@414
  2121
deba@488
  2122
      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
deba@416
  2123
        : Parent(*adaptor._digraph, value) { }
deba@414
  2124
deba@414
  2125
    private:
deba@414
  2126
      NodeMap& operator=(const NodeMap& cmap) {
deba@414
  2127
        return operator=<NodeMap>(cmap);
deba@414
  2128
      }
deba@414
  2129
deba@414
  2130
      template <typename CMap>
deba@414
  2131
      NodeMap& operator=(const CMap& cmap) {
deba@414
  2132
        Parent::operator=(cmap);
deba@414
  2133
        return *this;
deba@414
  2134
      }
deba@416
  2135
deba@414
  2136
    };
deba@414
  2137
deba@488
  2138
    template <typename V>
deba@416
  2139
    class ArcMap
deba@488
  2140
      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> >
deba@414
  2141
    {
deba@414
  2142
    public:
deba@488
  2143
      typedef V Value;
deba@488
  2144
      typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent;
deba@488
  2145
deba@488
  2146
      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
deba@416
  2147
        : Parent(adaptor) {}
deba@416
  2148
deba@488
  2149
      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
deba@416
  2150
        : Parent(adaptor, value) {}
deba@416
  2151
deba@414
  2152
    private:
deba@414
  2153
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  2154
        return operator=<ArcMap>(cmap);
deba@414
  2155
      }
deba@416
  2156
deba@414
  2157
      template <typename CMap>
deba@414
  2158
      ArcMap& operator=(const CMap& cmap) {
deba@414
  2159
        Parent::operator=(cmap);
deba@416
  2160
        return *this;
deba@414
  2161
      }
deba@414
  2162
    };
deba@416
  2163
deba@488
  2164
    template <typename V>
deba@488
  2165
    class EdgeMap : public Digraph::template ArcMap<V> {
deba@414
  2166
    public:
deba@416
  2167
deba@488
  2168
      typedef V Value;
deba@488
  2169
      typedef typename Digraph::template ArcMap<V> Parent;
deba@488
  2170
deba@488
  2171
      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
deba@416
  2172
        : Parent(*adaptor._digraph) {}
deba@414
  2173
deba@488
  2174
      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
deba@416
  2175
        : Parent(*adaptor._digraph, value) {}
deba@414
  2176
deba@414
  2177
    private:
deba@414
  2178
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@414
  2179
        return operator=<EdgeMap>(cmap);
deba@414
  2180
      }
deba@414
  2181
deba@414
  2182
      template <typename CMap>
deba@414
  2183
      EdgeMap& operator=(const CMap& cmap) {
deba@414
  2184
        Parent::operator=(cmap);
deba@414
  2185
        return *this;
deba@414
  2186
      }
deba@414
  2187
deba@414
  2188
    };
deba@414
  2189
deba@488
  2190
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
deba@416
  2191
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
deba@414
  2192
deba@488
  2193
    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
kpeter@449
  2194
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
kpeter@579
  2195
    
kpeter@579
  2196
    typedef EdgeNotifier ArcNotifier;
kpeter@579
  2197
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
kpeter@449
  2198
deba@414
  2199
  protected:
deba@414
  2200
deba@416
  2201
    UndirectorBase() : _digraph(0) {}
deba@414
  2202
deba@488
  2203
    DGR* _digraph;
deba@488
  2204
deba@488
  2205
    void initialize(DGR& digraph) {
deba@414
  2206
      _digraph = &digraph;
deba@414
  2207
    }
deba@416
  2208
deba@414
  2209
  };
deba@414
  2210
deba@416
  2211
  /// \ingroup graph_adaptors
deba@414
  2212
  ///
kpeter@451
  2213
  /// \brief Adaptor class for viewing a digraph as an undirected graph.
deba@414
  2214
  ///
kpeter@451
  2215
  /// Undirector adaptor can be used for viewing a digraph as an undirected
kpeter@451
  2216
  /// graph. All arcs of the underlying digraph are showed in the
kpeter@451
  2217
  /// adaptor as an edge (and also as a pair of arcs, of course).
kpeter@451
  2218
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
deba@414
  2219
  ///
kpeter@451
  2220
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
  2221
  /// by adding or removing nodes or edges, unless the \c GR template
kpeter@451
  2222
  /// parameter is set to be \c const.
kpeter@451
  2223
  ///
deba@488
  2224
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  2225
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  2226
  /// It can also be specified to be \c const.
kpeter@451
  2227
  ///
kpeter@451
  2228
  /// \note The \c Node type of this adaptor and the adapted digraph are
kpeter@451
  2229
  /// convertible to each other, moreover the \c Edge type of the adaptor
kpeter@451
  2230
  /// and the \c Arc type of the adapted digraph are also convertible to
kpeter@451
  2231
  /// each other.
kpeter@451
  2232
  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
kpeter@451
  2233
  /// of the adapted digraph.)
deba@488
  2234
  template<typename DGR>
kpeter@453
  2235
#ifdef DOXYGEN
kpeter@453
  2236
  class Undirector {
kpeter@453
  2237
#else
kpeter@453
  2238
  class Undirector :
deba@488
  2239
    public GraphAdaptorExtender<UndirectorBase<DGR> > {
kpeter@453
  2240
#endif
deba@414
  2241
  public:
kpeter@453
  2242
    /// The type of the adapted digraph.
deba@488
  2243
    typedef DGR Digraph;
deba@488
  2244
    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
deba@414
  2245
  protected:
deba@416
  2246
    Undirector() { }
deba@414
  2247
  public:
deba@414
  2248
deba@414
  2249
    /// \brief Constructor
deba@414
  2250
    ///
kpeter@451
  2251
    /// Creates an undirected graph from the given digraph.
deba@488
  2252
    Undirector(DGR& digraph) {
deba@488
  2253
      initialize(digraph);
deba@414
  2254
    }
deba@414
  2255
kpeter@451
  2256
    /// \brief Arc map combined from two original arc maps
deba@414
  2257
    ///
kpeter@451
  2258
    /// This map adaptor class adapts two arc maps of the underlying
kpeter@451
  2259
    /// digraph to get an arc map of the undirected graph.
kpeter@559
  2260
    /// Its value type is inherited from the first arc map type (\c FW).
kpeter@559
  2261
    /// \tparam FW The type of the "foward" arc map.
kpeter@559
  2262
    /// \tparam BK The type of the "backward" arc map.
kpeter@559
  2263
    template <typename FW, typename BK>
deba@414
  2264
    class CombinedArcMap {
deba@414
  2265
    public:
deba@416
  2266
kpeter@451
  2267
      /// The key type of the map
kpeter@451
  2268
      typedef typename Parent::Arc Key;
kpeter@451
  2269
      /// The value type of the map
kpeter@559
  2270
      typedef typename FW::Value Value;
kpeter@559
  2271
kpeter@559
  2272
      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
kpeter@559
  2273
kpeter@559
  2274
      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
kpeter@559
  2275
      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
kpeter@559
  2276
      typedef typename MapTraits<FW>::ReturnValue Reference;
kpeter@559
  2277
      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
kpeter@449
  2278
deba@416
  2279
      /// Constructor
kpeter@559
  2280
      CombinedArcMap(FW& forward, BK& backward)
deba@414
  2281
        : _forward(&forward), _backward(&backward) {}
deba@416
  2282
kpeter@451
  2283
      /// Sets the value associated with the given key.
deba@416
  2284
      void set(const Key& e, const Value& a) {
deba@416
  2285
        if (Parent::direction(e)) {
deba@416
  2286
          _forward->set(e, a);
deba@416
  2287
        } else {
deba@416
  2288
          _backward->set(e, a);
deba@416
  2289
        }
deba@414
  2290
      }
deba@414
  2291
kpeter@451
  2292
      /// Returns the value associated with the given key.
kpeter@449
  2293
      ConstReturnValue operator[](const Key& e) const {
deba@416
  2294
        if (Parent::direction(e)) {
deba@416
  2295
          return (*_forward)[e];
deba@416
  2296
        } else {
deba@416
  2297
          return (*_backward)[e];
deba@414
  2298
        }
deba@414
  2299
      }
deba@414
  2300
kpeter@451
  2301
      /// Returns a reference to the value associated with the given key.
kpeter@449
  2302
      ReturnValue operator[](const Key& e) {
deba@416
  2303
        if (Parent::direction(e)) {
deba@416
  2304
          return (*_forward)[e];
deba@416
  2305
        } else {
deba@416
  2306
          return (*_backward)[e];
deba@414
  2307
        }
deba@414
  2308
      }
deba@414
  2309
deba@416
  2310
    protected:
deba@416
  2311
kpeter@559
  2312
      FW* _forward;
kpeter@559
  2313
      BK* _backward;
deba@416
  2314
deba@416
  2315
    };
deba@416
  2316
kpeter@451
  2317
    /// \brief Returns a combined arc map
deba@416
  2318
    ///
kpeter@451
  2319
    /// This function just returns a combined arc map.
kpeter@559
  2320
    template <typename FW, typename BK>
kpeter@559
  2321
    static CombinedArcMap<FW, BK>
kpeter@559
  2322
    combinedArcMap(FW& forward, BK& backward) {
kpeter@559
  2323
      return CombinedArcMap<FW, BK>(forward, backward);
deba@416
  2324
    }
deba@416
  2325
kpeter@559
  2326
    template <typename FW, typename BK>
kpeter@559
  2327
    static CombinedArcMap<const FW, BK>
kpeter@559
  2328
    combinedArcMap(const FW& forward, BK& backward) {
kpeter@559
  2329
      return CombinedArcMap<const FW, BK>(forward, backward);
deba@416
  2330
    }
deba@416
  2331
kpeter@559
  2332
    template <typename FW, typename BK>
kpeter@559
  2333
    static CombinedArcMap<FW, const BK>
kpeter@559
  2334
    combinedArcMap(FW& forward, const BK& backward) {
kpeter@559
  2335
      return CombinedArcMap<FW, const BK>(forward, backward);
deba@416
  2336
    }
deba@416
  2337
kpeter@559
  2338
    template <typename FW, typename BK>
kpeter@559
  2339
    static CombinedArcMap<const FW, const BK>
kpeter@559
  2340
    combinedArcMap(const FW& forward, const BK& backward) {
kpeter@559
  2341
      return CombinedArcMap<const FW, const BK>(forward, backward);
deba@416
  2342
    }
deba@416
  2343
deba@416
  2344
  };
deba@416
  2345
kpeter@451
  2346
  /// \brief Returns a read-only Undirector adaptor
deba@416
  2347
  ///
kpeter@451
  2348
  /// This function just returns a read-only \ref Undirector adaptor.
kpeter@451
  2349
  /// \ingroup graph_adaptors
kpeter@451
  2350
  /// \relates Undirector
deba@488
  2351
  template<typename DGR>
deba@488
  2352
  Undirector<const DGR> undirector(const DGR& digraph) {
deba@488
  2353
    return Undirector<const DGR>(digraph);
deba@416
  2354
  }
deba@416
  2355
kpeter@451
  2356
deba@488
  2357
  template <typename GR, typename DM>
deba@416
  2358
  class OrienterBase {
deba@416
  2359
  public:
deba@416
  2360
deba@488
  2361
    typedef GR Graph;
deba@488
  2362
    typedef DM DirectionMap;
deba@488
  2363
deba@488
  2364
    typedef typename GR::Node Node;
deba@488
  2365
    typedef typename GR::Edge Arc;
deba@416
  2366
deba@416
  2367
    void reverseArc(const Arc& arc) {
deba@416
  2368
      _direction->set(arc, !(*_direction)[arc]);
deba@416
  2369
    }
deba@416
  2370
deba@416
  2371
    void first(Node& i) const { _graph->first(i); }
deba@416
  2372
    void first(Arc& i) const { _graph->first(i); }
deba@416
  2373
    void firstIn(Arc& i, const Node& n) const {
kpeter@447
  2374
      bool d = true;
deba@416
  2375
      _graph->firstInc(i, d, n);
deba@416
  2376
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2377
    }
deba@416
  2378
    void firstOut(Arc& i, const Node& n ) const {
kpeter@447
  2379
      bool d = true;
deba@416
  2380
      _graph->firstInc(i, d, n);
deba@416
  2381
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2382
    }
deba@416
  2383
deba@416
  2384
    void next(Node& i) const { _graph->next(i); }
deba@416
  2385
    void next(Arc& i) const { _graph->next(i); }
deba@416
  2386
    void nextIn(Arc& i) const {
deba@416
  2387
      bool d = !(*_direction)[i];
deba@416
  2388
      _graph->nextInc(i, d);
deba@416
  2389
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2390
    }
deba@416
  2391
    void nextOut(Arc& i) const {
deba@416
  2392
      bool d = (*_direction)[i];
deba@416
  2393
      _graph->nextInc(i, d);
deba@416
  2394
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2395
    }
deba@416
  2396
deba@416
  2397
    Node source(const Arc& e) const {
deba@416
  2398
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
deba@416
  2399
    }
deba@416
  2400
    Node target(const Arc& e) const {
deba@416
  2401
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
deba@416
  2402
    }
deba@416
  2403
deba@416
  2404
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
deba@416
  2405
    int nodeNum() const { return _graph->nodeNum(); }
deba@416
  2406
kpeter@446
  2407
    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
deba@416
  2408
    int arcNum() const { return _graph->edgeNum(); }
deba@416
  2409
kpeter@446
  2410
    typedef FindEdgeTagIndicator<Graph> FindArcTag;
deba@416
  2411
    Arc findArc(const Node& u, const Node& v,
kpeter@448
  2412
                const Arc& prev = INVALID) const {
kpeter@449
  2413
      Arc arc = _graph->findEdge(u, v, prev);
kpeter@449
  2414
      while (arc != INVALID && source(arc) != u) {
deba@416
  2415
        arc = _graph->findEdge(u, v, arc);
deba@414
  2416
      }
deba@416
  2417
      return arc;
deba@416
  2418
    }
deba@416
  2419
deba@416
  2420
    Node addNode() {
deba@416
  2421
      return Node(_graph->addNode());
deba@416
  2422
    }
deba@416
  2423
deba@416
  2424
    Arc addArc(const Node& u, const Node& v) {
kpeter@449
  2425
      Arc arc = _graph->addEdge(u, v);
kpeter@449
  2426
      _direction->set(arc, _graph->u(arc) == u);
deba@416
  2427
      return arc;
deba@416
  2428
    }
deba@416
  2429
deba@416
  2430
    void erase(const Node& i) { _graph->erase(i); }
deba@416
  2431
    void erase(const Arc& i) { _graph->erase(i); }
deba@416
  2432
deba@416
  2433
    void clear() { _graph->clear(); }
deba@416
  2434
deba@416
  2435
    int id(const Node& v) const { return _graph->id(v); }
deba@416
  2436
    int id(const Arc& e) const { return _graph->id(e); }
deba@416
  2437
deba@416
  2438
    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
deba@416
  2439
    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
deba@416
  2440
deba@416
  2441
    int maxNodeId() const { return _graph->maxNodeId(); }
deba@416
  2442
    int maxArcId() const { return _graph->maxEdgeId(); }
deba@416
  2443
deba@488
  2444
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
deba@416
  2445
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
deba@416
  2446
deba@488
  2447
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
deba@416
  2448
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
deba@416
  2449
deba@488
  2450
    template <typename V>
deba@488
  2451
    class NodeMap : public GR::template NodeMap<V> {
deba@416
  2452
    public:
deba@416
  2453
deba@488
  2454
      typedef typename GR::template NodeMap<V> Parent;
deba@488
  2455
deba@488
  2456
      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
deba@416
  2457
        : Parent(*adapter._graph) {}
deba@416
  2458
deba@488
  2459
      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
deba@416
  2460
        : Parent(*adapter._graph, value) {}
deba@416
  2461
deba@416
  2462
    private:
deba@416
  2463
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  2464
        return operator=<NodeMap>(cmap);
deba@416
  2465
      }
deba@416
  2466
deba@416
  2467
      template <typename CMap>
deba@416
  2468
      NodeMap& operator=(const CMap& cmap) {
deba@416
  2469
        Parent::operator=(cmap);
deba@416
  2470
        return *this;
deba@416
  2471
      }
deba@414
  2472
deba@414
  2473
    };
deba@414
  2474
deba@488
  2475
    template <typename V>
deba@488
  2476
    class ArcMap : public GR::template EdgeMap<V> {
deba@416
  2477
    public:
deba@416
  2478
deba@488
  2479
      typedef typename Graph::template EdgeMap<V> Parent;
deba@488
  2480
deba@488
  2481
      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
deba@416
  2482
        : Parent(*adapter._graph) { }
deba@416
  2483
deba@488
  2484
      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
deba@416
  2485
        : Parent(*adapter._graph, value) { }
deba@416
  2486
deba@416
  2487
    private:
deba@416
  2488
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  2489
        return operator=<ArcMap>(cmap);
deba@416
  2490
      }
deba@416
  2491
deba@416
  2492
      template <typename CMap>
deba@416
  2493
      ArcMap& operator=(const CMap& cmap) {
deba@416
  2494
        Parent::operator=(cmap);
deba@416
  2495
        return *this;
deba@416
  2496
      }
deba@416
  2497
    };
deba@416
  2498
deba@416
  2499
deba@416
  2500
deba@416
  2501
  protected:
deba@416
  2502
    Graph* _graph;
deba@488
  2503
    DM* _direction;
deba@488
  2504
deba@488
  2505
    void initialize(GR& graph, DM& direction) {
deba@488
  2506
      _graph = &graph;
deba@416
  2507
      _direction = &direction;
deba@416
  2508
    }
deba@416
  2509
deba@414
  2510
  };
deba@414
  2511
deba@416
  2512
  /// \ingroup graph_adaptors
deba@414
  2513
  ///
kpeter@451
  2514
  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
deba@416
  2515
  ///
kpeter@451
  2516
  /// Orienter adaptor can be used for orienting the edges of a graph to
kpeter@451
  2517
  /// get a digraph. A \c bool edge map of the underlying graph must be
kpeter@451
  2518
  /// specified, which define the direction of the arcs in the adaptor.
kpeter@451
  2519
  /// The arcs can be easily reversed by the \c reverseArc() member function
kpeter@451
  2520
  /// of the adaptor.
kpeter@451
  2521
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
deba@416
  2522
  ///
kpeter@451
  2523
  /// The adapted graph can also be modified through this adaptor
kpeter@453
  2524
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
  2525
  /// parameter is set to be \c const.
deba@416
  2526
  ///
kpeter@453
  2527
  /// \tparam GR The type of the adapted graph.
kpeter@451
  2528
  /// It must conform to the \ref concepts::Graph "Graph" concept.
kpeter@451
  2529
  /// It can also be specified to be \c const.
kpeter@453
  2530
  /// \tparam DM The type of the direction map.
kpeter@453
  2531
  /// It must be a \c bool (or convertible) edge map of the
kpeter@453
  2532
  /// adapted graph. The default type is
kpeter@453
  2533
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
kpeter@451
  2534
  ///
kpeter@451
  2535
  /// \note The \c Node type of this adaptor and the adapted graph are
kpeter@451
  2536
  /// convertible to each other, moreover the \c Arc type of the adaptor
kpeter@451
  2537
  /// and the \c Edge type of the adapted graph are also convertible to
kpeter@451
  2538
  /// each other.
kpeter@451
  2539
#ifdef DOXYGEN
kpeter@453
  2540
  template<typename GR,
kpeter@453
  2541
           typename DM>
kpeter@453
  2542
  class Orienter {
kpeter@451
  2543
#else
kpeter@453
  2544
  template<typename GR,
kpeter@453
  2545
           typename DM = typename GR::template EdgeMap<bool> >
kpeter@453
  2546
  class Orienter :
kpeter@453
  2547
    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
kpeter@451
  2548
#endif
deba@416
  2549
  public:
kpeter@451
  2550
kpeter@451
  2551
    /// The type of the adapted graph.
kpeter@453
  2552
    typedef GR Graph;
kpeter@451
  2553
    /// The type of the direction edge map.
kpeter@453
  2554
    typedef DM DirectionMap;
kpeter@453
  2555
kpeter@453
  2556
    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
deba@416
  2557
    typedef typename Parent::Arc Arc;
deba@416
  2558
  protected:
deba@416
  2559
    Orienter() { }
deba@416
  2560
  public:
deba@416
  2561
kpeter@451
  2562
    /// \brief Constructor
deba@416
  2563
    ///
kpeter@451
  2564
    /// Constructor of the adaptor.
deba@488
  2565
    Orienter(GR& graph, DM& direction) {
deba@488
  2566
      Parent::initialize(graph, direction);
deba@416
  2567
    }
deba@416
  2568
kpeter@451
  2569
    /// \brief Reverses the given arc
deba@416
  2570
    ///
kpeter@451
  2571
    /// This function reverses the given arc.
kpeter@451
  2572
    /// It is done by simply negate the assigned value of \c a
kpeter@451
  2573
    /// in the direction map.
deba@416
  2574
    void reverseArc(const Arc& a) {
deba@416
  2575
      Parent::reverseArc(a);
deba@416
  2576
    }
deba@416
  2577
  };
deba@416
  2578
kpeter@451
  2579
  /// \brief Returns a read-only Orienter adaptor
deba@416
  2580
  ///
kpeter@451
  2581
  /// This function just returns a read-only \ref Orienter adaptor.
kpeter@451
  2582
  /// \ingroup graph_adaptors
kpeter@451
  2583
  /// \relates Orienter
kpeter@453
  2584
  template<typename GR, typename DM>
kpeter@453
  2585
  Orienter<const GR, DM>
deba@488
  2586
  orienter(const GR& graph, DM& direction) {
deba@488
  2587
    return Orienter<const GR, DM>(graph, direction);
deba@414
  2588
  }
deba@414
  2589
kpeter@453
  2590
  template<typename GR, typename DM>
kpeter@453
  2591
  Orienter<const GR, const DM>
deba@488
  2592
  orienter(const GR& graph, const DM& direction) {
deba@488
  2593
    return Orienter<const GR, const DM>(graph, direction);
deba@416
  2594
  }
deba@416
  2595
deba@416
  2596
  namespace _adaptor_bits {
deba@416
  2597
deba@488
  2598
    template <typename DGR, typename CM, typename FM, typename TL>
deba@416
  2599
    class ResForwardFilter {
deba@416
  2600
    public:
deba@416
  2601
deba@488
  2602
      typedef typename DGR::Arc Key;
deba@416
  2603
      typedef bool Value;
deba@416
  2604
deba@416
  2605
    private:
deba@416
  2606
deba@488
  2607
      const CM* _capacity;
deba@488
  2608
      const FM* _flow;
deba@488
  2609
      TL _tolerance;
deba@488
  2610
deba@416
  2611
    public:
deba@416
  2612
deba@488
  2613
      ResForwardFilter(const CM& capacity, const FM& flow,
deba@488
  2614
                       const TL& tolerance = TL())
deba@416
  2615
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
deba@416
  2616
deba@488
  2617
      bool operator[](const typename DGR::Arc& a) const {
deba@416
  2618
        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
deba@416
  2619
      }
deba@416
  2620
    };
deba@416
  2621
deba@488
  2622
    template<typename DGR,typename CM, typename FM, typename TL>
deba@416
  2623
    class ResBackwardFilter {
deba@416
  2624
    public:
deba@416
  2625
deba@488
  2626
      typedef typename DGR::Arc Key;
deba@416
  2627
      typedef bool Value;
deba@416
  2628
deba@416
  2629
    private:
deba@416
  2630
deba@488
  2631
      const CM* _capacity;
deba@488
  2632
      const FM* _flow;
deba@488
  2633
      TL _tolerance;
deba@416
  2634
deba@416
  2635
    public:
deba@416
  2636
deba@488
  2637
      ResBackwardFilter(const CM& capacity, const FM& flow,
deba@488
  2638
                        const TL& tolerance = TL())
deba@416
  2639
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
deba@416
  2640
deba@488
  2641
      bool operator[](const typename DGR::Arc& a) const {
deba@416
  2642
        return _tolerance.positive((*_flow)[a]);
deba@416
  2643
      }
deba@416
  2644
    };
deba@416
  2645
deba@416
  2646
  }
deba@416
  2647
deba@416
  2648
  /// \ingroup graph_adaptors
deba@416
  2649
  ///
kpeter@451
  2650
  /// \brief Adaptor class for composing the residual digraph for directed
deba@416
  2651
  /// flow and circulation problems.
deba@416
  2652
  ///
kpeter@464
  2653
  /// ResidualDigraph can be used for composing the \e residual digraph
kpeter@464
  2654
  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
kpeter@464
  2655
  /// be a directed graph and let \f$ F \f$ be a number type.
kpeter@464
  2656
  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
kpeter@451
  2657
  /// This adaptor implements a digraph structure with node set \f$ V \f$
kpeter@451
  2658
  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
kpeter@451
  2659
  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
kpeter@451
  2660
  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
kpeter@451
  2661
  /// called residual digraph.
kpeter@451
  2662
  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
kpeter@451
  2663
  /// multiplicities are counted, i.e. the adaptor has exactly
kpeter@451
  2664
  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
kpeter@451
  2665
  /// arcs).
kpeter@451
  2666
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
deba@416
  2667
  ///
deba@488
  2668
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  2669
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  2670
  /// It is implicitly \c const.
kpeter@453
  2671
  /// \tparam CM The type of the capacity map.
kpeter@453
  2672
  /// It must be an arc map of some numerical type, which defines
kpeter@451
  2673
  /// the capacities in the flow problem. It is implicitly \c const.
kpeter@453
  2674
  /// The default type is
kpeter@453
  2675
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
kpeter@453
  2676
  /// \tparam FM The type of the flow map.
kpeter@453
  2677
  /// It must be an arc map of some numerical type, which defines
kpeter@453
  2678
  /// the flow values in the flow problem. The default type is \c CM.
kpeter@453
  2679
  /// \tparam TL The tolerance type for handling inexact computation.
kpeter@451
  2680
  /// The default tolerance type depends on the value type of the
kpeter@451
  2681
  /// capacity map.
deba@416
  2682
  ///
kpeter@451
  2683
  /// \note This adaptor is implemented using Undirector and FilterArcs
kpeter@451
  2684
  /// adaptors.
kpeter@451
  2685
  ///
kpeter@451
  2686
  /// \note The \c Node type of this adaptor and the adapted digraph are
kpeter@451
  2687
  /// convertible to each other, moreover the \c Arc type of the adaptor
kpeter@451
  2688
  /// is convertible to the \c Arc type of the adapted digraph.
kpeter@451
  2689
#ifdef DOXYGEN
deba@488
  2690
  template<typename DGR, typename CM, typename FM, typename TL>
kpeter@464
  2691
  class ResidualDigraph
kpeter@451
  2692
#else
deba@488
  2693
  template<typename DGR,
deba@488
  2694
           typename CM = typename DGR::template ArcMap<int>,
kpeter@453
  2695
           typename FM = CM,
kpeter@453
  2696
           typename TL = Tolerance<typename CM::Value> >
deba@488
  2697
  class ResidualDigraph 
deba@488
  2698
    : public SubDigraph<
deba@488
  2699
        Undirector<const DGR>,
deba@488
  2700
        ConstMap<typename DGR::Node, Const<bool, true> >,
deba@488
  2701
        typename Undirector<const DGR>::template CombinedArcMap<
deba@488
  2702
          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
deba@488
  2703
          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
kpeter@451
  2704
#endif
deba@416
  2705
  {
deba@414
  2706
  public:
deba@414
  2707
kpeter@451
  2708
    /// The type of the underlying digraph.
deba@488
  2709
    typedef DGR Digraph;
kpeter@451
  2710
    /// The type of the capacity map.
kpeter@453
  2711
    typedef CM CapacityMap;
kpeter@451
  2712
    /// The type of the flow map.
kpeter@453
  2713
    typedef FM FlowMap;
kpeter@453
  2714
    /// The tolerance type.
kpeter@453
  2715
    typedef TL Tolerance;
deba@414
  2716
deba@414
  2717
    typedef typename CapacityMap::Value Value;
kpeter@464
  2718
    typedef ResidualDigraph Adaptor;
deba@414
  2719
deba@414
  2720
  protected:
deba@414
  2721
deba@416
  2722
    typedef Undirector<const Digraph> Undirected;
deba@416
  2723
deba@488
  2724
    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
deba@488
  2725
deba@488
  2726
    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
deba@488
  2727
                                            FM, TL> ForwardFilter;
deba@488
  2728
deba@488
  2729
    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
deba@488
  2730
                                             FM, TL> BackwardFilter;
deba@416
  2731
deba@416
  2732
    typedef typename Undirected::
kpeter@453
  2733
      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
deba@414
  2734
deba@488
  2735
    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
deba@414
  2736
deba@414
  2737
    const CapacityMap* _capacity;
deba@414
  2738
    FlowMap* _flow;
deba@414
  2739
deba@416
  2740
    Undirected _graph;
deba@488
  2741
    NodeFilter _node_filter;
deba@414
  2742
    ForwardFilter _forward_filter;
deba@414
  2743
    BackwardFilter _backward_filter;
deba@414
  2744
    ArcFilter _arc_filter;
deba@414
  2745
deba@414
  2746
  public:
deba@414
  2747
kpeter@451
  2748
    /// \brief Constructor
deba@414
  2749
    ///
kpeter@451
  2750
    /// Constructor of the residual digraph adaptor. The parameters are the
kpeter@451
  2751
    /// digraph, the capacity map, the flow map, and a tolerance object.
deba@488
  2752
    ResidualDigraph(const DGR& digraph, const CM& capacity,
deba@488
  2753
                    FM& flow, const TL& tolerance = Tolerance())
deba@488
  2754
      : Parent(), _capacity(&capacity), _flow(&flow), 
deba@488
  2755
        _graph(digraph), _node_filter(),
deba@416
  2756
        _forward_filter(capacity, flow, tolerance),
deba@414
  2757
        _backward_filter(capacity, flow, tolerance),
deba@414
  2758
        _arc_filter(_forward_filter, _backward_filter)
deba@414
  2759
    {
deba@488
  2760
      Parent::initialize(_graph, _node_filter, _arc_filter);
deba@414
  2761
    }
deba@414
  2762
deba@414
  2763
    typedef typename Parent::Arc Arc;
deba@414
  2764
kpeter@451
  2765
    /// \brief Returns the residual capacity of the given arc.
deba@414
  2766
    ///
kpeter@451
  2767
    /// Returns the residual capacity of the given arc.
deba@416
  2768
    Value residualCapacity(const Arc& a) const {
deba@416
  2769
      if (Undirected::direction(a)) {
deba@416
  2770
        return (*_capacity)[a] - (*_flow)[a];
deba@414
  2771
      } else {
deba@416
  2772
        return (*_flow)[a];
deba@414
  2773
      }
deba@416
  2774
    }
deba@416
  2775
kpeter@452
  2776
    /// \brief Augments on the given arc in the residual digraph.
deba@414
  2777
    ///
kpeter@452
  2778
    /// Augments on the given arc in the residual digraph. It increases
kpeter@451
  2779
    /// or decreases the flow value on the original arc according to the
kpeter@451
  2780
    /// direction of the residual arc.
deba@416
  2781
    void augment(const Arc& a, const Value& v) const {
deba@416
  2782
      if (Undirected::direction(a)) {
deba@416
  2783
        _flow->set(a, (*_flow)[a] + v);
deba@416
  2784
      } else {
deba@416
  2785
        _flow->set(a, (*_flow)[a] - v);
deba@414
  2786
      }
deba@414
  2787
    }
deba@414
  2788
kpeter@451
  2789
    /// \brief Returns \c true if the given residual arc is a forward arc.
deba@414
  2790
    ///
kpeter@451
  2791
    /// Returns \c true if the given residual arc has the same orientation
kpeter@451
  2792
    /// as the original arc, i.e. it is a so called forward arc.
deba@416
  2793
    static bool forward(const Arc& a) {
deba@416
  2794
      return Undirected::direction(a);
deba@414
  2795
    }
deba@414
  2796
kpeter@451
  2797
    /// \brief Returns \c true if the given residual arc is a backward arc.
deba@414
  2798
    ///
kpeter@451
  2799
    /// Returns \c true if the given residual arc has the opposite orientation
kpeter@451
  2800
    /// than the original arc, i.e. it is a so called backward arc.
deba@416
  2801
    static bool backward(const Arc& a) {
deba@416
  2802
      return !Undirected::direction(a);
deba@414
  2803
    }
deba@414
  2804
kpeter@451
  2805
    /// \brief Returns the forward oriented residual arc.
deba@414
  2806
    ///
kpeter@451
  2807
    /// Returns the forward oriented residual arc related to the given
kpeter@451
  2808
    /// arc of the underlying digraph.
deba@416
  2809
    static Arc forward(const typename Digraph::Arc& a) {
deba@416
  2810
      return Undirected::direct(a, true);
deba@414
  2811
    }
deba@414
  2812
kpeter@451
  2813
    /// \brief Returns the backward oriented residual arc.
deba@414
  2814
    ///
kpeter@451
  2815
    /// Returns the backward oriented residual arc related to the given
kpeter@451
  2816
    /// arc of the underlying digraph.
deba@416
  2817
    static Arc backward(const typename Digraph::Arc& a) {
deba@416
  2818
      return Undirected::direct(a, false);
deba@414
  2819
    }
deba@414
  2820
deba@414
  2821
    /// \brief Residual capacity map.
deba@414
  2822
    ///
kpeter@451
  2823
    /// This map adaptor class can be used for obtaining the residual
kpeter@451
  2824
    /// capacities as an arc map of the residual digraph.
kpeter@451
  2825
    /// Its value type is inherited from the capacity map.
deba@416
  2826
    class ResidualCapacity {
deba@414
  2827
    protected:
deba@414
  2828
      const Adaptor* _adaptor;
deba@414
  2829
    public:
kpeter@451
  2830
      /// The key type of the map
deba@414
  2831
      typedef Arc Key;
kpeter@451
  2832
      /// The value type of the map
kpeter@453
  2833
      typedef typename CapacityMap::Value Value;
deba@414
  2834
deba@416
  2835
      /// Constructor
deba@488
  2836
      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) 
deba@488
  2837
        : _adaptor(&adaptor) {}
deba@416
  2838
kpeter@451
  2839
      /// Returns the value associated with the given residual arc
deba@416
  2840
      Value operator[](const Arc& a) const {
deba@416
  2841
        return _adaptor->residualCapacity(a);
deba@414
  2842
      }
deba@416
  2843
deba@414
  2844
    };
deba@414
  2845
kpeter@450
  2846
    /// \brief Returns a residual capacity map
kpeter@450
  2847
    ///
kpeter@450
  2848
    /// This function just returns a residual capacity map.
kpeter@450
  2849
    ResidualCapacity residualCapacity() const {
kpeter@450
  2850
      return ResidualCapacity(*this);
kpeter@450
  2851
    }
kpeter@450
  2852
deba@414
  2853
  };
deba@414
  2854
kpeter@450
  2855
  /// \brief Returns a (read-only) Residual adaptor
kpeter@450
  2856
  ///
deba@488
  2857
  /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
kpeter@450
  2858
  /// \ingroup graph_adaptors
deba@488
  2859
  /// \relates ResidualDigraph
deba@488
  2860
    template<typename DGR, typename CM, typename FM>
deba@488
  2861
  ResidualDigraph<DGR, CM, FM>
deba@488
  2862
  residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
deba@488
  2863
    return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
kpeter@450
  2864
  }
kpeter@450
  2865
kpeter@450
  2866
deba@488
  2867
  template <typename DGR>
deba@416
  2868
  class SplitNodesBase {
deba@414
  2869
  public:
deba@414
  2870
deba@488
  2871
    typedef DGR Digraph;
deba@488
  2872
    typedef DigraphAdaptorBase<const DGR> Parent;
deba@416
  2873
    typedef SplitNodesBase Adaptor;
deba@414
  2874
deba@488
  2875
    typedef typename DGR::Node DigraphNode;
deba@488
  2876
    typedef typename DGR::Arc DigraphArc;
deba@414
  2877
deba@414
  2878
    class Node;
deba@414
  2879
    class Arc;
deba@414
  2880
deba@414
  2881
  private:
deba@414
  2882
deba@414
  2883
    template <typename T> class NodeMapBase;
deba@414
  2884
    template <typename T> class ArcMapBase;
deba@414
  2885
deba@414
  2886
  public:
deba@416
  2887
deba@414
  2888
    class Node : public DigraphNode {
deba@416
  2889
      friend class SplitNodesBase;
deba@414
  2890
      template <typename T> friend class NodeMapBase;
deba@414
  2891
    private:
deba@414
  2892
deba@414
  2893
      bool _in;
deba@414
  2894
      Node(DigraphNode node, bool in)
deba@416
  2895
        : DigraphNode(node), _in(in) {}
deba@416
  2896
deba@414
  2897
    public:
deba@414
  2898
deba@414
  2899
      Node() {}
deba@414
  2900
      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
deba@414
  2901
deba@414
  2902
      bool operator==(const Node& node) const {
deba@416
  2903
        return DigraphNode::operator==(node) && _in == node._in;
deba@414
  2904
      }
deba@416
  2905
deba@414
  2906
      bool operator!=(const Node& node) const {
deba@416
  2907
        return !(*this == node);
deba@414
  2908
      }
deba@416
  2909
deba@414
  2910
      bool operator<(const Node& node) const {
deba@416
  2911
        return DigraphNode::operator<(node) ||
deba@416
  2912
          (DigraphNode::operator==(node) && _in < node._in);
deba@414
  2913
      }
deba@414
  2914
    };
deba@414
  2915
deba@414
  2916
    class Arc {
deba@416
  2917
      friend class SplitNodesBase;
deba@414
  2918
      template <typename T> friend class ArcMapBase;
deba@414
  2919
    private:
deba@414
  2920
      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
deba@414
  2921
deba@414
  2922
      explicit Arc(const DigraphArc& arc) : _item(arc) {}
deba@414
  2923
      explicit Arc(const DigraphNode& node) : _item(node) {}
deba@416
  2924
deba@414
  2925
      ArcImpl _item;
deba@414
  2926
deba@414
  2927
    public:
deba@414
  2928
      Arc() {}
deba@414
  2929
      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
deba@414
  2930
deba@414
  2931
      bool operator==(const Arc& arc) const {
deba@414
  2932
        if (_item.firstState()) {
deba@414
  2933
          if (arc._item.firstState()) {
deba@414
  2934
            return _item.first() == arc._item.first();
deba@414
  2935
          }
deba@414
  2936
        } else {
deba@414
  2937
          if (arc._item.secondState()) {
deba@414
  2938
            return _item.second() == arc._item.second();
deba@414
  2939
          }
deba@414
  2940
        }
deba@414
  2941
        return false;
deba@414
  2942
      }
deba@416
  2943
deba@414
  2944
      bool operator!=(const Arc& arc) const {
deba@416
  2945
        return !(*this == arc);
deba@414
  2946
      }
deba@416
  2947
deba@414
  2948
      bool operator<(const Arc& arc) const {
deba@414
  2949
        if (_item.firstState()) {
deba@414
  2950
          if (arc._item.firstState()) {
deba@414
  2951
            return _item.first() < arc._item.first();
deba@414
  2952
          }
deba@414
  2953
          return false;
deba@414
  2954
        } else {
deba@414
  2955
          if (arc._item.secondState()) {
deba@414
  2956
            return _item.second() < arc._item.second();
deba@414
  2957
          }
deba@414
  2958
          return true;
deba@414
  2959
        }
deba@414
  2960
      }
deba@414
  2961
deba@414
  2962
      operator DigraphArc() const { return _item.first(); }
deba@414
  2963
      operator DigraphNode() const { return _item.second(); }
deba@414
  2964
deba@414
  2965
    };
deba@414
  2966
deba@414
  2967
    void first(Node& n) const {
deba@414
  2968
      _digraph->first(n);
deba@414
  2969
      n._in = true;
deba@414
  2970
    }
deba@414
  2971
deba@414
  2972
    void next(Node& n) const {
deba@414
  2973
      if (n._in) {
deba@416
  2974
        n._in = false;
deba@414
  2975
      } else {
deba@416
  2976
        n._in = true;
deba@416
  2977
        _digraph->next(n);
deba@414
  2978
      }
deba@414
  2979
    }
deba@414
  2980
deba@414
  2981
    void first(Arc& e) const {
deba@414
  2982
      e._item.setSecond();
deba@414
  2983
      _digraph->first(e._item.second());
deba@414
  2984
      if (e._item.second() == INVALID) {
deba@414
  2985
        e._item.setFirst();
deba@416
  2986
        _digraph->first(e._item.first());
deba@414
  2987
      }
deba@414
  2988
    }
deba@414
  2989
deba@414
  2990
    void next(Arc& e) const {
deba@414
  2991
      if (e._item.secondState()) {
deba@416
  2992
        _digraph->next(e._item.second());
deba@414
  2993
        if (e._item.second() == INVALID) {
deba@414
  2994
          e._item.setFirst();
deba@414
  2995
          _digraph->first(e._item.first());
deba@414
  2996
        }
deba@414
  2997
      } else {
deba@416
  2998
        _digraph->next(e._item.first());
deba@416
  2999
      }
deba@414
  3000
    }
deba@414
  3001
deba@414
  3002
    void firstOut(Arc& e, const Node& n) const {
deba@414
  3003
      if (n._in) {
deba@414
  3004
        e._item.setSecond(n);
deba@414
  3005
      } else {
deba@414
  3006
        e._item.setFirst();
deba@416
  3007
        _digraph->firstOut(e._item.first(), n);
deba@414
  3008
      }
deba@414
  3009
    }
deba@414
  3010
deba@414
  3011
    void nextOut(Arc& e) const {
deba@414
  3012
      if (!e._item.firstState()) {
deba@416
  3013
        e._item.setFirst(INVALID);
deba@414
  3014
      } else {
deba@416
  3015
        _digraph->nextOut(e._item.first());
deba@416
  3016
      }
deba@414
  3017
    }
deba@414
  3018
deba@414
  3019
    void firstIn(Arc& e, const Node& n) const {
deba@414
  3020
      if (!n._in) {
deba@416
  3021
        e._item.setSecond(n);
deba@414
  3022
      } else {
deba@414
  3023
        e._item.setFirst();
deba@416
  3024
        _digraph->firstIn(e._item.first(), n);
deba@414
  3025
      }
deba@414
  3026
    }
deba@414
  3027
deba@414
  3028
    void nextIn(Arc& e) const {
deba@414
  3029
      if (!e._item.firstState()) {
deba@416
  3030
        e._item.setFirst(INVALID);
deba@414
  3031
      } else {
deba@416
  3032
        _digraph->nextIn(e._item.first());
deba@414
  3033
      }
deba@414
  3034
    }
deba@414
  3035
deba@414
  3036
    Node source(const Arc& e) const {
deba@414
  3037
      if (e._item.firstState()) {
deba@416
  3038
        return Node(_digraph->source(e._item.first()), false);
deba@414
  3039
      } else {
deba@416
  3040
        return Node(e._item.second(), true);
deba@414
  3041
      }
deba@414
  3042
    }
deba@414
  3043
deba@414
  3044
    Node target(const Arc& e) const {
deba@414
  3045
      if (e._item.firstState()) {
deba@416
  3046
        return Node(_digraph->target(e._item.first()), true);
deba@414
  3047
      } else {
deba@416
  3048
        return Node(e._item.second(), false);
deba@414
  3049
      }
deba@414
  3050
    }
deba@414
  3051
deba@414
  3052
    int id(const Node& n) const {
deba@414
  3053
      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
deba@414
  3054
    }
deba@414
  3055
    Node nodeFromId(int ix) const {
deba@414
  3056
      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
deba@414
  3057
    }
deba@414
  3058
    int maxNodeId() const {
deba@414
  3059
      return 2 * _digraph->maxNodeId() + 1;
deba@414
  3060
    }
deba@414
  3061
deba@414
  3062
    int id(const Arc& e) const {
deba@414
  3063
      if (e._item.firstState()) {
deba@414
  3064
        return _digraph->id(e._item.first()) << 1;
deba@414
  3065
      } else {
deba@414
  3066
        return (_digraph->id(e._item.second()) << 1) | 1;
deba@414
  3067
      }
deba@414
  3068
    }
deba@414
  3069
    Arc arcFromId(int ix) const {
deba@414
  3070
      if ((ix & 1) == 0) {
deba@414
  3071
        return Arc(_digraph->arcFromId(ix >> 1));
deba@414
  3072
      } else {
deba@414
  3073
        return Arc(_digraph->nodeFromId(ix >> 1));
deba@414
  3074
      }
deba@414
  3075
    }
deba@414
  3076
    int maxArcId() const {
deba@416
  3077
      return std::max(_digraph->maxNodeId() << 1,
deba@414
  3078
                      (_digraph->maxArcId() << 1) | 1);
deba@414
  3079
    }
deba@414
  3080
deba@414
  3081
    static bool inNode(const Node& n) {
deba@414
  3082
      return n._in;
deba@414
  3083
    }
deba@414
  3084
deba@414
  3085
    static bool outNode(const Node& n) {
deba@414
  3086
      return !n._in;
deba@414
  3087
    }
deba@414
  3088
deba@414
  3089
    static bool origArc(const Arc& e) {
deba@414
  3090
      return e._item.firstState();
deba@414
  3091
    }
deba@414
  3092
deba@414
  3093
    static bool bindArc(const Arc& e) {
deba@414
  3094
      return e._item.secondState();
deba@414
  3095
    }
deba@414
  3096
deba@414
  3097
    static Node inNode(const DigraphNode& n) {
deba@414
  3098
      return Node(n, true);
deba@414
  3099
    }
deba@414
  3100
deba@414
  3101
    static Node outNode(const DigraphNode& n) {
deba@414
  3102
      return Node(n, false);
deba@414
  3103
    }
deba@414
  3104
deba@414
  3105
    static Arc arc(const DigraphNode& n) {
deba@414
  3106
      return Arc(n);
deba@414
  3107
    }
deba@414
  3108
deba@414
  3109
    static Arc arc(const DigraphArc& e) {
deba@414
  3110
      return Arc(e);
deba@414
  3111
    }
deba@414
  3112
deba@414
  3113
    typedef True NodeNumTag;
deba@414
  3114
    int nodeNum() const {
deba@414
  3115
      return  2 * countNodes(*_digraph);
deba@414
  3116
    }
deba@414
  3117
kpeter@446
  3118
    typedef True ArcNumTag;
deba@414
  3119
    int arcNum() const {
deba@414
  3120
      return countArcs(*_digraph) + countNodes(*_digraph);
deba@414
  3121
    }
deba@414
  3122
kpeter@446
  3123
    typedef True FindArcTag;
deba@416
  3124
    Arc findArc(const Node& u, const Node& v,
deba@416
  3125
                const Arc& prev = INVALID) const {
kpeter@449
  3126
      if (inNode(u) && outNode(v)) {
kpeter@449
  3127
        if (static_cast<const DigraphNode&>(u) ==
kpeter@449
  3128
            static_cast<const DigraphNode&>(v) && prev == INVALID) {
kpeter@449
  3129
          return Arc(u);
deba@414
  3130
        }
kpeter@449
  3131
      }
kpeter@449
  3132
      else if (outNode(u) && inNode(v)) {
kpeter@449
  3133
        return Arc(::lemon::findArc(*_digraph, u, v, prev));
deba@414
  3134
      }
deba@414
  3135
      return INVALID;
deba@414
  3136
    }
deba@414
  3137
deba@414
  3138
  private:
deba@416
  3139
deba@488
  3140
    template <typename V>
deba@416
  3141
    class NodeMapBase
deba@488
  3142
      : public MapTraits<typename Parent::template NodeMap<V> > {
deba@488
  3143
      typedef typename Parent::template NodeMap<V> NodeImpl;
deba@414
  3144
    public:
deba@414
  3145
      typedef Node Key;
deba@488
  3146
      typedef V Value;
kpeter@449
  3147
      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
kpeter@449
  3148
      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
kpeter@449
  3149
      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
kpeter@449
  3150
      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
kpeter@449
  3151
      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
deba@416
  3152
deba@488
  3153
      NodeMapBase(const SplitNodesBase<DGR>& adaptor)
deba@416
  3154
        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
deba@488
  3155
      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3156
        : _in_map(*adaptor._digraph, value),
deba@416
  3157
          _out_map(*adaptor._digraph, value) {}
deba@414
  3158
deba@488
  3159
      void set(const Node& key, const V& val) {
deba@488
  3160
        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
deba@416
  3161
        else {_out_map.set(key, val); }
deba@414
  3162
      }
deba@416
  3163
kpeter@449
  3164
      ReturnValue operator[](const Node& key) {
deba@488
  3165
        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
deba@416
  3166
        else { return _out_map[key]; }
deba@414
  3167
      }
deba@414
  3168
kpeter@449
  3169
      ConstReturnValue operator[](const Node& key) const {
deba@416
  3170
        if (Adaptor::inNode(key)) { return _in_map[key]; }
deba@416
  3171
        else { return _out_map[key]; }
deba@414
  3172
      }
deba@414
  3173
deba@414
  3174
    private:
deba@414
  3175
      NodeImpl _in_map, _out_map;
deba@414
  3176
    };
deba@414
  3177
deba@488
  3178
    template <typename V>
deba@416
  3179
    class ArcMapBase
deba@488
  3180
      : public MapTraits<typename Parent::template ArcMap<V> > {
deba@488
  3181
      typedef typename Parent::template ArcMap<V> ArcImpl;
deba@488
  3182
      typedef typename Parent::template NodeMap<V> NodeImpl;
deba@414
  3183
    public:
deba@414
  3184
      typedef Arc Key;
deba@488
  3185
      typedef V Value;
kpeter@449
  3186
      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
kpeter@449
  3187
      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
kpeter@449
  3188
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
kpeter@449
  3189
      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
kpeter@449
  3190
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
deba@414
  3191
deba@488
  3192
      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
deba@416
  3193
        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
deba@488
  3194
      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3195
        : _arc_map(*adaptor._digraph, value),
deba@416
  3196
          _node_map(*adaptor._digraph, value) {}
deba@414
  3197
deba@488
  3198
      void set(const Arc& key, const V& val) {
deba@488
  3199
        if (SplitNodesBase<DGR>::origArc(key)) {
kpeter@495
  3200
          _arc_map.set(static_cast<const DigraphArc&>(key), val);
deba@414
  3201
        } else {
kpeter@495
  3202
          _node_map.set(static_cast<const DigraphNode&>(key), val);
deba@414
  3203
        }
deba@414
  3204
      }
deba@416
  3205
kpeter@449
  3206
      ReturnValue operator[](const Arc& key) {
deba@488
  3207
        if (SplitNodesBase<DGR>::origArc(key)) {
kpeter@495
  3208
          return _arc_map[static_cast<const DigraphArc&>(key)];
deba@414
  3209
        } else {
kpeter@495
  3210
          return _node_map[static_cast<const DigraphNode&>(key)];
deba@414
  3211
        }
deba@414
  3212
      }
deba@414
  3213
kpeter@449
  3214
      ConstReturnValue operator[](const Arc& key) const {
deba@488
  3215
        if (SplitNodesBase<DGR>::origArc(key)) {
kpeter@495
  3216
          return _arc_map[static_cast<const DigraphArc&>(key)];
deba@414
  3217
        } else {
kpeter@495
  3218
          return _node_map[static_cast<const DigraphNode&>(key)];
deba@414
  3219
        }
deba@414
  3220
      }
deba@414
  3221
deba@414
  3222
    private:
deba@414
  3223
      ArcImpl _arc_map;
deba@414
  3224
      NodeImpl _node_map;
deba@414
  3225
    };
deba@414
  3226
deba@414
  3227
  public:
deba@414
  3228
deba@488
  3229
    template <typename V>
deba@416
  3230
    class NodeMap
deba@488
  3231
      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> >
deba@414
  3232
    {
deba@414
  3233
    public:
deba@488
  3234
      typedef V Value;
deba@488
  3235
      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent;
deba@488
  3236
deba@488
  3237
      NodeMap(const SplitNodesBase<DGR>& adaptor)
deba@416
  3238
        : Parent(adaptor) {}
deba@416
  3239
deba@488
  3240
      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3241
        : Parent(adaptor, value) {}
deba@416
  3242
deba@414
  3243
    private:
deba@414
  3244
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  3245
        return operator=<NodeMap>(cmap);
deba@414
  3246
      }
deba@416
  3247
deba@414
  3248
      template <typename CMap>
deba@414
  3249
      NodeMap& operator=(const CMap& cmap) {
deba@414
  3250
        Parent::operator=(cmap);
deba@416
  3251
        return *this;
deba@414
  3252
      }
deba@414
  3253
    };
deba@414
  3254
deba@488
  3255
    template <typename V>
deba@416
  3256
    class ArcMap
deba@488
  3257
      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> >
deba@414
  3258
    {
deba@414
  3259
    public:
deba@488
  3260
      typedef V Value;
deba@488
  3261
      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent;
deba@488
  3262
deba@488
  3263
      ArcMap(const SplitNodesBase<DGR>& adaptor)
deba@416
  3264
        : Parent(adaptor) {}
deba@416
  3265
deba@488
  3266
      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3267
        : Parent(adaptor, value) {}
deba@416
  3268
deba@414
  3269
    private:
deba@414
  3270
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  3271
        return operator=<ArcMap>(cmap);
deba@414
  3272
      }
deba@416
  3273
deba@414
  3274
      template <typename CMap>
deba@414
  3275
      ArcMap& operator=(const CMap& cmap) {
deba@414
  3276
        Parent::operator=(cmap);
deba@416
  3277
        return *this;
deba@414
  3278
      }
deba@414
  3279
    };
deba@414
  3280
deba@414
  3281
  protected:
deba@414
  3282
deba@416
  3283
    SplitNodesBase() : _digraph(0) {}
deba@414
  3284
deba@488
  3285
    DGR* _digraph;
deba@488
  3286
deba@488
  3287
    void initialize(Digraph& digraph) {
deba@414
  3288
      _digraph = &digraph;
deba@414
  3289
    }
deba@416
  3290
deba@414
  3291
  };
deba@414
  3292
deba@414
  3293
  /// \ingroup graph_adaptors
deba@414
  3294
  ///
kpeter@451
  3295
  /// \brief Adaptor class for splitting the nodes of a digraph.
deba@416
  3296
  ///
kpeter@451
  3297
  /// SplitNodes adaptor can be used for splitting each node into an
kpeter@451
  3298
  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
kpeter@451
  3299
  /// replaces each node \f$ u \f$ in the digraph with two nodes,
kpeter@451
  3300
  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
kpeter@451
  3301
  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
kpeter@451
  3302
  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
kpeter@451
  3303
  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
kpeter@451
  3304
  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
kpeter@451
  3305
  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
deba@414
  3306
  ///
kpeter@451
  3307
  /// The aim of this class is running an algorithm with respect to node
kpeter@451
  3308
  /// costs or capacities if the algorithm considers only arc costs or
kpeter@451
  3309
  /// capacities directly.
kpeter@451
  3310
  /// In this case you can use \c SplitNodes adaptor, and set the node
kpeter@451
  3311
  /// costs/capacities of the original digraph to the \e bind \e arcs
kpeter@451
  3312
  /// in the adaptor.
deba@414
  3313
  ///
deba@488
  3314
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  3315
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  3316
  /// It is implicitly \c const.
kpeter@451
  3317
  ///
kpeter@451
  3318
  /// \note The \c Node type of this adaptor is converible to the \c Node
kpeter@451
  3319
  /// type of the adapted digraph.
deba@488
  3320
  template <typename DGR>
kpeter@453
  3321
#ifdef DOXYGEN
kpeter@453
  3322
  class SplitNodes {
kpeter@453
  3323
#else
deba@416
  3324
  class SplitNodes
deba@488
  3325
    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
kpeter@453
  3326
#endif
deba@414
  3327
  public:
deba@488
  3328
    typedef DGR Digraph;
deba@488
  3329
    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
deba@488
  3330
deba@488
  3331
    typedef typename DGR::Node DigraphNode;
deba@488
  3332
    typedef typename DGR::Arc DigraphArc;
deba@415
  3333
deba@414
  3334
    typedef typename Parent::Node Node;
deba@414
  3335
    typedef typename Parent::Arc Arc;
deba@414
  3336
kpeter@451
  3337
    /// \brief Constructor
deba@414
  3338
    ///
deba@414
  3339
    /// Constructor of the adaptor.
deba@488
  3340
    SplitNodes(const DGR& g) {
deba@488
  3341
      Parent::initialize(g);
deba@414
  3342
    }
deba@414
  3343
kpeter@451
  3344
    /// \brief Returns \c true if the given node is an in-node.
deba@415
  3345
    ///
kpeter@451
  3346
    /// Returns \c true if the given node is an in-node.
deba@415
  3347
    static bool inNode(const Node& n) {
deba@415
  3348
      return Parent::inNode(n);
deba@415
  3349
    }
deba@415
  3350
kpeter@451
  3351
    /// \brief Returns \c true if the given node is an out-node.
deba@415
  3352
    ///
kpeter@451
  3353
    /// Returns \c true if the given node is an out-node.
deba@415
  3354
    static bool outNode(const Node& n) {
deba@415
  3355
      return Parent::outNode(n);
deba@415
  3356
    }
deba@415
  3357
kpeter@451
  3358
    /// \brief Returns \c true if the given arc is an original arc.
deba@415
  3359
    ///
kpeter@451
  3360
    /// Returns \c true if the given arc is one of the arcs in the
kpeter@451
  3361
    /// original digraph.
deba@415
  3362
    static bool origArc(const Arc& a) {
deba@415
  3363
      return Parent::origArc(a);
deba@415
  3364
    }
deba@415
  3365
kpeter@451
  3366
    /// \brief Returns \c true if the given arc is a bind arc.
deba@415
  3367
    ///
kpeter@451
  3368
    /// Returns \c true if the given arc is a bind arc, i.e. it connects
kpeter@451
  3369
    /// an in-node and an out-node.
deba@415
  3370
    static bool bindArc(const Arc& a) {
deba@415
  3371
      return Parent::bindArc(a);
deba@415
  3372
    }
deba@415
  3373
kpeter@451
  3374
    /// \brief Returns the in-node created from the given original node.
deba@415
  3375
    ///
kpeter@451
  3376
    /// Returns the in-node created from the given original node.
deba@415
  3377
    static Node inNode(const DigraphNode& n) {
deba@415
  3378
      return Parent::inNode(n);
deba@415
  3379
    }
deba@415
  3380
kpeter@451
  3381
    /// \brief Returns the out-node created from the given original node.
deba@415
  3382
    ///
kpeter@451
  3383
    /// Returns the out-node created from the given original node.
deba@415
  3384
    static Node outNode(const DigraphNode& n) {
deba@415
  3385
      return Parent::outNode(n);
deba@415
  3386
    }
deba@415
  3387
kpeter@451
  3388
    /// \brief Returns the bind arc that corresponds to the given
kpeter@451
  3389
    /// original node.
deba@416
  3390
    ///
kpeter@451
  3391
    /// Returns the bind arc in the adaptor that corresponds to the given
kpeter@451
  3392
    /// original node, i.e. the arc connecting the in-node and out-node
kpeter@451
  3393
    /// of \c n.
deba@415
  3394
    static Arc arc(const DigraphNode& n) {
deba@415
  3395
      return Parent::arc(n);
deba@415
  3396
    }
deba@415
  3397
kpeter@451
  3398
    /// \brief Returns the arc that corresponds to the given original arc.
deba@416
  3399
    ///
kpeter@451
  3400
    /// Returns the arc in the adaptor that corresponds to the given
kpeter@451
  3401
    /// original arc.
deba@415
  3402
    static Arc arc(const DigraphArc& a) {
deba@415
  3403
      return Parent::arc(a);
deba@415
  3404
    }
deba@415
  3405
kpeter@451
  3406
    /// \brief Node map combined from two original node maps
deba@414
  3407
    ///
kpeter@451
  3408
    /// This map adaptor class adapts two node maps of the original digraph
kpeter@451
  3409
    /// to get a node map of the split digraph.
kpeter@559
  3410
    /// Its value type is inherited from the first node map type (\c IN).
kpeter@559
  3411
    /// \tparam IN The type of the node map for the in-nodes. 
kpeter@559
  3412
    /// \tparam OUT The type of the node map for the out-nodes.
kpeter@559
  3413
    template <typename IN, typename OUT>
deba@414
  3414
    class CombinedNodeMap {
deba@414
  3415
    public:
deba@414
  3416
kpeter@451
  3417
      /// The key type of the map
deba@414
  3418
      typedef Node Key;
kpeter@451
  3419
      /// The value type of the map
kpeter@559
  3420
      typedef typename IN::Value Value;
kpeter@559
  3421
kpeter@559
  3422
      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
kpeter@559
  3423
      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
kpeter@559
  3424
      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
kpeter@559
  3425
      typedef typename MapTraits<IN>::ReturnValue Reference;
kpeter@559
  3426
      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
kpeter@449
  3427
kpeter@451
  3428
      /// Constructor
kpeter@559
  3429
      CombinedNodeMap(IN& in_map, OUT& out_map)
deba@416
  3430
        : _in_map(in_map), _out_map(out_map) {}
deba@414
  3431
kpeter@451
  3432
      /// Returns the value associated with the given key.
kpeter@451
  3433
      Value operator[](const Key& key) const {
deba@488
  3434
        if (SplitNodesBase<const DGR>::inNode(key)) {
kpeter@451
  3435
          return _in_map[key];
kpeter@451
  3436
        } else {
kpeter@451
  3437
          return _out_map[key];
kpeter@451
  3438
        }
kpeter@451
  3439
      }
kpeter@451
  3440
kpeter@451
  3441
      /// Returns a reference to the value associated with the given key.
deba@414
  3442
      Value& operator[](const Key& key) {
deba@488
  3443
        if (SplitNodesBase<const DGR>::inNode(key)) {
deba@416
  3444
          return _in_map[key];
deba@416
  3445
        } else {
deba@416
  3446
          return _out_map[key];
deba@416
  3447
        }
deba@414
  3448
      }
deba@414
  3449
kpeter@451
  3450
      /// Sets the value associated with the given key.
deba@414
  3451
      void set(const Key& key, const Value& value) {
deba@488
  3452
        if (SplitNodesBase<const DGR>::inNode(key)) {
deba@416
  3453
          _in_map.set(key, value);
deba@416
  3454
        } else {
deba@416
  3455
          _out_map.set(key, value);
deba@416
  3456
        }
deba@414
  3457
      }
deba@416
  3458
deba@414
  3459
    private:
deba@416
  3460
kpeter@559
  3461
      IN& _in_map;
kpeter@559
  3462
      OUT& _out_map;
deba@416
  3463
deba@414
  3464
    };
deba@414
  3465
deba@414
  3466
kpeter@451
  3467
    /// \brief Returns a combined node map
deba@416
  3468
    ///
kpeter@451
  3469
    /// This function just returns a combined node map.
kpeter@559
  3470
    template <typename IN, typename OUT>
kpeter@559
  3471
    static CombinedNodeMap<IN, OUT>
kpeter@559
  3472
    combinedNodeMap(IN& in_map, OUT& out_map) {
kpeter@559
  3473
      return CombinedNodeMap<IN, OUT>(in_map, out_map);
deba@414
  3474
    }
deba@414
  3475
kpeter@559
  3476
    template <typename IN, typename OUT>
kpeter@559
  3477
    static CombinedNodeMap<const IN, OUT>
kpeter@559
  3478
    combinedNodeMap(const IN& in_map, OUT& out_map) {
kpeter@559
  3479
      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
deba@414
  3480
    }
deba@414
  3481
kpeter@559
  3482
    template <typename IN, typename OUT>
kpeter@559
  3483
    static CombinedNodeMap<IN, const OUT>
kpeter@559
  3484
    combinedNodeMap(IN& in_map, const OUT& out_map) {
kpeter@559
  3485
      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
deba@414
  3486
    }
deba@414
  3487
kpeter@559
  3488
    template <typename IN, typename OUT>
kpeter@559
  3489
    static CombinedNodeMap<const IN, const OUT>
kpeter@559
  3490
    combinedNodeMap(const IN& in_map, const OUT& out_map) {
kpeter@559
  3491
      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
deba@414
  3492
    }
deba@414
  3493
kpeter@451
  3494
    /// \brief Arc map combined from an arc map and a node map of the
kpeter@451
  3495
    /// original digraph.
deba@414
  3496
    ///
kpeter@451
  3497
    /// This map adaptor class adapts an arc map and a node map of the
kpeter@451
  3498
    /// original digraph to get an arc map of the split digraph.
kpeter@559
  3499
    /// Its value type is inherited from the original arc map type (\c AM).
kpeter@559
  3500
    /// \tparam AM The type of the arc map.
kpeter@559
  3501
    /// \tparam NM the type of the node map.
kpeter@559
  3502
    template <typename AM, typename NM>
deba@414
  3503
    class CombinedArcMap {
deba@414
  3504
    public:
deba@416
  3505
kpeter@451
  3506
      /// The key type of the map
deba@414
  3507
      typedef Arc Key;
kpeter@451
  3508
      /// The value type of the map
kpeter@559
  3509
      typedef typename AM::Value Value;
kpeter@559
  3510
kpeter@559
  3511
      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
kpeter@559
  3512
      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
kpeter@559
  3513
      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
kpeter@559
  3514
      typedef typename MapTraits<AM>::ReturnValue Reference;
kpeter@559
  3515
      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
kpeter@449
  3516
kpeter@451
  3517
      /// Constructor
kpeter@559
  3518
      CombinedArcMap(AM& arc_map, NM& node_map)
deba@416
  3519
        : _arc_map(arc_map), _node_map(node_map) {}
deba@414
  3520
kpeter@451
  3521
      /// Returns the value associated with the given key.
kpeter@451
  3522
      Value operator[](const Key& arc) const {
deba@488
  3523
        if (SplitNodesBase<const DGR>::origArc(arc)) {
kpeter@451
  3524
          return _arc_map[arc];
kpeter@451
  3525
        } else {
kpeter@451
  3526
          return _node_map[arc];
kpeter@451
  3527
        }
kpeter@451
  3528
      }
kpeter@451
  3529
kpeter@451
  3530
      /// Returns a reference to the value associated with the given key.
kpeter@451
  3531
      Value& operator[](const Key& arc) {
deba@488
  3532
        if (SplitNodesBase<const DGR>::origArc(arc)) {
kpeter@451
  3533
          return _arc_map[arc];
kpeter@451
  3534
        } else {
kpeter@451
  3535
          return _node_map[arc];
kpeter@451
  3536
        }
kpeter@451
  3537
      }
kpeter@451
  3538
kpeter@451
  3539
      /// Sets the value associated with the given key.
deba@414
  3540
      void set(const Arc& arc, const Value& val) {
deba@488
  3541
        if (SplitNodesBase<const DGR>::origArc(arc)) {
deba@416
  3542
          _arc_map.set(arc, val);
deba@416
  3543
        } else {
deba@416
  3544
          _node_map.set(arc, val);
deba@416
  3545
        }
deba@414
  3546
      }
deba@414
  3547
deba@414
  3548
    private:
kpeter@559
  3549
kpeter@559
  3550
      AM& _arc_map;
kpeter@559
  3551
      NM& _node_map;
kpeter@559
  3552
deba@414
  3553
    };
deba@416
  3554
kpeter@451
  3555
    /// \brief Returns a combined arc map
deba@416
  3556
    ///
kpeter@451
  3557
    /// This function just returns a combined arc map.
kpeter@453
  3558
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3559
    static CombinedArcMap<ArcMap, NodeMap>
kpeter@453
  3560
    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
kpeter@453
  3561
      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
deba@414
  3562
    }
deba@414
  3563
kpeter@453
  3564
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3565
    static CombinedArcMap<const ArcMap, NodeMap>
kpeter@453
  3566
    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
kpeter@453
  3567
      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
deba@414
  3568
    }
deba@414
  3569
kpeter@453
  3570
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3571
    static CombinedArcMap<ArcMap, const NodeMap>
kpeter@453
  3572
    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
kpeter@453
  3573
      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
deba@414
  3574
    }
deba@414
  3575
kpeter@453
  3576
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3577
    static CombinedArcMap<const ArcMap, const NodeMap>
kpeter@453
  3578
    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
kpeter@453
  3579
      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
deba@414
  3580
    }
deba@414
  3581
deba@414
  3582
  };
deba@414
  3583
kpeter@451
  3584
  /// \brief Returns a (read-only) SplitNodes adaptor
deba@414
  3585
  ///
kpeter@451
  3586
  /// This function just returns a (read-only) \ref SplitNodes adaptor.
kpeter@451
  3587
  /// \ingroup graph_adaptors
kpeter@451
  3588
  /// \relates SplitNodes
deba@488
  3589
  template<typename DGR>
deba@488
  3590
  SplitNodes<DGR>
deba@488
  3591
  splitNodes(const DGR& digraph) {
deba@488
  3592
    return SplitNodes<DGR>(digraph);
deba@414
  3593
  }
deba@414
  3594
deba@488
  3595
#undef LEMON_SCOPE_FIX
deba@488
  3596
deba@414
  3597
} //namespace lemon
deba@414
  3598
deba@416
  3599
#endif //LEMON_ADAPTORS_H