kpeter@601
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
kpeter@601
|
2 |
*
|
kpeter@601
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
kpeter@601
|
4 |
*
|
kpeter@601
|
5 |
* Copyright (C) 2003-2009
|
kpeter@601
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
kpeter@601
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
kpeter@601
|
8 |
*
|
kpeter@601
|
9 |
* Permission to use, modify and distribute this software is granted
|
kpeter@601
|
10 |
* provided that this copyright notice appears in all copies. For
|
kpeter@601
|
11 |
* precise terms see the accompanying LICENSE file.
|
kpeter@601
|
12 |
*
|
kpeter@601
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
kpeter@601
|
14 |
* express or implied, and with no claim as to its suitability for any
|
kpeter@601
|
15 |
* purpose.
|
kpeter@601
|
16 |
*
|
kpeter@601
|
17 |
*/
|
kpeter@601
|
18 |
|
kpeter@601
|
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H
|
kpeter@601
|
20 |
#define LEMON_NETWORK_SIMPLEX_H
|
kpeter@601
|
21 |
|
kpeter@663
|
22 |
/// \ingroup min_cost_flow_algs
|
kpeter@601
|
23 |
///
|
kpeter@601
|
24 |
/// \file
|
kpeter@605
|
25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow.
|
kpeter@601
|
26 |
|
kpeter@601
|
27 |
#include <vector>
|
kpeter@601
|
28 |
#include <limits>
|
kpeter@601
|
29 |
#include <algorithm>
|
kpeter@601
|
30 |
|
kpeter@603
|
31 |
#include <lemon/core.h>
|
kpeter@601
|
32 |
#include <lemon/math.h>
|
kpeter@601
|
33 |
|
kpeter@601
|
34 |
namespace lemon {
|
kpeter@601
|
35 |
|
kpeter@663
|
36 |
/// \addtogroup min_cost_flow_algs
|
kpeter@601
|
37 |
/// @{
|
kpeter@601
|
38 |
|
kpeter@605
|
39 |
/// \brief Implementation of the primal Network Simplex algorithm
|
kpeter@601
|
40 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
kpeter@601
|
41 |
///
|
kpeter@605
|
42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm
|
kpeter@755
|
43 |
/// for finding a \ref min_cost_flow "minimum cost flow"
|
kpeter@755
|
44 |
/// \ref amo93networkflows, \ref dantzig63linearprog,
|
kpeter@755
|
45 |
/// \ref kellyoneill91netsimplex.
|
kpeter@812
|
46 |
/// This algorithm is a highly efficient specialized version of the
|
kpeter@812
|
47 |
/// linear programming simplex method directly for the minimum cost
|
kpeter@812
|
48 |
/// flow problem.
|
kpeter@606
|
49 |
///
|
kpeter@812
|
50 |
/// In general, %NetworkSimplex is the fastest implementation available
|
kpeter@812
|
51 |
/// in LEMON for this problem.
|
kpeter@812
|
52 |
/// Moreover, it supports both directions of the supply/demand inequality
|
kpeter@786
|
53 |
/// constraints. For more information, see \ref SupplyType.
|
kpeter@640
|
54 |
///
|
kpeter@640
|
55 |
/// Most of the parameters of the problem (except for the digraph)
|
kpeter@640
|
56 |
/// can be given using separate functions, and the algorithm can be
|
kpeter@640
|
57 |
/// executed using the \ref run() function. If some parameters are not
|
kpeter@640
|
58 |
/// specified, then default values will be used.
|
kpeter@601
|
59 |
///
|
kpeter@605
|
60 |
/// \tparam GR The digraph type the algorithm runs on.
|
kpeter@812
|
61 |
/// \tparam V The number type used for flow amounts, capacity bounds
|
kpeter@786
|
62 |
/// and supply values in the algorithm. By default, it is \c int.
|
kpeter@812
|
63 |
/// \tparam C The number type used for costs and potentials in the
|
kpeter@786
|
64 |
/// algorithm. By default, it is the same as \c V.
|
kpeter@601
|
65 |
///
|
kpeter@812
|
66 |
/// \warning Both number types must be signed and all input data must
|
kpeter@608
|
67 |
/// be integer.
|
kpeter@601
|
68 |
///
|
kpeter@605
|
69 |
/// \note %NetworkSimplex provides five different pivot rule
|
kpeter@609
|
70 |
/// implementations, from which the most efficient one is used
|
kpeter@786
|
71 |
/// by default. For more information, see \ref PivotRule.
|
kpeter@641
|
72 |
template <typename GR, typename V = int, typename C = V>
|
kpeter@601
|
73 |
class NetworkSimplex
|
kpeter@601
|
74 |
{
|
kpeter@605
|
75 |
public:
|
kpeter@601
|
76 |
|
kpeter@642
|
77 |
/// The type of the flow amounts, capacity bounds and supply values
|
kpeter@641
|
78 |
typedef V Value;
|
kpeter@642
|
79 |
/// The type of the arc costs
|
kpeter@607
|
80 |
typedef C Cost;
|
kpeter@605
|
81 |
|
kpeter@605
|
82 |
public:
|
kpeter@605
|
83 |
|
kpeter@640
|
84 |
/// \brief Problem type constants for the \c run() function.
|
kpeter@605
|
85 |
///
|
kpeter@640
|
86 |
/// Enum type containing the problem type constants that can be
|
kpeter@640
|
87 |
/// returned by the \ref run() function of the algorithm.
|
kpeter@640
|
88 |
enum ProblemType {
|
kpeter@640
|
89 |
/// The problem has no feasible solution (flow).
|
kpeter@640
|
90 |
INFEASIBLE,
|
kpeter@640
|
91 |
/// The problem has optimal solution (i.e. it is feasible and
|
kpeter@640
|
92 |
/// bounded), and the algorithm has found optimal flow and node
|
kpeter@640
|
93 |
/// potentials (primal and dual solutions).
|
kpeter@640
|
94 |
OPTIMAL,
|
kpeter@640
|
95 |
/// The objective function of the problem is unbounded, i.e.
|
kpeter@640
|
96 |
/// there is a directed cycle having negative total cost and
|
kpeter@640
|
97 |
/// infinite upper bound.
|
kpeter@640
|
98 |
UNBOUNDED
|
kpeter@640
|
99 |
};
|
kpeter@640
|
100 |
|
kpeter@640
|
101 |
/// \brief Constants for selecting the type of the supply constraints.
|
kpeter@640
|
102 |
///
|
kpeter@640
|
103 |
/// Enum type containing constants for selecting the supply type,
|
kpeter@640
|
104 |
/// i.e. the direction of the inequalities in the supply/demand
|
kpeter@640
|
105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem".
|
kpeter@640
|
106 |
///
|
kpeter@663
|
107 |
/// The default supply type is \c GEQ, the \c LEQ type can be
|
kpeter@663
|
108 |
/// selected using \ref supplyType().
|
kpeter@663
|
109 |
/// The equality form is a special case of both supply types.
|
kpeter@640
|
110 |
enum SupplyType {
|
kpeter@640
|
111 |
/// This option means that there are <em>"greater or equal"</em>
|
kpeter@663
|
112 |
/// supply/demand constraints in the definition of the problem.
|
kpeter@640
|
113 |
GEQ,
|
kpeter@640
|
114 |
/// This option means that there are <em>"less or equal"</em>
|
kpeter@663
|
115 |
/// supply/demand constraints in the definition of the problem.
|
kpeter@663
|
116 |
LEQ
|
kpeter@640
|
117 |
};
|
kpeter@640
|
118 |
|
kpeter@640
|
119 |
/// \brief Constants for selecting the pivot rule.
|
kpeter@640
|
120 |
///
|
kpeter@640
|
121 |
/// Enum type containing constants for selecting the pivot rule for
|
kpeter@640
|
122 |
/// the \ref run() function.
|
kpeter@640
|
123 |
///
|
kpeter@605
|
124 |
/// \ref NetworkSimplex provides five different pivot rule
|
kpeter@605
|
125 |
/// implementations that significantly affect the running time
|
kpeter@605
|
126 |
/// of the algorithm.
|
kpeter@786
|
127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which
|
kpeter@605
|
128 |
/// proved to be the most efficient and the most robust on various
|
kpeter@812
|
129 |
/// test inputs.
|
kpeter@786
|
130 |
/// However, another pivot rule can be selected using the \ref run()
|
kpeter@605
|
131 |
/// function with the proper parameter.
|
kpeter@605
|
132 |
enum PivotRule {
|
kpeter@605
|
133 |
|
kpeter@786
|
134 |
/// The \e First \e Eligible pivot rule.
|
kpeter@605
|
135 |
/// The next eligible arc is selected in a wraparound fashion
|
kpeter@605
|
136 |
/// in every iteration.
|
kpeter@605
|
137 |
FIRST_ELIGIBLE,
|
kpeter@605
|
138 |
|
kpeter@786
|
139 |
/// The \e Best \e Eligible pivot rule.
|
kpeter@605
|
140 |
/// The best eligible arc is selected in every iteration.
|
kpeter@605
|
141 |
BEST_ELIGIBLE,
|
kpeter@605
|
142 |
|
kpeter@786
|
143 |
/// The \e Block \e Search pivot rule.
|
kpeter@605
|
144 |
/// A specified number of arcs are examined in every iteration
|
kpeter@605
|
145 |
/// in a wraparound fashion and the best eligible arc is selected
|
kpeter@605
|
146 |
/// from this block.
|
kpeter@605
|
147 |
BLOCK_SEARCH,
|
kpeter@605
|
148 |
|
kpeter@786
|
149 |
/// The \e Candidate \e List pivot rule.
|
kpeter@605
|
150 |
/// In a major iteration a candidate list is built from eligible arcs
|
kpeter@605
|
151 |
/// in a wraparound fashion and in the following minor iterations
|
kpeter@605
|
152 |
/// the best eligible arc is selected from this list.
|
kpeter@605
|
153 |
CANDIDATE_LIST,
|
kpeter@605
|
154 |
|
kpeter@786
|
155 |
/// The \e Altering \e Candidate \e List pivot rule.
|
kpeter@605
|
156 |
/// It is a modified version of the Candidate List method.
|
kpeter@605
|
157 |
/// It keeps only the several best eligible arcs from the former
|
kpeter@605
|
158 |
/// candidate list and extends this list in every iteration.
|
kpeter@605
|
159 |
ALTERING_LIST
|
kpeter@605
|
160 |
};
|
kpeter@609
|
161 |
|
kpeter@605
|
162 |
private:
|
kpeter@605
|
163 |
|
kpeter@605
|
164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
kpeter@605
|
165 |
|
kpeter@601
|
166 |
typedef std::vector<int> IntVector;
|
kpeter@811
|
167 |
typedef std::vector<char> CharVector;
|
kpeter@642
|
168 |
typedef std::vector<Value> ValueVector;
|
kpeter@607
|
169 |
typedef std::vector<Cost> CostVector;
|
kpeter@601
|
170 |
|
kpeter@601
|
171 |
// State constants for arcs
|
kpeter@601
|
172 |
enum ArcStateEnum {
|
kpeter@601
|
173 |
STATE_UPPER = -1,
|
kpeter@601
|
174 |
STATE_TREE = 0,
|
kpeter@601
|
175 |
STATE_LOWER = 1
|
kpeter@601
|
176 |
};
|
kpeter@601
|
177 |
|
kpeter@601
|
178 |
private:
|
kpeter@601
|
179 |
|
kpeter@605
|
180 |
// Data related to the underlying digraph
|
kpeter@605
|
181 |
const GR &_graph;
|
kpeter@605
|
182 |
int _node_num;
|
kpeter@605
|
183 |
int _arc_num;
|
kpeter@663
|
184 |
int _all_arc_num;
|
kpeter@663
|
185 |
int _search_arc_num;
|
kpeter@605
|
186 |
|
kpeter@605
|
187 |
// Parameters of the problem
|
kpeter@642
|
188 |
bool _have_lower;
|
kpeter@640
|
189 |
SupplyType _stype;
|
kpeter@641
|
190 |
Value _sum_supply;
|
kpeter@601
|
191 |
|
kpeter@605
|
192 |
// Data structures for storing the digraph
|
kpeter@603
|
193 |
IntNodeMap _node_id;
|
kpeter@642
|
194 |
IntArcMap _arc_id;
|
kpeter@603
|
195 |
IntVector _source;
|
kpeter@603
|
196 |
IntVector _target;
|
kpeter@830
|
197 |
bool _arc_mixing;
|
kpeter@603
|
198 |
|
kpeter@605
|
199 |
// Node and arc data
|
kpeter@642
|
200 |
ValueVector _lower;
|
kpeter@642
|
201 |
ValueVector _upper;
|
kpeter@642
|
202 |
ValueVector _cap;
|
kpeter@607
|
203 |
CostVector _cost;
|
kpeter@642
|
204 |
ValueVector _supply;
|
kpeter@642
|
205 |
ValueVector _flow;
|
kpeter@607
|
206 |
CostVector _pi;
|
kpeter@601
|
207 |
|
kpeter@603
|
208 |
// Data for storing the spanning tree structure
|
kpeter@601
|
209 |
IntVector _parent;
|
kpeter@601
|
210 |
IntVector _pred;
|
kpeter@601
|
211 |
IntVector _thread;
|
kpeter@604
|
212 |
IntVector _rev_thread;
|
kpeter@604
|
213 |
IntVector _succ_num;
|
kpeter@604
|
214 |
IntVector _last_succ;
|
kpeter@604
|
215 |
IntVector _dirty_revs;
|
kpeter@811
|
216 |
CharVector _forward;
|
kpeter@811
|
217 |
CharVector _state;
|
kpeter@601
|
218 |
int _root;
|
kpeter@601
|
219 |
|
kpeter@601
|
220 |
// Temporary data used in the current pivot iteration
|
kpeter@603
|
221 |
int in_arc, join, u_in, v_in, u_out, v_out;
|
kpeter@603
|
222 |
int first, second, right, last;
|
kpeter@601
|
223 |
int stem, par_stem, new_stem;
|
kpeter@641
|
224 |
Value delta;
|
kpeter@811
|
225 |
|
kpeter@811
|
226 |
const Value MAX;
|
kpeter@601
|
227 |
|
kpeter@640
|
228 |
public:
|
kpeter@640
|
229 |
|
kpeter@640
|
230 |
/// \brief Constant for infinite upper bounds (capacities).
|
kpeter@640
|
231 |
///
|
kpeter@640
|
232 |
/// Constant for infinite upper bounds (capacities).
|
kpeter@641
|
233 |
/// It is \c std::numeric_limits<Value>::infinity() if available,
|
kpeter@641
|
234 |
/// \c std::numeric_limits<Value>::max() otherwise.
|
kpeter@641
|
235 |
const Value INF;
|
kpeter@640
|
236 |
|
kpeter@601
|
237 |
private:
|
kpeter@601
|
238 |
|
kpeter@605
|
239 |
// Implementation of the First Eligible pivot rule
|
kpeter@601
|
240 |
class FirstEligiblePivotRule
|
kpeter@601
|
241 |
{
|
kpeter@601
|
242 |
private:
|
kpeter@601
|
243 |
|
kpeter@601
|
244 |
// References to the NetworkSimplex class
|
kpeter@601
|
245 |
const IntVector &_source;
|
kpeter@601
|
246 |
const IntVector &_target;
|
kpeter@607
|
247 |
const CostVector &_cost;
|
kpeter@811
|
248 |
const CharVector &_state;
|
kpeter@607
|
249 |
const CostVector &_pi;
|
kpeter@601
|
250 |
int &_in_arc;
|
kpeter@663
|
251 |
int _search_arc_num;
|
kpeter@601
|
252 |
|
kpeter@601
|
253 |
// Pivot rule data
|
kpeter@601
|
254 |
int _next_arc;
|
kpeter@601
|
255 |
|
kpeter@601
|
256 |
public:
|
kpeter@601
|
257 |
|
kpeter@605
|
258 |
// Constructor
|
kpeter@601
|
259 |
FirstEligiblePivotRule(NetworkSimplex &ns) :
|
kpeter@603
|
260 |
_source(ns._source), _target(ns._target),
|
kpeter@601
|
261 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@663
|
262 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
kpeter@663
|
263 |
_next_arc(0)
|
kpeter@601
|
264 |
{}
|
kpeter@601
|
265 |
|
kpeter@605
|
266 |
// Find next entering arc
|
kpeter@601
|
267 |
bool findEnteringArc() {
|
kpeter@607
|
268 |
Cost c;
|
kpeter@663
|
269 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
kpeter@601
|
270 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
271 |
if (c < 0) {
|
kpeter@601
|
272 |
_in_arc = e;
|
kpeter@601
|
273 |
_next_arc = e + 1;
|
kpeter@601
|
274 |
return true;
|
kpeter@601
|
275 |
}
|
kpeter@601
|
276 |
}
|
kpeter@601
|
277 |
for (int e = 0; e < _next_arc; ++e) {
|
kpeter@601
|
278 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
279 |
if (c < 0) {
|
kpeter@601
|
280 |
_in_arc = e;
|
kpeter@601
|
281 |
_next_arc = e + 1;
|
kpeter@601
|
282 |
return true;
|
kpeter@601
|
283 |
}
|
kpeter@601
|
284 |
}
|
kpeter@601
|
285 |
return false;
|
kpeter@601
|
286 |
}
|
kpeter@601
|
287 |
|
kpeter@601
|
288 |
}; //class FirstEligiblePivotRule
|
kpeter@601
|
289 |
|
kpeter@601
|
290 |
|
kpeter@605
|
291 |
// Implementation of the Best Eligible pivot rule
|
kpeter@601
|
292 |
class BestEligiblePivotRule
|
kpeter@601
|
293 |
{
|
kpeter@601
|
294 |
private:
|
kpeter@601
|
295 |
|
kpeter@601
|
296 |
// References to the NetworkSimplex class
|
kpeter@601
|
297 |
const IntVector &_source;
|
kpeter@601
|
298 |
const IntVector &_target;
|
kpeter@607
|
299 |
const CostVector &_cost;
|
kpeter@811
|
300 |
const CharVector &_state;
|
kpeter@607
|
301 |
const CostVector &_pi;
|
kpeter@601
|
302 |
int &_in_arc;
|
kpeter@663
|
303 |
int _search_arc_num;
|
kpeter@601
|
304 |
|
kpeter@601
|
305 |
public:
|
kpeter@601
|
306 |
|
kpeter@605
|
307 |
// Constructor
|
kpeter@601
|
308 |
BestEligiblePivotRule(NetworkSimplex &ns) :
|
kpeter@603
|
309 |
_source(ns._source), _target(ns._target),
|
kpeter@601
|
310 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@663
|
311 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
|
kpeter@601
|
312 |
{}
|
kpeter@601
|
313 |
|
kpeter@605
|
314 |
// Find next entering arc
|
kpeter@601
|
315 |
bool findEnteringArc() {
|
kpeter@607
|
316 |
Cost c, min = 0;
|
kpeter@663
|
317 |
for (int e = 0; e < _search_arc_num; ++e) {
|
kpeter@601
|
318 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
319 |
if (c < min) {
|
kpeter@601
|
320 |
min = c;
|
kpeter@601
|
321 |
_in_arc = e;
|
kpeter@601
|
322 |
}
|
kpeter@601
|
323 |
}
|
kpeter@601
|
324 |
return min < 0;
|
kpeter@601
|
325 |
}
|
kpeter@601
|
326 |
|
kpeter@601
|
327 |
}; //class BestEligiblePivotRule
|
kpeter@601
|
328 |
|
kpeter@601
|
329 |
|
kpeter@605
|
330 |
// Implementation of the Block Search pivot rule
|
kpeter@601
|
331 |
class BlockSearchPivotRule
|
kpeter@601
|
332 |
{
|
kpeter@601
|
333 |
private:
|
kpeter@601
|
334 |
|
kpeter@601
|
335 |
// References to the NetworkSimplex class
|
kpeter@601
|
336 |
const IntVector &_source;
|
kpeter@601
|
337 |
const IntVector &_target;
|
kpeter@607
|
338 |
const CostVector &_cost;
|
kpeter@811
|
339 |
const CharVector &_state;
|
kpeter@607
|
340 |
const CostVector &_pi;
|
kpeter@601
|
341 |
int &_in_arc;
|
kpeter@663
|
342 |
int _search_arc_num;
|
kpeter@601
|
343 |
|
kpeter@601
|
344 |
// Pivot rule data
|
kpeter@601
|
345 |
int _block_size;
|
kpeter@601
|
346 |
int _next_arc;
|
kpeter@601
|
347 |
|
kpeter@601
|
348 |
public:
|
kpeter@601
|
349 |
|
kpeter@605
|
350 |
// Constructor
|
kpeter@601
|
351 |
BlockSearchPivotRule(NetworkSimplex &ns) :
|
kpeter@603
|
352 |
_source(ns._source), _target(ns._target),
|
kpeter@601
|
353 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@663
|
354 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
kpeter@663
|
355 |
_next_arc(0)
|
kpeter@601
|
356 |
{
|
kpeter@601
|
357 |
// The main parameters of the pivot rule
|
kpeter@663
|
358 |
const double BLOCK_SIZE_FACTOR = 0.5;
|
kpeter@601
|
359 |
const int MIN_BLOCK_SIZE = 10;
|
kpeter@601
|
360 |
|
alpar@612
|
361 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR *
|
kpeter@663
|
362 |
std::sqrt(double(_search_arc_num))),
|
kpeter@601
|
363 |
MIN_BLOCK_SIZE );
|
kpeter@601
|
364 |
}
|
kpeter@601
|
365 |
|
kpeter@605
|
366 |
// Find next entering arc
|
kpeter@601
|
367 |
bool findEnteringArc() {
|
kpeter@607
|
368 |
Cost c, min = 0;
|
kpeter@601
|
369 |
int cnt = _block_size;
|
kpeter@727
|
370 |
int e;
|
kpeter@663
|
371 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
kpeter@601
|
372 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
373 |
if (c < min) {
|
kpeter@601
|
374 |
min = c;
|
kpeter@727
|
375 |
_in_arc = e;
|
kpeter@601
|
376 |
}
|
kpeter@601
|
377 |
if (--cnt == 0) {
|
kpeter@727
|
378 |
if (min < 0) goto search_end;
|
kpeter@601
|
379 |
cnt = _block_size;
|
kpeter@601
|
380 |
}
|
kpeter@601
|
381 |
}
|
kpeter@727
|
382 |
for (e = 0; e < _next_arc; ++e) {
|
kpeter@727
|
383 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@727
|
384 |
if (c < min) {
|
kpeter@727
|
385 |
min = c;
|
kpeter@727
|
386 |
_in_arc = e;
|
kpeter@727
|
387 |
}
|
kpeter@727
|
388 |
if (--cnt == 0) {
|
kpeter@727
|
389 |
if (min < 0) goto search_end;
|
kpeter@727
|
390 |
cnt = _block_size;
|
kpeter@601
|
391 |
}
|
kpeter@601
|
392 |
}
|
kpeter@601
|
393 |
if (min >= 0) return false;
|
kpeter@727
|
394 |
|
kpeter@727
|
395 |
search_end:
|
kpeter@601
|
396 |
_next_arc = e;
|
kpeter@601
|
397 |
return true;
|
kpeter@601
|
398 |
}
|
kpeter@601
|
399 |
|
kpeter@601
|
400 |
}; //class BlockSearchPivotRule
|
kpeter@601
|
401 |
|
kpeter@601
|
402 |
|
kpeter@605
|
403 |
// Implementation of the Candidate List pivot rule
|
kpeter@601
|
404 |
class CandidateListPivotRule
|
kpeter@601
|
405 |
{
|
kpeter@601
|
406 |
private:
|
kpeter@601
|
407 |
|
kpeter@601
|
408 |
// References to the NetworkSimplex class
|
kpeter@601
|
409 |
const IntVector &_source;
|
kpeter@601
|
410 |
const IntVector &_target;
|
kpeter@607
|
411 |
const CostVector &_cost;
|
kpeter@811
|
412 |
const CharVector &_state;
|
kpeter@607
|
413 |
const CostVector &_pi;
|
kpeter@601
|
414 |
int &_in_arc;
|
kpeter@663
|
415 |
int _search_arc_num;
|
kpeter@601
|
416 |
|
kpeter@601
|
417 |
// Pivot rule data
|
kpeter@601
|
418 |
IntVector _candidates;
|
kpeter@601
|
419 |
int _list_length, _minor_limit;
|
kpeter@601
|
420 |
int _curr_length, _minor_count;
|
kpeter@601
|
421 |
int _next_arc;
|
kpeter@601
|
422 |
|
kpeter@601
|
423 |
public:
|
kpeter@601
|
424 |
|
kpeter@601
|
425 |
/// Constructor
|
kpeter@601
|
426 |
CandidateListPivotRule(NetworkSimplex &ns) :
|
kpeter@603
|
427 |
_source(ns._source), _target(ns._target),
|
kpeter@601
|
428 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@663
|
429 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
kpeter@663
|
430 |
_next_arc(0)
|
kpeter@601
|
431 |
{
|
kpeter@601
|
432 |
// The main parameters of the pivot rule
|
kpeter@727
|
433 |
const double LIST_LENGTH_FACTOR = 0.25;
|
kpeter@601
|
434 |
const int MIN_LIST_LENGTH = 10;
|
kpeter@601
|
435 |
const double MINOR_LIMIT_FACTOR = 0.1;
|
kpeter@601
|
436 |
const int MIN_MINOR_LIMIT = 3;
|
kpeter@601
|
437 |
|
alpar@612
|
438 |
_list_length = std::max( int(LIST_LENGTH_FACTOR *
|
kpeter@663
|
439 |
std::sqrt(double(_search_arc_num))),
|
kpeter@601
|
440 |
MIN_LIST_LENGTH );
|
kpeter@601
|
441 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
|
kpeter@601
|
442 |
MIN_MINOR_LIMIT );
|
kpeter@601
|
443 |
_curr_length = _minor_count = 0;
|
kpeter@601
|
444 |
_candidates.resize(_list_length);
|
kpeter@601
|
445 |
}
|
kpeter@601
|
446 |
|
kpeter@601
|
447 |
/// Find next entering arc
|
kpeter@601
|
448 |
bool findEnteringArc() {
|
kpeter@607
|
449 |
Cost min, c;
|
kpeter@727
|
450 |
int e;
|
kpeter@601
|
451 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
kpeter@601
|
452 |
// Minor iteration: select the best eligible arc from the
|
kpeter@601
|
453 |
// current candidate list
|
kpeter@601
|
454 |
++_minor_count;
|
kpeter@601
|
455 |
min = 0;
|
kpeter@601
|
456 |
for (int i = 0; i < _curr_length; ++i) {
|
kpeter@601
|
457 |
e = _candidates[i];
|
kpeter@601
|
458 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
459 |
if (c < min) {
|
kpeter@601
|
460 |
min = c;
|
kpeter@727
|
461 |
_in_arc = e;
|
kpeter@601
|
462 |
}
|
kpeter@727
|
463 |
else if (c >= 0) {
|
kpeter@601
|
464 |
_candidates[i--] = _candidates[--_curr_length];
|
kpeter@601
|
465 |
}
|
kpeter@601
|
466 |
}
|
kpeter@727
|
467 |
if (min < 0) return true;
|
kpeter@601
|
468 |
}
|
kpeter@601
|
469 |
|
kpeter@601
|
470 |
// Major iteration: build a new candidate list
|
kpeter@601
|
471 |
min = 0;
|
kpeter@601
|
472 |
_curr_length = 0;
|
kpeter@663
|
473 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
kpeter@601
|
474 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
475 |
if (c < 0) {
|
kpeter@601
|
476 |
_candidates[_curr_length++] = e;
|
kpeter@601
|
477 |
if (c < min) {
|
kpeter@601
|
478 |
min = c;
|
kpeter@727
|
479 |
_in_arc = e;
|
kpeter@601
|
480 |
}
|
kpeter@727
|
481 |
if (_curr_length == _list_length) goto search_end;
|
kpeter@601
|
482 |
}
|
kpeter@601
|
483 |
}
|
kpeter@727
|
484 |
for (e = 0; e < _next_arc; ++e) {
|
kpeter@727
|
485 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@727
|
486 |
if (c < 0) {
|
kpeter@727
|
487 |
_candidates[_curr_length++] = e;
|
kpeter@727
|
488 |
if (c < min) {
|
kpeter@727
|
489 |
min = c;
|
kpeter@727
|
490 |
_in_arc = e;
|
kpeter@601
|
491 |
}
|
kpeter@727
|
492 |
if (_curr_length == _list_length) goto search_end;
|
kpeter@601
|
493 |
}
|
kpeter@601
|
494 |
}
|
kpeter@601
|
495 |
if (_curr_length == 0) return false;
|
kpeter@727
|
496 |
|
kpeter@727
|
497 |
search_end:
|
kpeter@601
|
498 |
_minor_count = 1;
|
kpeter@601
|
499 |
_next_arc = e;
|
kpeter@601
|
500 |
return true;
|
kpeter@601
|
501 |
}
|
kpeter@601
|
502 |
|
kpeter@601
|
503 |
}; //class CandidateListPivotRule
|
kpeter@601
|
504 |
|
kpeter@601
|
505 |
|
kpeter@605
|
506 |
// Implementation of the Altering Candidate List pivot rule
|
kpeter@601
|
507 |
class AlteringListPivotRule
|
kpeter@601
|
508 |
{
|
kpeter@601
|
509 |
private:
|
kpeter@601
|
510 |
|
kpeter@601
|
511 |
// References to the NetworkSimplex class
|
kpeter@601
|
512 |
const IntVector &_source;
|
kpeter@601
|
513 |
const IntVector &_target;
|
kpeter@607
|
514 |
const CostVector &_cost;
|
kpeter@811
|
515 |
const CharVector &_state;
|
kpeter@607
|
516 |
const CostVector &_pi;
|
kpeter@601
|
517 |
int &_in_arc;
|
kpeter@663
|
518 |
int _search_arc_num;
|
kpeter@601
|
519 |
|
kpeter@601
|
520 |
// Pivot rule data
|
kpeter@601
|
521 |
int _block_size, _head_length, _curr_length;
|
kpeter@601
|
522 |
int _next_arc;
|
kpeter@601
|
523 |
IntVector _candidates;
|
kpeter@607
|
524 |
CostVector _cand_cost;
|
kpeter@601
|
525 |
|
kpeter@601
|
526 |
// Functor class to compare arcs during sort of the candidate list
|
kpeter@601
|
527 |
class SortFunc
|
kpeter@601
|
528 |
{
|
kpeter@601
|
529 |
private:
|
kpeter@607
|
530 |
const CostVector &_map;
|
kpeter@601
|
531 |
public:
|
kpeter@607
|
532 |
SortFunc(const CostVector &map) : _map(map) {}
|
kpeter@601
|
533 |
bool operator()(int left, int right) {
|
kpeter@601
|
534 |
return _map[left] > _map[right];
|
kpeter@601
|
535 |
}
|
kpeter@601
|
536 |
};
|
kpeter@601
|
537 |
|
kpeter@601
|
538 |
SortFunc _sort_func;
|
kpeter@601
|
539 |
|
kpeter@601
|
540 |
public:
|
kpeter@601
|
541 |
|
kpeter@605
|
542 |
// Constructor
|
kpeter@601
|
543 |
AlteringListPivotRule(NetworkSimplex &ns) :
|
kpeter@603
|
544 |
_source(ns._source), _target(ns._target),
|
kpeter@601
|
545 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
kpeter@663
|
546 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
kpeter@663
|
547 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
|
kpeter@601
|
548 |
{
|
kpeter@601
|
549 |
// The main parameters of the pivot rule
|
kpeter@727
|
550 |
const double BLOCK_SIZE_FACTOR = 1.0;
|
kpeter@601
|
551 |
const int MIN_BLOCK_SIZE = 10;
|
kpeter@601
|
552 |
const double HEAD_LENGTH_FACTOR = 0.1;
|
kpeter@601
|
553 |
const int MIN_HEAD_LENGTH = 3;
|
kpeter@601
|
554 |
|
alpar@612
|
555 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR *
|
kpeter@663
|
556 |
std::sqrt(double(_search_arc_num))),
|
kpeter@601
|
557 |
MIN_BLOCK_SIZE );
|
kpeter@601
|
558 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
|
kpeter@601
|
559 |
MIN_HEAD_LENGTH );
|
kpeter@601
|
560 |
_candidates.resize(_head_length + _block_size);
|
kpeter@601
|
561 |
_curr_length = 0;
|
kpeter@601
|
562 |
}
|
kpeter@601
|
563 |
|
kpeter@605
|
564 |
// Find next entering arc
|
kpeter@601
|
565 |
bool findEnteringArc() {
|
kpeter@601
|
566 |
// Check the current candidate list
|
kpeter@601
|
567 |
int e;
|
kpeter@601
|
568 |
for (int i = 0; i < _curr_length; ++i) {
|
kpeter@601
|
569 |
e = _candidates[i];
|
kpeter@601
|
570 |
_cand_cost[e] = _state[e] *
|
kpeter@601
|
571 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
572 |
if (_cand_cost[e] >= 0) {
|
kpeter@601
|
573 |
_candidates[i--] = _candidates[--_curr_length];
|
kpeter@601
|
574 |
}
|
kpeter@601
|
575 |
}
|
kpeter@601
|
576 |
|
kpeter@601
|
577 |
// Extend the list
|
kpeter@601
|
578 |
int cnt = _block_size;
|
kpeter@601
|
579 |
int limit = _head_length;
|
kpeter@601
|
580 |
|
kpeter@727
|
581 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
kpeter@601
|
582 |
_cand_cost[e] = _state[e] *
|
kpeter@601
|
583 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@601
|
584 |
if (_cand_cost[e] < 0) {
|
kpeter@601
|
585 |
_candidates[_curr_length++] = e;
|
kpeter@601
|
586 |
}
|
kpeter@601
|
587 |
if (--cnt == 0) {
|
kpeter@727
|
588 |
if (_curr_length > limit) goto search_end;
|
kpeter@601
|
589 |
limit = 0;
|
kpeter@601
|
590 |
cnt = _block_size;
|
kpeter@601
|
591 |
}
|
kpeter@601
|
592 |
}
|
kpeter@727
|
593 |
for (e = 0; e < _next_arc; ++e) {
|
kpeter@727
|
594 |
_cand_cost[e] = _state[e] *
|
kpeter@727
|
595 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
kpeter@727
|
596 |
if (_cand_cost[e] < 0) {
|
kpeter@727
|
597 |
_candidates[_curr_length++] = e;
|
kpeter@727
|
598 |
}
|
kpeter@727
|
599 |
if (--cnt == 0) {
|
kpeter@727
|
600 |
if (_curr_length > limit) goto search_end;
|
kpeter@727
|
601 |
limit = 0;
|
kpeter@727
|
602 |
cnt = _block_size;
|
kpeter@601
|
603 |
}
|
kpeter@601
|
604 |
}
|
kpeter@601
|
605 |
if (_curr_length == 0) return false;
|
kpeter@727
|
606 |
|
kpeter@727
|
607 |
search_end:
|
kpeter@601
|
608 |
|
kpeter@601
|
609 |
// Make heap of the candidate list (approximating a partial sort)
|
kpeter@601
|
610 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
|
kpeter@601
|
611 |
_sort_func );
|
kpeter@601
|
612 |
|
kpeter@601
|
613 |
// Pop the first element of the heap
|
kpeter@601
|
614 |
_in_arc = _candidates[0];
|
kpeter@727
|
615 |
_next_arc = e;
|
kpeter@601
|
616 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
|
kpeter@601
|
617 |
_sort_func );
|
kpeter@601
|
618 |
_curr_length = std::min(_head_length, _curr_length - 1);
|
kpeter@601
|
619 |
return true;
|
kpeter@601
|
620 |
}
|
kpeter@601
|
621 |
|
kpeter@601
|
622 |
}; //class AlteringListPivotRule
|
kpeter@601
|
623 |
|
kpeter@601
|
624 |
public:
|
kpeter@601
|
625 |
|
kpeter@605
|
626 |
/// \brief Constructor.
|
kpeter@601
|
627 |
///
|
kpeter@609
|
628 |
/// The constructor of the class.
|
kpeter@601
|
629 |
///
|
kpeter@603
|
630 |
/// \param graph The digraph the algorithm runs on.
|
kpeter@728
|
631 |
/// \param arc_mixing Indicate if the arcs have to be stored in a
|
kpeter@728
|
632 |
/// mixed order in the internal data structure.
|
kpeter@728
|
633 |
/// In special cases, it could lead to better overall performance,
|
kpeter@728
|
634 |
/// but it is usually slower. Therefore it is disabled by default.
|
kpeter@728
|
635 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) :
|
kpeter@642
|
636 |
_graph(graph), _node_id(graph), _arc_id(graph),
|
kpeter@830
|
637 |
_arc_mixing(arc_mixing),
|
kpeter@811
|
638 |
MAX(std::numeric_limits<Value>::max()),
|
kpeter@641
|
639 |
INF(std::numeric_limits<Value>::has_infinity ?
|
kpeter@811
|
640 |
std::numeric_limits<Value>::infinity() : MAX)
|
kpeter@605
|
641 |
{
|
kpeter@812
|
642 |
// Check the number types
|
kpeter@641
|
643 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
|
kpeter@640
|
644 |
"The flow type of NetworkSimplex must be signed");
|
kpeter@640
|
645 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
|
kpeter@640
|
646 |
"The cost type of NetworkSimplex must be signed");
|
kpeter@642
|
647 |
|
kpeter@830
|
648 |
// Reset data structures
|
kpeter@729
|
649 |
reset();
|
kpeter@601
|
650 |
}
|
kpeter@601
|
651 |
|
kpeter@609
|
652 |
/// \name Parameters
|
kpeter@609
|
653 |
/// The parameters of the algorithm can be specified using these
|
kpeter@609
|
654 |
/// functions.
|
kpeter@609
|
655 |
|
kpeter@609
|
656 |
/// @{
|
kpeter@609
|
657 |
|
kpeter@605
|
658 |
/// \brief Set the lower bounds on the arcs.
|
kpeter@605
|
659 |
///
|
kpeter@605
|
660 |
/// This function sets the lower bounds on the arcs.
|
kpeter@640
|
661 |
/// If it is not used before calling \ref run(), the lower bounds
|
kpeter@640
|
662 |
/// will be set to zero on all arcs.
|
kpeter@605
|
663 |
///
|
kpeter@605
|
664 |
/// \param map An arc map storing the lower bounds.
|
kpeter@641
|
665 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@605
|
666 |
/// of the algorithm.
|
kpeter@605
|
667 |
///
|
kpeter@605
|
668 |
/// \return <tt>(*this)</tt>
|
kpeter@640
|
669 |
template <typename LowerMap>
|
kpeter@640
|
670 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
kpeter@642
|
671 |
_have_lower = true;
|
kpeter@605
|
672 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@642
|
673 |
_lower[_arc_id[a]] = map[a];
|
kpeter@605
|
674 |
}
|
kpeter@605
|
675 |
return *this;
|
kpeter@605
|
676 |
}
|
kpeter@605
|
677 |
|
kpeter@605
|
678 |
/// \brief Set the upper bounds (capacities) on the arcs.
|
kpeter@605
|
679 |
///
|
kpeter@605
|
680 |
/// This function sets the upper bounds (capacities) on the arcs.
|
kpeter@640
|
681 |
/// If it is not used before calling \ref run(), the upper bounds
|
kpeter@640
|
682 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be
|
kpeter@812
|
683 |
/// unbounded from above).
|
kpeter@605
|
684 |
///
|
kpeter@605
|
685 |
/// \param map An arc map storing the upper bounds.
|
kpeter@641
|
686 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@605
|
687 |
/// of the algorithm.
|
kpeter@605
|
688 |
///
|
kpeter@605
|
689 |
/// \return <tt>(*this)</tt>
|
kpeter@640
|
690 |
template<typename UpperMap>
|
kpeter@640
|
691 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
kpeter@605
|
692 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@642
|
693 |
_upper[_arc_id[a]] = map[a];
|
kpeter@605
|
694 |
}
|
kpeter@605
|
695 |
return *this;
|
kpeter@605
|
696 |
}
|
kpeter@605
|
697 |
|
kpeter@605
|
698 |
/// \brief Set the costs of the arcs.
|
kpeter@605
|
699 |
///
|
kpeter@605
|
700 |
/// This function sets the costs of the arcs.
|
kpeter@605
|
701 |
/// If it is not used before calling \ref run(), the costs
|
kpeter@605
|
702 |
/// will be set to \c 1 on all arcs.
|
kpeter@605
|
703 |
///
|
kpeter@605
|
704 |
/// \param map An arc map storing the costs.
|
kpeter@607
|
705 |
/// Its \c Value type must be convertible to the \c Cost type
|
kpeter@605
|
706 |
/// of the algorithm.
|
kpeter@605
|
707 |
///
|
kpeter@605
|
708 |
/// \return <tt>(*this)</tt>
|
kpeter@640
|
709 |
template<typename CostMap>
|
kpeter@640
|
710 |
NetworkSimplex& costMap(const CostMap& map) {
|
kpeter@605
|
711 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@642
|
712 |
_cost[_arc_id[a]] = map[a];
|
kpeter@605
|
713 |
}
|
kpeter@605
|
714 |
return *this;
|
kpeter@605
|
715 |
}
|
kpeter@605
|
716 |
|
kpeter@605
|
717 |
/// \brief Set the supply values of the nodes.
|
kpeter@605
|
718 |
///
|
kpeter@605
|
719 |
/// This function sets the supply values of the nodes.
|
kpeter@605
|
720 |
/// If neither this function nor \ref stSupply() is used before
|
kpeter@605
|
721 |
/// calling \ref run(), the supply of each node will be set to zero.
|
kpeter@605
|
722 |
///
|
kpeter@605
|
723 |
/// \param map A node map storing the supply values.
|
kpeter@641
|
724 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@605
|
725 |
/// of the algorithm.
|
kpeter@605
|
726 |
///
|
kpeter@605
|
727 |
/// \return <tt>(*this)</tt>
|
kpeter@640
|
728 |
template<typename SupplyMap>
|
kpeter@640
|
729 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
kpeter@605
|
730 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@642
|
731 |
_supply[_node_id[n]] = map[n];
|
kpeter@605
|
732 |
}
|
kpeter@605
|
733 |
return *this;
|
kpeter@605
|
734 |
}
|
kpeter@605
|
735 |
|
kpeter@605
|
736 |
/// \brief Set single source and target nodes and a supply value.
|
kpeter@605
|
737 |
///
|
kpeter@605
|
738 |
/// This function sets a single source node and a single target node
|
kpeter@605
|
739 |
/// and the required flow value.
|
kpeter@605
|
740 |
/// If neither this function nor \ref supplyMap() is used before
|
kpeter@605
|
741 |
/// calling \ref run(), the supply of each node will be set to zero.
|
kpeter@605
|
742 |
///
|
kpeter@640
|
743 |
/// Using this function has the same effect as using \ref supplyMap()
|
kpeter@640
|
744 |
/// with such a map in which \c k is assigned to \c s, \c -k is
|
kpeter@640
|
745 |
/// assigned to \c t and all other nodes have zero supply value.
|
kpeter@640
|
746 |
///
|
kpeter@605
|
747 |
/// \param s The source node.
|
kpeter@605
|
748 |
/// \param t The target node.
|
kpeter@605
|
749 |
/// \param k The required amount of flow from node \c s to node \c t
|
kpeter@605
|
750 |
/// (i.e. the supply of \c s and the demand of \c t).
|
kpeter@605
|
751 |
///
|
kpeter@605
|
752 |
/// \return <tt>(*this)</tt>
|
kpeter@641
|
753 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
kpeter@642
|
754 |
for (int i = 0; i != _node_num; ++i) {
|
kpeter@642
|
755 |
_supply[i] = 0;
|
kpeter@642
|
756 |
}
|
kpeter@642
|
757 |
_supply[_node_id[s]] = k;
|
kpeter@642
|
758 |
_supply[_node_id[t]] = -k;
|
kpeter@605
|
759 |
return *this;
|
kpeter@605
|
760 |
}
|
kpeter@609
|
761 |
|
kpeter@640
|
762 |
/// \brief Set the type of the supply constraints.
|
kpeter@609
|
763 |
///
|
kpeter@640
|
764 |
/// This function sets the type of the supply/demand constraints.
|
kpeter@640
|
765 |
/// If it is not used before calling \ref run(), the \ref GEQ supply
|
kpeter@609
|
766 |
/// type will be used.
|
kpeter@609
|
767 |
///
|
kpeter@786
|
768 |
/// For more information, see \ref SupplyType.
|
kpeter@609
|
769 |
///
|
kpeter@609
|
770 |
/// \return <tt>(*this)</tt>
|
kpeter@640
|
771 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
kpeter@640
|
772 |
_stype = supply_type;
|
kpeter@609
|
773 |
return *this;
|
kpeter@609
|
774 |
}
|
kpeter@605
|
775 |
|
kpeter@609
|
776 |
/// @}
|
kpeter@601
|
777 |
|
kpeter@605
|
778 |
/// \name Execution Control
|
kpeter@605
|
779 |
/// The algorithm can be executed using \ref run().
|
kpeter@605
|
780 |
|
kpeter@601
|
781 |
/// @{
|
kpeter@601
|
782 |
|
kpeter@601
|
783 |
/// \brief Run the algorithm.
|
kpeter@601
|
784 |
///
|
kpeter@601
|
785 |
/// This function runs the algorithm.
|
kpeter@609
|
786 |
/// The paramters can be specified using functions \ref lowerMap(),
|
kpeter@640
|
787 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
|
kpeter@642
|
788 |
/// \ref supplyType().
|
kpeter@609
|
789 |
/// For example,
|
kpeter@605
|
790 |
/// \code
|
kpeter@605
|
791 |
/// NetworkSimplex<ListDigraph> ns(graph);
|
kpeter@640
|
792 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost)
|
kpeter@605
|
793 |
/// .supplyMap(sup).run();
|
kpeter@605
|
794 |
/// \endcode
|
kpeter@601
|
795 |
///
|
kpeter@830
|
796 |
/// This function can be called more than once. All the given parameters
|
kpeter@830
|
797 |
/// are kept for the next call, unless \ref resetParams() or \ref reset()
|
kpeter@830
|
798 |
/// is used, thus only the modified parameters have to be set again.
|
kpeter@830
|
799 |
/// If the underlying digraph was also modified after the construction
|
kpeter@830
|
800 |
/// of the class (or the last \ref reset() call), then the \ref reset()
|
kpeter@830
|
801 |
/// function must be called.
|
kpeter@606
|
802 |
///
|
kpeter@605
|
803 |
/// \param pivot_rule The pivot rule that will be used during the
|
kpeter@786
|
804 |
/// algorithm. For more information, see \ref PivotRule.
|
kpeter@601
|
805 |
///
|
kpeter@640
|
806 |
/// \return \c INFEASIBLE if no feasible flow exists,
|
kpeter@640
|
807 |
/// \n \c OPTIMAL if the problem has optimal solution
|
kpeter@640
|
808 |
/// (i.e. it is feasible and bounded), and the algorithm has found
|
kpeter@640
|
809 |
/// optimal flow and node potentials (primal and dual solutions),
|
kpeter@640
|
810 |
/// \n \c UNBOUNDED if the objective function of the problem is
|
kpeter@640
|
811 |
/// unbounded, i.e. there is a directed cycle having negative total
|
kpeter@640
|
812 |
/// cost and infinite upper bound.
|
kpeter@640
|
813 |
///
|
kpeter@640
|
814 |
/// \see ProblemType, PivotRule
|
kpeter@830
|
815 |
/// \see resetParams(), reset()
|
kpeter@640
|
816 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
kpeter@640
|
817 |
if (!init()) return INFEASIBLE;
|
kpeter@640
|
818 |
return start(pivot_rule);
|
kpeter@601
|
819 |
}
|
kpeter@601
|
820 |
|
kpeter@606
|
821 |
/// \brief Reset all the parameters that have been given before.
|
kpeter@606
|
822 |
///
|
kpeter@606
|
823 |
/// This function resets all the paramaters that have been given
|
kpeter@609
|
824 |
/// before using functions \ref lowerMap(), \ref upperMap(),
|
kpeter@642
|
825 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
|
kpeter@606
|
826 |
///
|
kpeter@830
|
827 |
/// It is useful for multiple \ref run() calls. Basically, all the given
|
kpeter@830
|
828 |
/// parameters are kept for the next \ref run() call, unless
|
kpeter@830
|
829 |
/// \ref resetParams() or \ref reset() is used.
|
kpeter@830
|
830 |
/// If the underlying digraph was also modified after the construction
|
kpeter@830
|
831 |
/// of the class or the last \ref reset() call, then the \ref reset()
|
kpeter@830
|
832 |
/// function must be used, otherwise \ref resetParams() is sufficient.
|
kpeter@606
|
833 |
///
|
kpeter@606
|
834 |
/// For example,
|
kpeter@606
|
835 |
/// \code
|
kpeter@606
|
836 |
/// NetworkSimplex<ListDigraph> ns(graph);
|
kpeter@606
|
837 |
///
|
kpeter@606
|
838 |
/// // First run
|
kpeter@640
|
839 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost)
|
kpeter@606
|
840 |
/// .supplyMap(sup).run();
|
kpeter@606
|
841 |
///
|
kpeter@830
|
842 |
/// // Run again with modified cost map (resetParams() is not called,
|
kpeter@606
|
843 |
/// // so only the cost map have to be set again)
|
kpeter@606
|
844 |
/// cost[e] += 100;
|
kpeter@606
|
845 |
/// ns.costMap(cost).run();
|
kpeter@606
|
846 |
///
|
kpeter@830
|
847 |
/// // Run again from scratch using resetParams()
|
kpeter@606
|
848 |
/// // (the lower bounds will be set to zero on all arcs)
|
kpeter@830
|
849 |
/// ns.resetParams();
|
kpeter@640
|
850 |
/// ns.upperMap(capacity).costMap(cost)
|
kpeter@606
|
851 |
/// .supplyMap(sup).run();
|
kpeter@606
|
852 |
/// \endcode
|
kpeter@606
|
853 |
///
|
kpeter@606
|
854 |
/// \return <tt>(*this)</tt>
|
kpeter@830
|
855 |
///
|
kpeter@830
|
856 |
/// \see reset(), run()
|
kpeter@830
|
857 |
NetworkSimplex& resetParams() {
|
kpeter@642
|
858 |
for (int i = 0; i != _node_num; ++i) {
|
kpeter@642
|
859 |
_supply[i] = 0;
|
kpeter@642
|
860 |
}
|
kpeter@642
|
861 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@642
|
862 |
_lower[i] = 0;
|
kpeter@642
|
863 |
_upper[i] = INF;
|
kpeter@642
|
864 |
_cost[i] = 1;
|
kpeter@642
|
865 |
}
|
kpeter@642
|
866 |
_have_lower = false;
|
kpeter@640
|
867 |
_stype = GEQ;
|
kpeter@606
|
868 |
return *this;
|
kpeter@606
|
869 |
}
|
kpeter@606
|
870 |
|
kpeter@830
|
871 |
/// \brief Reset the internal data structures and all the parameters
|
kpeter@830
|
872 |
/// that have been given before.
|
kpeter@830
|
873 |
///
|
kpeter@830
|
874 |
/// This function resets the internal data structures and all the
|
kpeter@830
|
875 |
/// paramaters that have been given before using functions \ref lowerMap(),
|
kpeter@830
|
876 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
|
kpeter@830
|
877 |
/// \ref supplyType().
|
kpeter@830
|
878 |
///
|
kpeter@830
|
879 |
/// It is useful for multiple \ref run() calls. Basically, all the given
|
kpeter@830
|
880 |
/// parameters are kept for the next \ref run() call, unless
|
kpeter@830
|
881 |
/// \ref resetParams() or \ref reset() is used.
|
kpeter@830
|
882 |
/// If the underlying digraph was also modified after the construction
|
kpeter@830
|
883 |
/// of the class or the last \ref reset() call, then the \ref reset()
|
kpeter@830
|
884 |
/// function must be used, otherwise \ref resetParams() is sufficient.
|
kpeter@830
|
885 |
///
|
kpeter@830
|
886 |
/// See \ref resetParams() for examples.
|
kpeter@830
|
887 |
///
|
kpeter@830
|
888 |
/// \return <tt>(*this)</tt>
|
kpeter@830
|
889 |
///
|
kpeter@830
|
890 |
/// \see resetParams(), run()
|
kpeter@830
|
891 |
NetworkSimplex& reset() {
|
kpeter@830
|
892 |
// Resize vectors
|
kpeter@830
|
893 |
_node_num = countNodes(_graph);
|
kpeter@830
|
894 |
_arc_num = countArcs(_graph);
|
kpeter@830
|
895 |
int all_node_num = _node_num + 1;
|
kpeter@830
|
896 |
int max_arc_num = _arc_num + 2 * _node_num;
|
kpeter@830
|
897 |
|
kpeter@830
|
898 |
_source.resize(max_arc_num);
|
kpeter@830
|
899 |
_target.resize(max_arc_num);
|
kpeter@830
|
900 |
|
kpeter@830
|
901 |
_lower.resize(_arc_num);
|
kpeter@830
|
902 |
_upper.resize(_arc_num);
|
kpeter@830
|
903 |
_cap.resize(max_arc_num);
|
kpeter@830
|
904 |
_cost.resize(max_arc_num);
|
kpeter@830
|
905 |
_supply.resize(all_node_num);
|
kpeter@830
|
906 |
_flow.resize(max_arc_num);
|
kpeter@830
|
907 |
_pi.resize(all_node_num);
|
kpeter@830
|
908 |
|
kpeter@830
|
909 |
_parent.resize(all_node_num);
|
kpeter@830
|
910 |
_pred.resize(all_node_num);
|
kpeter@830
|
911 |
_forward.resize(all_node_num);
|
kpeter@830
|
912 |
_thread.resize(all_node_num);
|
kpeter@830
|
913 |
_rev_thread.resize(all_node_num);
|
kpeter@830
|
914 |
_succ_num.resize(all_node_num);
|
kpeter@830
|
915 |
_last_succ.resize(all_node_num);
|
kpeter@830
|
916 |
_state.resize(max_arc_num);
|
kpeter@830
|
917 |
|
kpeter@830
|
918 |
// Copy the graph
|
kpeter@830
|
919 |
int i = 0;
|
kpeter@830
|
920 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
kpeter@830
|
921 |
_node_id[n] = i;
|
kpeter@830
|
922 |
}
|
kpeter@830
|
923 |
if (_arc_mixing) {
|
kpeter@830
|
924 |
// Store the arcs in a mixed order
|
kpeter@830
|
925 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10);
|
kpeter@830
|
926 |
int i = 0, j = 0;
|
kpeter@830
|
927 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@830
|
928 |
_arc_id[a] = i;
|
kpeter@830
|
929 |
_source[i] = _node_id[_graph.source(a)];
|
kpeter@830
|
930 |
_target[i] = _node_id[_graph.target(a)];
|
kpeter@830
|
931 |
if ((i += k) >= _arc_num) i = ++j;
|
kpeter@830
|
932 |
}
|
kpeter@830
|
933 |
} else {
|
kpeter@830
|
934 |
// Store the arcs in the original order
|
kpeter@830
|
935 |
int i = 0;
|
kpeter@830
|
936 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
|
kpeter@830
|
937 |
_arc_id[a] = i;
|
kpeter@830
|
938 |
_source[i] = _node_id[_graph.source(a)];
|
kpeter@830
|
939 |
_target[i] = _node_id[_graph.target(a)];
|
kpeter@830
|
940 |
}
|
kpeter@830
|
941 |
}
|
kpeter@830
|
942 |
|
kpeter@830
|
943 |
// Reset parameters
|
kpeter@830
|
944 |
resetParams();
|
kpeter@830
|
945 |
return *this;
|
kpeter@830
|
946 |
}
|
kpeter@830
|
947 |
|
kpeter@601
|
948 |
/// @}
|
kpeter@601
|
949 |
|
kpeter@601
|
950 |
/// \name Query Functions
|
kpeter@601
|
951 |
/// The results of the algorithm can be obtained using these
|
kpeter@601
|
952 |
/// functions.\n
|
kpeter@605
|
953 |
/// The \ref run() function must be called before using them.
|
kpeter@605
|
954 |
|
kpeter@601
|
955 |
/// @{
|
kpeter@601
|
956 |
|
kpeter@605
|
957 |
/// \brief Return the total cost of the found flow.
|
kpeter@605
|
958 |
///
|
kpeter@605
|
959 |
/// This function returns the total cost of the found flow.
|
kpeter@640
|
960 |
/// Its complexity is O(e).
|
kpeter@605
|
961 |
///
|
kpeter@605
|
962 |
/// \note The return type of the function can be specified as a
|
kpeter@605
|
963 |
/// template parameter. For example,
|
kpeter@605
|
964 |
/// \code
|
kpeter@605
|
965 |
/// ns.totalCost<double>();
|
kpeter@605
|
966 |
/// \endcode
|
kpeter@607
|
967 |
/// It is useful if the total cost cannot be stored in the \c Cost
|
kpeter@605
|
968 |
/// type of the algorithm, which is the default return type of the
|
kpeter@605
|
969 |
/// function.
|
kpeter@605
|
970 |
///
|
kpeter@605
|
971 |
/// \pre \ref run() must be called before using this function.
|
kpeter@642
|
972 |
template <typename Number>
|
kpeter@642
|
973 |
Number totalCost() const {
|
kpeter@642
|
974 |
Number c = 0;
|
kpeter@642
|
975 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@642
|
976 |
int i = _arc_id[a];
|
kpeter@642
|
977 |
c += Number(_flow[i]) * Number(_cost[i]);
|
kpeter@605
|
978 |
}
|
kpeter@605
|
979 |
return c;
|
kpeter@605
|
980 |
}
|
kpeter@605
|
981 |
|
kpeter@605
|
982 |
#ifndef DOXYGEN
|
kpeter@607
|
983 |
Cost totalCost() const {
|
kpeter@607
|
984 |
return totalCost<Cost>();
|
kpeter@605
|
985 |
}
|
kpeter@605
|
986 |
#endif
|
kpeter@605
|
987 |
|
kpeter@605
|
988 |
/// \brief Return the flow on the given arc.
|
kpeter@605
|
989 |
///
|
kpeter@605
|
990 |
/// This function returns the flow on the given arc.
|
kpeter@605
|
991 |
///
|
kpeter@605
|
992 |
/// \pre \ref run() must be called before using this function.
|
kpeter@641
|
993 |
Value flow(const Arc& a) const {
|
kpeter@642
|
994 |
return _flow[_arc_id[a]];
|
kpeter@605
|
995 |
}
|
kpeter@605
|
996 |
|
kpeter@642
|
997 |
/// \brief Return the flow map (the primal solution).
|
kpeter@601
|
998 |
///
|
kpeter@642
|
999 |
/// This function copies the flow value on each arc into the given
|
kpeter@642
|
1000 |
/// map. The \c Value type of the algorithm must be convertible to
|
kpeter@642
|
1001 |
/// the \c Value type of the map.
|
kpeter@601
|
1002 |
///
|
kpeter@601
|
1003 |
/// \pre \ref run() must be called before using this function.
|
kpeter@642
|
1004 |
template <typename FlowMap>
|
kpeter@642
|
1005 |
void flowMap(FlowMap &map) const {
|
kpeter@642
|
1006 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@642
|
1007 |
map.set(a, _flow[_arc_id[a]]);
|
kpeter@642
|
1008 |
}
|
kpeter@601
|
1009 |
}
|
kpeter@601
|
1010 |
|
kpeter@605
|
1011 |
/// \brief Return the potential (dual value) of the given node.
|
kpeter@605
|
1012 |
///
|
kpeter@605
|
1013 |
/// This function returns the potential (dual value) of the
|
kpeter@605
|
1014 |
/// given node.
|
kpeter@605
|
1015 |
///
|
kpeter@605
|
1016 |
/// \pre \ref run() must be called before using this function.
|
kpeter@607
|
1017 |
Cost potential(const Node& n) const {
|
kpeter@642
|
1018 |
return _pi[_node_id[n]];
|
kpeter@605
|
1019 |
}
|
kpeter@605
|
1020 |
|
kpeter@642
|
1021 |
/// \brief Return the potential map (the dual solution).
|
kpeter@601
|
1022 |
///
|
kpeter@642
|
1023 |
/// This function copies the potential (dual value) of each node
|
kpeter@642
|
1024 |
/// into the given map.
|
kpeter@642
|
1025 |
/// The \c Cost type of the algorithm must be convertible to the
|
kpeter@642
|
1026 |
/// \c Value type of the map.
|
kpeter@601
|
1027 |
///
|
kpeter@601
|
1028 |
/// \pre \ref run() must be called before using this function.
|
kpeter@642
|
1029 |
template <typename PotentialMap>
|
kpeter@642
|
1030 |
void potentialMap(PotentialMap &map) const {
|
kpeter@642
|
1031 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@642
|
1032 |
map.set(n, _pi[_node_id[n]]);
|
kpeter@642
|
1033 |
}
|
kpeter@601
|
1034 |
}
|
kpeter@601
|
1035 |
|
kpeter@601
|
1036 |
/// @}
|
kpeter@601
|
1037 |
|
kpeter@601
|
1038 |
private:
|
kpeter@601
|
1039 |
|
kpeter@601
|
1040 |
// Initialize internal data structures
|
kpeter@601
|
1041 |
bool init() {
|
kpeter@605
|
1042 |
if (_node_num == 0) return false;
|
kpeter@601
|
1043 |
|
kpeter@642
|
1044 |
// Check the sum of supply values
|
kpeter@642
|
1045 |
_sum_supply = 0;
|
kpeter@642
|
1046 |
for (int i = 0; i != _node_num; ++i) {
|
kpeter@642
|
1047 |
_sum_supply += _supply[i];
|
kpeter@642
|
1048 |
}
|
alpar@643
|
1049 |
if ( !((_stype == GEQ && _sum_supply <= 0) ||
|
alpar@643
|
1050 |
(_stype == LEQ && _sum_supply >= 0)) ) return false;
|
kpeter@601
|
1051 |
|
kpeter@642
|
1052 |
// Remove non-zero lower bounds
|
kpeter@642
|
1053 |
if (_have_lower) {
|
kpeter@642
|
1054 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@642
|
1055 |
Value c = _lower[i];
|
kpeter@642
|
1056 |
if (c >= 0) {
|
kpeter@811
|
1057 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
|
kpeter@642
|
1058 |
} else {
|
kpeter@811
|
1059 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
|
kpeter@642
|
1060 |
}
|
kpeter@642
|
1061 |
_supply[_source[i]] -= c;
|
kpeter@642
|
1062 |
_supply[_target[i]] += c;
|
kpeter@642
|
1063 |
}
|
kpeter@642
|
1064 |
} else {
|
kpeter@642
|
1065 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@642
|
1066 |
_cap[i] = _upper[i];
|
kpeter@642
|
1067 |
}
|
kpeter@605
|
1068 |
}
|
kpeter@601
|
1069 |
|
kpeter@609
|
1070 |
// Initialize artifical cost
|
kpeter@640
|
1071 |
Cost ART_COST;
|
kpeter@609
|
1072 |
if (std::numeric_limits<Cost>::is_exact) {
|
kpeter@663
|
1073 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
|
kpeter@609
|
1074 |
} else {
|
kpeter@640
|
1075 |
ART_COST = std::numeric_limits<Cost>::min();
|
kpeter@609
|
1076 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@640
|
1077 |
if (_cost[i] > ART_COST) ART_COST = _cost[i];
|
kpeter@609
|
1078 |
}
|
kpeter@640
|
1079 |
ART_COST = (ART_COST + 1) * _node_num;
|
kpeter@609
|
1080 |
}
|
kpeter@609
|
1081 |
|
kpeter@642
|
1082 |
// Initialize arc maps
|
kpeter@642
|
1083 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@642
|
1084 |
_flow[i] = 0;
|
kpeter@642
|
1085 |
_state[i] = STATE_LOWER;
|
kpeter@642
|
1086 |
}
|
kpeter@642
|
1087 |
|
kpeter@601
|
1088 |
// Set data for the artificial root node
|
kpeter@601
|
1089 |
_root = _node_num;
|
kpeter@601
|
1090 |
_parent[_root] = -1;
|
kpeter@601
|
1091 |
_pred[_root] = -1;
|
kpeter@601
|
1092 |
_thread[_root] = 0;
|
kpeter@604
|
1093 |
_rev_thread[0] = _root;
|
kpeter@642
|
1094 |
_succ_num[_root] = _node_num + 1;
|
kpeter@604
|
1095 |
_last_succ[_root] = _root - 1;
|
kpeter@640
|
1096 |
_supply[_root] = -_sum_supply;
|
kpeter@663
|
1097 |
_pi[_root] = 0;
|
kpeter@601
|
1098 |
|
kpeter@601
|
1099 |
// Add artificial arcs and initialize the spanning tree data structure
|
kpeter@663
|
1100 |
if (_sum_supply == 0) {
|
kpeter@663
|
1101 |
// EQ supply constraints
|
kpeter@663
|
1102 |
_search_arc_num = _arc_num;
|
kpeter@663
|
1103 |
_all_arc_num = _arc_num + _node_num;
|
kpeter@663
|
1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
kpeter@663
|
1105 |
_parent[u] = _root;
|
kpeter@663
|
1106 |
_pred[u] = e;
|
kpeter@663
|
1107 |
_thread[u] = u + 1;
|
kpeter@663
|
1108 |
_rev_thread[u + 1] = u;
|
kpeter@663
|
1109 |
_succ_num[u] = 1;
|
kpeter@663
|
1110 |
_last_succ[u] = u;
|
kpeter@663
|
1111 |
_cap[e] = INF;
|
kpeter@663
|
1112 |
_state[e] = STATE_TREE;
|
kpeter@663
|
1113 |
if (_supply[u] >= 0) {
|
kpeter@663
|
1114 |
_forward[u] = true;
|
kpeter@663
|
1115 |
_pi[u] = 0;
|
kpeter@663
|
1116 |
_source[e] = u;
|
kpeter@663
|
1117 |
_target[e] = _root;
|
kpeter@663
|
1118 |
_flow[e] = _supply[u];
|
kpeter@663
|
1119 |
_cost[e] = 0;
|
kpeter@663
|
1120 |
} else {
|
kpeter@663
|
1121 |
_forward[u] = false;
|
kpeter@663
|
1122 |
_pi[u] = ART_COST;
|
kpeter@663
|
1123 |
_source[e] = _root;
|
kpeter@663
|
1124 |
_target[e] = u;
|
kpeter@663
|
1125 |
_flow[e] = -_supply[u];
|
kpeter@663
|
1126 |
_cost[e] = ART_COST;
|
kpeter@663
|
1127 |
}
|
kpeter@601
|
1128 |
}
|
kpeter@601
|
1129 |
}
|
kpeter@663
|
1130 |
else if (_sum_supply > 0) {
|
kpeter@663
|
1131 |
// LEQ supply constraints
|
kpeter@663
|
1132 |
_search_arc_num = _arc_num + _node_num;
|
kpeter@663
|
1133 |
int f = _arc_num + _node_num;
|
kpeter@663
|
1134 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
kpeter@663
|
1135 |
_parent[u] = _root;
|
kpeter@663
|
1136 |
_thread[u] = u + 1;
|
kpeter@663
|
1137 |
_rev_thread[u + 1] = u;
|
kpeter@663
|
1138 |
_succ_num[u] = 1;
|
kpeter@663
|
1139 |
_last_succ[u] = u;
|
kpeter@663
|
1140 |
if (_supply[u] >= 0) {
|
kpeter@663
|
1141 |
_forward[u] = true;
|
kpeter@663
|
1142 |
_pi[u] = 0;
|
kpeter@663
|
1143 |
_pred[u] = e;
|
kpeter@663
|
1144 |
_source[e] = u;
|
kpeter@663
|
1145 |
_target[e] = _root;
|
kpeter@663
|
1146 |
_cap[e] = INF;
|
kpeter@663
|
1147 |
_flow[e] = _supply[u];
|
kpeter@663
|
1148 |
_cost[e] = 0;
|
kpeter@663
|
1149 |
_state[e] = STATE_TREE;
|
kpeter@663
|
1150 |
} else {
|
kpeter@663
|
1151 |
_forward[u] = false;
|
kpeter@663
|
1152 |
_pi[u] = ART_COST;
|
kpeter@663
|
1153 |
_pred[u] = f;
|
kpeter@663
|
1154 |
_source[f] = _root;
|
kpeter@663
|
1155 |
_target[f] = u;
|
kpeter@663
|
1156 |
_cap[f] = INF;
|
kpeter@663
|
1157 |
_flow[f] = -_supply[u];
|
kpeter@663
|
1158 |
_cost[f] = ART_COST;
|
kpeter@663
|
1159 |
_state[f] = STATE_TREE;
|
kpeter@663
|
1160 |
_source[e] = u;
|
kpeter@663
|
1161 |
_target[e] = _root;
|
kpeter@663
|
1162 |
_cap[e] = INF;
|
kpeter@663
|
1163 |
_flow[e] = 0;
|
kpeter@663
|
1164 |
_cost[e] = 0;
|
kpeter@663
|
1165 |
_state[e] = STATE_LOWER;
|
kpeter@663
|
1166 |
++f;
|
kpeter@663
|
1167 |
}
|
kpeter@663
|
1168 |
}
|
kpeter@663
|
1169 |
_all_arc_num = f;
|
kpeter@663
|
1170 |
}
|
kpeter@663
|
1171 |
else {
|
kpeter@663
|
1172 |
// GEQ supply constraints
|
kpeter@663
|
1173 |
_search_arc_num = _arc_num + _node_num;
|
kpeter@663
|
1174 |
int f = _arc_num + _node_num;
|
kpeter@663
|
1175 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
kpeter@663
|
1176 |
_parent[u] = _root;
|
kpeter@663
|
1177 |
_thread[u] = u + 1;
|
kpeter@663
|
1178 |
_rev_thread[u + 1] = u;
|
kpeter@663
|
1179 |
_succ_num[u] = 1;
|
kpeter@663
|
1180 |
_last_succ[u] = u;
|
kpeter@663
|
1181 |
if (_supply[u] <= 0) {
|
kpeter@663
|
1182 |
_forward[u] = false;
|
kpeter@663
|
1183 |
_pi[u] = 0;
|
kpeter@663
|
1184 |
_pred[u] = e;
|
kpeter@663
|
1185 |
_source[e] = _root;
|
kpeter@663
|
1186 |
_target[e] = u;
|
kpeter@663
|
1187 |
_cap[e] = INF;
|
kpeter@663
|
1188 |
_flow[e] = -_supply[u];
|
kpeter@663
|
1189 |
_cost[e] = 0;
|
kpeter@663
|
1190 |
_state[e] = STATE_TREE;
|
kpeter@663
|
1191 |
} else {
|
kpeter@663
|
1192 |
_forward[u] = true;
|
kpeter@663
|
1193 |
_pi[u] = -ART_COST;
|
kpeter@663
|
1194 |
_pred[u] = f;
|
kpeter@663
|
1195 |
_source[f] = u;
|
kpeter@663
|
1196 |
_target[f] = _root;
|
kpeter@663
|
1197 |
_cap[f] = INF;
|
kpeter@663
|
1198 |
_flow[f] = _supply[u];
|
kpeter@663
|
1199 |
_state[f] = STATE_TREE;
|
kpeter@663
|
1200 |
_cost[f] = ART_COST;
|
kpeter@663
|
1201 |
_source[e] = _root;
|
kpeter@663
|
1202 |
_target[e] = u;
|
kpeter@663
|
1203 |
_cap[e] = INF;
|
kpeter@663
|
1204 |
_flow[e] = 0;
|
kpeter@663
|
1205 |
_cost[e] = 0;
|
kpeter@663
|
1206 |
_state[e] = STATE_LOWER;
|
kpeter@663
|
1207 |
++f;
|
kpeter@663
|
1208 |
}
|
kpeter@663
|
1209 |
}
|
kpeter@663
|
1210 |
_all_arc_num = f;
|
kpeter@663
|
1211 |
}
|
kpeter@601
|
1212 |
|
kpeter@601
|
1213 |
return true;
|
kpeter@601
|
1214 |
}
|
kpeter@601
|
1215 |
|
kpeter@601
|
1216 |
// Find the join node
|
kpeter@601
|
1217 |
void findJoinNode() {
|
kpeter@603
|
1218 |
int u = _source[in_arc];
|
kpeter@603
|
1219 |
int v = _target[in_arc];
|
kpeter@601
|
1220 |
while (u != v) {
|
kpeter@604
|
1221 |
if (_succ_num[u] < _succ_num[v]) {
|
kpeter@604
|
1222 |
u = _parent[u];
|
kpeter@604
|
1223 |
} else {
|
kpeter@604
|
1224 |
v = _parent[v];
|
kpeter@604
|
1225 |
}
|
kpeter@601
|
1226 |
}
|
kpeter@601
|
1227 |
join = u;
|
kpeter@601
|
1228 |
}
|
kpeter@601
|
1229 |
|
kpeter@601
|
1230 |
// Find the leaving arc of the cycle and returns true if the
|
kpeter@601
|
1231 |
// leaving arc is not the same as the entering arc
|
kpeter@601
|
1232 |
bool findLeavingArc() {
|
kpeter@601
|
1233 |
// Initialize first and second nodes according to the direction
|
kpeter@601
|
1234 |
// of the cycle
|
kpeter@603
|
1235 |
if (_state[in_arc] == STATE_LOWER) {
|
kpeter@603
|
1236 |
first = _source[in_arc];
|
kpeter@603
|
1237 |
second = _target[in_arc];
|
kpeter@601
|
1238 |
} else {
|
kpeter@603
|
1239 |
first = _target[in_arc];
|
kpeter@603
|
1240 |
second = _source[in_arc];
|
kpeter@601
|
1241 |
}
|
kpeter@603
|
1242 |
delta = _cap[in_arc];
|
kpeter@601
|
1243 |
int result = 0;
|
kpeter@641
|
1244 |
Value d;
|
kpeter@601
|
1245 |
int e;
|
kpeter@601
|
1246 |
|
kpeter@601
|
1247 |
// Search the cycle along the path form the first node to the root
|
kpeter@601
|
1248 |
for (int u = first; u != join; u = _parent[u]) {
|
kpeter@601
|
1249 |
e = _pred[u];
|
kpeter@640
|
1250 |
d = _forward[u] ?
|
kpeter@811
|
1251 |
_flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
|
kpeter@601
|
1252 |
if (d < delta) {
|
kpeter@601
|
1253 |
delta = d;
|
kpeter@601
|
1254 |
u_out = u;
|
kpeter@601
|
1255 |
result = 1;
|
kpeter@601
|
1256 |
}
|
kpeter@601
|
1257 |
}
|
kpeter@601
|
1258 |
// Search the cycle along the path form the second node to the root
|
kpeter@601
|
1259 |
for (int u = second; u != join; u = _parent[u]) {
|
kpeter@601
|
1260 |
e = _pred[u];
|
kpeter@640
|
1261 |
d = _forward[u] ?
|
kpeter@811
|
1262 |
(_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
|
kpeter@601
|
1263 |
if (d <= delta) {
|
kpeter@601
|
1264 |
delta = d;
|
kpeter@601
|
1265 |
u_out = u;
|
kpeter@601
|
1266 |
result = 2;
|
kpeter@601
|
1267 |
}
|
kpeter@601
|
1268 |
}
|
kpeter@601
|
1269 |
|
kpeter@601
|
1270 |
if (result == 1) {
|
kpeter@601
|
1271 |
u_in = first;
|
kpeter@601
|
1272 |
v_in = second;
|
kpeter@601
|
1273 |
} else {
|
kpeter@601
|
1274 |
u_in = second;
|
kpeter@601
|
1275 |
v_in = first;
|
kpeter@601
|
1276 |
}
|
kpeter@601
|
1277 |
return result != 0;
|
kpeter@601
|
1278 |
}
|
kpeter@601
|
1279 |
|
kpeter@601
|
1280 |
// Change _flow and _state vectors
|
kpeter@601
|
1281 |
void changeFlow(bool change) {
|
kpeter@601
|
1282 |
// Augment along the cycle
|
kpeter@601
|
1283 |
if (delta > 0) {
|
kpeter@641
|
1284 |
Value val = _state[in_arc] * delta;
|
kpeter@603
|
1285 |
_flow[in_arc] += val;
|
kpeter@603
|
1286 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
kpeter@601
|
1287 |
_flow[_pred[u]] += _forward[u] ? -val : val;
|
kpeter@601
|
1288 |
}
|
kpeter@603
|
1289 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
kpeter@601
|
1290 |
_flow[_pred[u]] += _forward[u] ? val : -val;
|
kpeter@601
|
1291 |
}
|
kpeter@601
|
1292 |
}
|
kpeter@601
|
1293 |
// Update the state of the entering and leaving arcs
|
kpeter@601
|
1294 |
if (change) {
|
kpeter@603
|
1295 |
_state[in_arc] = STATE_TREE;
|
kpeter@601
|
1296 |
_state[_pred[u_out]] =
|
kpeter@601
|
1297 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
|
kpeter@601
|
1298 |
} else {
|
kpeter@603
|
1299 |
_state[in_arc] = -_state[in_arc];
|
kpeter@601
|
1300 |
}
|
kpeter@601
|
1301 |
}
|
kpeter@601
|
1302 |
|
kpeter@604
|
1303 |
// Update the tree structure
|
kpeter@604
|
1304 |
void updateTreeStructure() {
|
kpeter@604
|
1305 |
int u, w;
|
kpeter@604
|
1306 |
int old_rev_thread = _rev_thread[u_out];
|
kpeter@604
|
1307 |
int old_succ_num = _succ_num[u_out];
|
kpeter@604
|
1308 |
int old_last_succ = _last_succ[u_out];
|
kpeter@601
|
1309 |
v_out = _parent[u_out];
|
kpeter@601
|
1310 |
|
kpeter@604
|
1311 |
u = _last_succ[u_in]; // the last successor of u_in
|
kpeter@604
|
1312 |
right = _thread[u]; // the node after it
|
kpeter@604
|
1313 |
|
kpeter@604
|
1314 |
// Handle the case when old_rev_thread equals to v_in
|
kpeter@604
|
1315 |
// (it also means that join and v_out coincide)
|
kpeter@604
|
1316 |
if (old_rev_thread == v_in) {
|
kpeter@604
|
1317 |
last = _thread[_last_succ[u_out]];
|
kpeter@604
|
1318 |
} else {
|
kpeter@604
|
1319 |
last = _thread[v_in];
|
kpeter@601
|
1320 |
}
|
kpeter@601
|
1321 |
|
kpeter@604
|
1322 |
// Update _thread and _parent along the stem nodes (i.e. the nodes
|
kpeter@604
|
1323 |
// between u_in and u_out, whose parent have to be changed)
|
kpeter@601
|
1324 |
_thread[v_in] = stem = u_in;
|
kpeter@604
|
1325 |
_dirty_revs.clear();
|
kpeter@604
|
1326 |
_dirty_revs.push_back(v_in);
|
kpeter@601
|
1327 |
par_stem = v_in;
|
kpeter@601
|
1328 |
while (stem != u_out) {
|
kpeter@604
|
1329 |
// Insert the next stem node into the thread list
|
kpeter@604
|
1330 |
new_stem = _parent[stem];
|
kpeter@604
|
1331 |
_thread[u] = new_stem;
|
kpeter@604
|
1332 |
_dirty_revs.push_back(u);
|
kpeter@601
|
1333 |
|
kpeter@604
|
1334 |
// Remove the subtree of stem from the thread list
|
kpeter@604
|
1335 |
w = _rev_thread[stem];
|
kpeter@604
|
1336 |
_thread[w] = right;
|
kpeter@604
|
1337 |
_rev_thread[right] = w;
|
kpeter@601
|
1338 |
|
kpeter@604
|
1339 |
// Change the parent node and shift stem nodes
|
kpeter@601
|
1340 |
_parent[stem] = par_stem;
|
kpeter@601
|
1341 |
par_stem = stem;
|
kpeter@601
|
1342 |
stem = new_stem;
|
kpeter@601
|
1343 |
|
kpeter@604
|
1344 |
// Update u and right
|
kpeter@604
|
1345 |
u = _last_succ[stem] == _last_succ[par_stem] ?
|
kpeter@604
|
1346 |
_rev_thread[par_stem] : _last_succ[stem];
|
kpeter@601
|
1347 |
right = _thread[u];
|
kpeter@601
|
1348 |
}
|
kpeter@601
|
1349 |
_parent[u_out] = par_stem;
|
kpeter@601
|
1350 |
_thread[u] = last;
|
kpeter@604
|
1351 |
_rev_thread[last] = u;
|
kpeter@604
|
1352 |
_last_succ[u_out] = u;
|
kpeter@601
|
1353 |
|
kpeter@604
|
1354 |
// Remove the subtree of u_out from the thread list except for
|
kpeter@604
|
1355 |
// the case when old_rev_thread equals to v_in
|
kpeter@604
|
1356 |
// (it also means that join and v_out coincide)
|
kpeter@604
|
1357 |
if (old_rev_thread != v_in) {
|
kpeter@604
|
1358 |
_thread[old_rev_thread] = right;
|
kpeter@604
|
1359 |
_rev_thread[right] = old_rev_thread;
|
kpeter@604
|
1360 |
}
|
kpeter@604
|
1361 |
|
kpeter@604
|
1362 |
// Update _rev_thread using the new _thread values
|
kpeter@604
|
1363 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
|
kpeter@604
|
1364 |
u = _dirty_revs[i];
|
kpeter@604
|
1365 |
_rev_thread[_thread[u]] = u;
|
kpeter@604
|
1366 |
}
|
kpeter@604
|
1367 |
|
kpeter@604
|
1368 |
// Update _pred, _forward, _last_succ and _succ_num for the
|
kpeter@604
|
1369 |
// stem nodes from u_out to u_in
|
kpeter@604
|
1370 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out];
|
kpeter@604
|
1371 |
u = u_out;
|
kpeter@604
|
1372 |
while (u != u_in) {
|
kpeter@604
|
1373 |
w = _parent[u];
|
kpeter@604
|
1374 |
_pred[u] = _pred[w];
|
kpeter@604
|
1375 |
_forward[u] = !_forward[w];
|
kpeter@604
|
1376 |
tmp_sc += _succ_num[u] - _succ_num[w];
|
kpeter@604
|
1377 |
_succ_num[u] = tmp_sc;
|
kpeter@604
|
1378 |
_last_succ[w] = tmp_ls;
|
kpeter@604
|
1379 |
u = w;
|
kpeter@604
|
1380 |
}
|
kpeter@604
|
1381 |
_pred[u_in] = in_arc;
|
kpeter@604
|
1382 |
_forward[u_in] = (u_in == _source[in_arc]);
|
kpeter@604
|
1383 |
_succ_num[u_in] = old_succ_num;
|
kpeter@604
|
1384 |
|
kpeter@604
|
1385 |
// Set limits for updating _last_succ form v_in and v_out
|
kpeter@604
|
1386 |
// towards the root
|
kpeter@604
|
1387 |
int up_limit_in = -1;
|
kpeter@604
|
1388 |
int up_limit_out = -1;
|
kpeter@604
|
1389 |
if (_last_succ[join] == v_in) {
|
kpeter@604
|
1390 |
up_limit_out = join;
|
kpeter@601
|
1391 |
} else {
|
kpeter@604
|
1392 |
up_limit_in = join;
|
kpeter@604
|
1393 |
}
|
kpeter@604
|
1394 |
|
kpeter@604
|
1395 |
// Update _last_succ from v_in towards the root
|
kpeter@604
|
1396 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
|
kpeter@604
|
1397 |
u = _parent[u]) {
|
kpeter@604
|
1398 |
_last_succ[u] = _last_succ[u_out];
|
kpeter@604
|
1399 |
}
|
kpeter@604
|
1400 |
// Update _last_succ from v_out towards the root
|
kpeter@604
|
1401 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
kpeter@604
|
1402 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
|
kpeter@604
|
1403 |
u = _parent[u]) {
|
kpeter@604
|
1404 |
_last_succ[u] = old_rev_thread;
|
kpeter@604
|
1405 |
}
|
kpeter@604
|
1406 |
} else {
|
kpeter@604
|
1407 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
|
kpeter@604
|
1408 |
u = _parent[u]) {
|
kpeter@604
|
1409 |
_last_succ[u] = _last_succ[u_out];
|
kpeter@604
|
1410 |
}
|
kpeter@604
|
1411 |
}
|
kpeter@604
|
1412 |
|
kpeter@604
|
1413 |
// Update _succ_num from v_in to join
|
kpeter@604
|
1414 |
for (u = v_in; u != join; u = _parent[u]) {
|
kpeter@604
|
1415 |
_succ_num[u] += old_succ_num;
|
kpeter@604
|
1416 |
}
|
kpeter@604
|
1417 |
// Update _succ_num from v_out to join
|
kpeter@604
|
1418 |
for (u = v_out; u != join; u = _parent[u]) {
|
kpeter@604
|
1419 |
_succ_num[u] -= old_succ_num;
|
kpeter@601
|
1420 |
}
|
kpeter@601
|
1421 |
}
|
kpeter@601
|
1422 |
|
kpeter@604
|
1423 |
// Update potentials
|
kpeter@604
|
1424 |
void updatePotential() {
|
kpeter@607
|
1425 |
Cost sigma = _forward[u_in] ?
|
kpeter@601
|
1426 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
|
kpeter@601
|
1427 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
|
kpeter@608
|
1428 |
// Update potentials in the subtree, which has been moved
|
kpeter@608
|
1429 |
int end = _thread[_last_succ[u_in]];
|
kpeter@608
|
1430 |
for (int u = u_in; u != end; u = _thread[u]) {
|
kpeter@608
|
1431 |
_pi[u] += sigma;
|
kpeter@601
|
1432 |
}
|
kpeter@601
|
1433 |
}
|
kpeter@601
|
1434 |
|
kpeter@601
|
1435 |
// Execute the algorithm
|
kpeter@640
|
1436 |
ProblemType start(PivotRule pivot_rule) {
|
kpeter@601
|
1437 |
// Select the pivot rule implementation
|
kpeter@601
|
1438 |
switch (pivot_rule) {
|
kpeter@605
|
1439 |
case FIRST_ELIGIBLE:
|
kpeter@601
|
1440 |
return start<FirstEligiblePivotRule>();
|
kpeter@605
|
1441 |
case BEST_ELIGIBLE:
|
kpeter@601
|
1442 |
return start<BestEligiblePivotRule>();
|
kpeter@605
|
1443 |
case BLOCK_SEARCH:
|
kpeter@601
|
1444 |
return start<BlockSearchPivotRule>();
|
kpeter@605
|
1445 |
case CANDIDATE_LIST:
|
kpeter@601
|
1446 |
return start<CandidateListPivotRule>();
|
kpeter@605
|
1447 |
case ALTERING_LIST:
|
kpeter@601
|
1448 |
return start<AlteringListPivotRule>();
|
kpeter@601
|
1449 |
}
|
kpeter@640
|
1450 |
return INFEASIBLE; // avoid warning
|
kpeter@601
|
1451 |
}
|
kpeter@601
|
1452 |
|
kpeter@605
|
1453 |
template <typename PivotRuleImpl>
|
kpeter@640
|
1454 |
ProblemType start() {
|
kpeter@605
|
1455 |
PivotRuleImpl pivot(*this);
|
kpeter@601
|
1456 |
|
kpeter@605
|
1457 |
// Execute the Network Simplex algorithm
|
kpeter@601
|
1458 |
while (pivot.findEnteringArc()) {
|
kpeter@601
|
1459 |
findJoinNode();
|
kpeter@601
|
1460 |
bool change = findLeavingArc();
|
kpeter@811
|
1461 |
if (delta >= MAX) return UNBOUNDED;
|
kpeter@601
|
1462 |
changeFlow(change);
|
kpeter@601
|
1463 |
if (change) {
|
kpeter@604
|
1464 |
updateTreeStructure();
|
kpeter@604
|
1465 |
updatePotential();
|
kpeter@601
|
1466 |
}
|
kpeter@601
|
1467 |
}
|
kpeter@640
|
1468 |
|
kpeter@640
|
1469 |
// Check feasibility
|
kpeter@663
|
1470 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
kpeter@663
|
1471 |
if (_flow[e] != 0) return INFEASIBLE;
|
kpeter@640
|
1472 |
}
|
kpeter@601
|
1473 |
|
kpeter@642
|
1474 |
// Transform the solution and the supply map to the original form
|
kpeter@642
|
1475 |
if (_have_lower) {
|
kpeter@601
|
1476 |
for (int i = 0; i != _arc_num; ++i) {
|
kpeter@642
|
1477 |
Value c = _lower[i];
|
kpeter@642
|
1478 |
if (c != 0) {
|
kpeter@642
|
1479 |
_flow[i] += c;
|
kpeter@642
|
1480 |
_supply[_source[i]] += c;
|
kpeter@642
|
1481 |
_supply[_target[i]] -= c;
|
kpeter@642
|
1482 |
}
|
kpeter@601
|
1483 |
}
|
kpeter@601
|
1484 |
}
|
kpeter@663
|
1485 |
|
kpeter@663
|
1486 |
// Shift potentials to meet the requirements of the GEQ/LEQ type
|
kpeter@663
|
1487 |
// optimality conditions
|
kpeter@663
|
1488 |
if (_sum_supply == 0) {
|
kpeter@663
|
1489 |
if (_stype == GEQ) {
|
kpeter@663
|
1490 |
Cost max_pot = std::numeric_limits<Cost>::min();
|
kpeter@663
|
1491 |
for (int i = 0; i != _node_num; ++i) {
|
kpeter@663
|
1492 |
if (_pi[i] > max_pot) max_pot = _pi[i];
|
kpeter@663
|
1493 |
}
|
kpeter@663
|
1494 |
if (max_pot > 0) {
|
kpeter@663
|
1495 |
for (int i = 0; i != _node_num; ++i)
|
kpeter@663
|
1496 |
_pi[i] -= max_pot;
|
kpeter@663
|
1497 |
}
|
kpeter@663
|
1498 |
} else {
|
kpeter@663
|
1499 |
Cost min_pot = std::numeric_limits<Cost>::max();
|
kpeter@663
|
1500 |
for (int i = 0; i != _node_num; ++i) {
|
kpeter@663
|
1501 |
if (_pi[i] < min_pot) min_pot = _pi[i];
|
kpeter@663
|
1502 |
}
|
kpeter@663
|
1503 |
if (min_pot < 0) {
|
kpeter@663
|
1504 |
for (int i = 0; i != _node_num; ++i)
|
kpeter@663
|
1505 |
_pi[i] -= min_pot;
|
kpeter@663
|
1506 |
}
|
kpeter@663
|
1507 |
}
|
kpeter@663
|
1508 |
}
|
kpeter@601
|
1509 |
|
kpeter@640
|
1510 |
return OPTIMAL;
|
kpeter@601
|
1511 |
}
|
kpeter@601
|
1512 |
|
kpeter@601
|
1513 |
}; //class NetworkSimplex
|
kpeter@601
|
1514 |
|
kpeter@601
|
1515 |
///@}
|
kpeter@601
|
1516 |
|
kpeter@601
|
1517 |
} //namespace lemon
|
kpeter@601
|
1518 |
|
kpeter@601
|
1519 |
#endif //LEMON_NETWORK_SIMPLEX_H
|