lemon/kruskal.h
author Alpar Juttner <alpar@cs.elte.hu>
Fri, 03 Feb 2012 05:55:01 +0100
changeset 986 c8896bc31271
parent 584 33c6b6e755cd
child 1092 dceba191c00d
permissions -rw-r--r--
Merge
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@103
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@103
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@103
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@103
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@103
     8
 *
alpar@103
     9
 * Permission to use, modify and distribute this software is granted
alpar@103
    10
 * provided that this copyright notice appears in all copies. For
alpar@103
    11
 * precise terms see the accompanying LICENSE file.
alpar@103
    12
 *
alpar@103
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@103
    14
 * express or implied, and with no claim as to its suitability for any
alpar@103
    15
 * purpose.
alpar@103
    16
 *
alpar@103
    17
 */
alpar@103
    18
alpar@103
    19
#ifndef LEMON_KRUSKAL_H
alpar@103
    20
#define LEMON_KRUSKAL_H
alpar@103
    21
alpar@103
    22
#include <algorithm>
alpar@103
    23
#include <vector>
alpar@103
    24
#include <lemon/unionfind.h>
alpar@103
    25
#include <lemon/maps.h>
alpar@103
    26
deba@220
    27
#include <lemon/core.h>
alpar@103
    28
#include <lemon/bits/traits.h>
alpar@103
    29
alpar@103
    30
///\ingroup spantree
alpar@103
    31
///\file
kpeter@194
    32
///\brief Kruskal's algorithm to compute a minimum cost spanning tree
alpar@103
    33
alpar@103
    34
namespace lemon {
alpar@103
    35
alpar@103
    36
  namespace _kruskal_bits {
alpar@103
    37
alpar@103
    38
    // Kruskal for directed graphs.
alpar@103
    39
alpar@103
    40
    template <typename Digraph, typename In, typename Out>
alpar@103
    41
    typename disable_if<lemon::UndirectedTagIndicator<Digraph>,
alpar@209
    42
                       typename In::value_type::second_type >::type
alpar@103
    43
    kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
alpar@103
    44
      typedef typename In::value_type::second_type Value;
alpar@103
    45
      typedef typename Digraph::template NodeMap<int> IndexMap;
alpar@103
    46
      typedef typename Digraph::Node Node;
alpar@209
    47
alpar@103
    48
      IndexMap index(digraph);
alpar@103
    49
      UnionFind<IndexMap> uf(index);
alpar@103
    50
      for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
alpar@103
    51
        uf.insert(it);
alpar@103
    52
      }
alpar@209
    53
alpar@103
    54
      Value tree_value = 0;
alpar@103
    55
      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
alpar@103
    56
        if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
alpar@103
    57
          out.set(it->first, true);
alpar@103
    58
          tree_value += it->second;
alpar@103
    59
        }
alpar@103
    60
        else {
alpar@103
    61
          out.set(it->first, false);
alpar@103
    62
        }
alpar@103
    63
      }
alpar@103
    64
      return tree_value;
alpar@103
    65
    }
alpar@103
    66
alpar@103
    67
    // Kruskal for undirected graphs.
alpar@103
    68
alpar@103
    69
    template <typename Graph, typename In, typename Out>
alpar@103
    70
    typename enable_if<lemon::UndirectedTagIndicator<Graph>,
alpar@209
    71
                       typename In::value_type::second_type >::type
alpar@103
    72
    kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) {
alpar@103
    73
      typedef typename In::value_type::second_type Value;
alpar@103
    74
      typedef typename Graph::template NodeMap<int> IndexMap;
alpar@103
    75
      typedef typename Graph::Node Node;
alpar@209
    76
alpar@103
    77
      IndexMap index(graph);
alpar@103
    78
      UnionFind<IndexMap> uf(index);
alpar@103
    79
      for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
alpar@103
    80
        uf.insert(it);
alpar@103
    81
      }
alpar@209
    82
alpar@103
    83
      Value tree_value = 0;
alpar@103
    84
      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
alpar@103
    85
        if (uf.join(graph.u(it->first),graph.v(it->first))) {
alpar@103
    86
          out.set(it->first, true);
alpar@103
    87
          tree_value += it->second;
alpar@103
    88
        }
alpar@103
    89
        else {
alpar@103
    90
          out.set(it->first, false);
alpar@103
    91
        }
alpar@103
    92
      }
alpar@103
    93
      return tree_value;
alpar@103
    94
    }
alpar@103
    95
alpar@103
    96
alpar@103
    97
    template <typename Sequence>
alpar@103
    98
    struct PairComp {
alpar@103
    99
      typedef typename Sequence::value_type Value;
alpar@103
   100
      bool operator()(const Value& left, const Value& right) {
alpar@209
   101
        return left.second < right.second;
alpar@103
   102
      }
alpar@103
   103
    };
alpar@103
   104
alpar@103
   105
    template <typename In, typename Enable = void>
alpar@103
   106
    struct SequenceInputIndicator {
alpar@103
   107
      static const bool value = false;
alpar@103
   108
    };
alpar@103
   109
alpar@103
   110
    template <typename In>
alpar@209
   111
    struct SequenceInputIndicator<In,
alpar@103
   112
      typename exists<typename In::value_type::first_type>::type> {
alpar@103
   113
      static const bool value = true;
alpar@103
   114
    };
alpar@103
   115
alpar@103
   116
    template <typename In, typename Enable = void>
alpar@103
   117
    struct MapInputIndicator {
alpar@103
   118
      static const bool value = false;
alpar@103
   119
    };
alpar@103
   120
alpar@103
   121
    template <typename In>
alpar@209
   122
    struct MapInputIndicator<In,
alpar@103
   123
      typename exists<typename In::Value>::type> {
alpar@103
   124
      static const bool value = true;
alpar@103
   125
    };
alpar@103
   126
alpar@103
   127
    template <typename In, typename Enable = void>
alpar@103
   128
    struct SequenceOutputIndicator {
alpar@103
   129
      static const bool value = false;
alpar@103
   130
    };
alpar@209
   131
alpar@103
   132
    template <typename Out>
alpar@209
   133
    struct SequenceOutputIndicator<Out,
alpar@103
   134
      typename exists<typename Out::value_type>::type> {
alpar@103
   135
      static const bool value = true;
alpar@103
   136
    };
alpar@103
   137
alpar@103
   138
    template <typename Out, typename Enable = void>
alpar@103
   139
    struct MapOutputIndicator {
alpar@103
   140
      static const bool value = false;
alpar@103
   141
    };
alpar@103
   142
alpar@103
   143
    template <typename Out>
alpar@209
   144
    struct MapOutputIndicator<Out,
alpar@103
   145
      typename exists<typename Out::Value>::type> {
alpar@103
   146
      static const bool value = true;
alpar@103
   147
    };
alpar@103
   148
alpar@103
   149
    template <typename In, typename InEnable = void>
alpar@103
   150
    struct KruskalValueSelector {};
alpar@103
   151
alpar@103
   152
    template <typename In>
alpar@103
   153
    struct KruskalValueSelector<In,
alpar@209
   154
      typename enable_if<SequenceInputIndicator<In>, void>::type>
alpar@103
   155
    {
alpar@103
   156
      typedef typename In::value_type::second_type Value;
alpar@209
   157
    };
alpar@103
   158
alpar@103
   159
    template <typename In>
alpar@103
   160
    struct KruskalValueSelector<In,
alpar@209
   161
      typename enable_if<MapInputIndicator<In>, void>::type>
alpar@103
   162
    {
alpar@103
   163
      typedef typename In::Value Value;
alpar@209
   164
    };
alpar@209
   165
alpar@103
   166
    template <typename Graph, typename In, typename Out,
alpar@103
   167
              typename InEnable = void>
alpar@103
   168
    struct KruskalInputSelector {};
alpar@103
   169
alpar@103
   170
    template <typename Graph, typename In, typename Out,
alpar@103
   171
              typename InEnable = void>
alpar@103
   172
    struct KruskalOutputSelector {};
alpar@209
   173
alpar@103
   174
    template <typename Graph, typename In, typename Out>
alpar@103
   175
    struct KruskalInputSelector<Graph, In, Out,
alpar@209
   176
      typename enable_if<SequenceInputIndicator<In>, void>::type >
alpar@103
   177
    {
alpar@103
   178
      typedef typename In::value_type::second_type Value;
alpar@103
   179
alpar@103
   180
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
alpar@103
   181
        return KruskalOutputSelector<Graph, In, Out>::
alpar@103
   182
          kruskal(graph, in, out);
alpar@103
   183
      }
alpar@103
   184
alpar@103
   185
    };
alpar@103
   186
alpar@103
   187
    template <typename Graph, typename In, typename Out>
alpar@103
   188
    struct KruskalInputSelector<Graph, In, Out,
alpar@209
   189
      typename enable_if<MapInputIndicator<In>, void>::type >
alpar@103
   190
    {
alpar@103
   191
      typedef typename In::Value Value;
alpar@103
   192
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
alpar@103
   193
        typedef typename In::Key MapArc;
alpar@103
   194
        typedef typename In::Value Value;
alpar@103
   195
        typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt;
alpar@103
   196
        typedef std::vector<std::pair<MapArc, Value> > Sequence;
alpar@103
   197
        Sequence seq;
alpar@209
   198
alpar@103
   199
        for (MapArcIt it(graph); it != INVALID; ++it) {
alpar@103
   200
          seq.push_back(std::make_pair(it, in[it]));
alpar@103
   201
        }
alpar@103
   202
alpar@103
   203
        std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
alpar@103
   204
        return KruskalOutputSelector<Graph, Sequence, Out>::
alpar@103
   205
          kruskal(graph, seq, out);
alpar@103
   206
      }
alpar@103
   207
    };
alpar@103
   208
deba@136
   209
    template <typename T>
deba@136
   210
    struct RemoveConst {
deba@136
   211
      typedef T type;
deba@136
   212
    };
deba@136
   213
deba@136
   214
    template <typename T>
deba@136
   215
    struct RemoveConst<const T> {
deba@136
   216
      typedef T type;
deba@136
   217
    };
deba@136
   218
alpar@103
   219
    template <typename Graph, typename In, typename Out>
alpar@103
   220
    struct KruskalOutputSelector<Graph, In, Out,
alpar@209
   221
      typename enable_if<SequenceOutputIndicator<Out>, void>::type >
alpar@103
   222
    {
alpar@103
   223
      typedef typename In::value_type::second_type Value;
alpar@103
   224
alpar@103
   225
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
kpeter@167
   226
        typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
alpar@103
   227
        Map map(out);
alpar@103
   228
        return _kruskal_bits::kruskal(graph, in, map);
alpar@103
   229
      }
alpar@103
   230
alpar@103
   231
    };
alpar@103
   232
alpar@103
   233
    template <typename Graph, typename In, typename Out>
alpar@103
   234
    struct KruskalOutputSelector<Graph, In, Out,
alpar@209
   235
      typename enable_if<MapOutputIndicator<Out>, void>::type >
alpar@103
   236
    {
alpar@103
   237
      typedef typename In::value_type::second_type Value;
alpar@103
   238
alpar@103
   239
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
alpar@103
   240
        return _kruskal_bits::kruskal(graph, in, out);
alpar@103
   241
      }
alpar@103
   242
    };
alpar@103
   243
alpar@103
   244
  }
alpar@103
   245
alpar@103
   246
  /// \ingroup spantree
alpar@103
   247
  ///
kpeter@584
   248
  /// \brief Kruskal's algorithm for finding a minimum cost spanning tree of
kpeter@194
   249
  /// a graph.
alpar@103
   250
  ///
alpar@209
   251
  /// This function runs Kruskal's algorithm to find a minimum cost
kpeter@584
   252
  /// spanning tree of a graph.
alpar@103
   253
  /// Due to some C++ hacking, it accepts various input and output types.
alpar@103
   254
  ///
alpar@103
   255
  /// \param g The graph the algorithm runs on.
alpar@209
   256
  /// It can be either \ref concepts::Digraph "directed" or
alpar@103
   257
  /// \ref concepts::Graph "undirected".
alpar@209
   258
  /// If the graph is directed, the algorithm consider it to be
alpar@103
   259
  /// undirected by disregarding the direction of the arcs.
alpar@103
   260
  ///
alpar@209
   261
  /// \param in This object is used to describe the arc/edge costs.
kpeter@194
   262
  /// It can be one of the following choices.
alpar@103
   263
  /// - An STL compatible 'Forward Container' with
kpeter@584
   264
  /// <tt>std::pair<GR::Arc,C></tt> or
kpeter@584
   265
  /// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where
kpeter@584
   266
  /// \c C is the type of the costs. The pairs indicates the arcs/edges
alpar@103
   267
  /// along with the assigned cost. <em>They must be in a
alpar@103
   268
  /// cost-ascending order.</em>
alpar@209
   269
  /// - Any readable arc/edge map. The values of the map indicate the
kpeter@194
   270
  /// arc/edge costs.
alpar@103
   271
  ///
kpeter@194
   272
  /// \retval out Here we also have a choice.
kpeter@584
   273
  /// - It can be a writable arc/edge map with \c bool value type. After
kpeter@584
   274
  /// running the algorithm it will contain the found minimum cost spanning
kpeter@194
   275
  /// tree: the value of an arc/edge will be set to \c true if it belongs
alpar@103
   276
  /// to the tree, otherwise it will be set to \c false. The value of
kpeter@194
   277
  /// each arc/edge will be set exactly once.
alpar@103
   278
  /// - It can also be an iteraror of an STL Container with
kpeter@194
   279
  /// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
alpar@103
   280
  /// <tt>value_type</tt>.  The algorithm copies the elements of the
alpar@103
   281
  /// found tree into this sequence.  For example, if we know that the
alpar@103
   282
  /// spanning tree of the graph \c g has say 53 arcs, then we can
alpar@103
   283
  /// put its arcs into an STL vector \c tree with a code like this.
alpar@103
   284
  ///\code
alpar@103
   285
  /// std::vector<Arc> tree(53);
alpar@103
   286
  /// kruskal(g,cost,tree.begin());
alpar@103
   287
  ///\endcode
alpar@103
   288
  /// Or if we don't know in advance the size of the tree, we can
alpar@209
   289
  /// write this.
kpeter@194
   290
  ///\code
kpeter@194
   291
  /// std::vector<Arc> tree;
alpar@209
   292
  /// kruskal(g,cost,std::back_inserter(tree));
alpar@103
   293
  ///\endcode
alpar@103
   294
  ///
kpeter@194
   295
  /// \return The total cost of the found spanning tree.
alpar@103
   296
  ///
deba@220
   297
  /// \note If the input graph is not (weakly) connected, a spanning
kpeter@216
   298
  /// forest is calculated instead of a spanning tree.
alpar@103
   299
alpar@103
   300
#ifdef DOXYGEN
kpeter@584
   301
  template <typename Graph, typename In, typename Out>
kpeter@584
   302
  Value kruskal(const Graph& g, const In& in, Out& out)
alpar@209
   303
#else
alpar@103
   304
  template <class Graph, class In, class Out>
alpar@209
   305
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
alpar@209
   306
  kruskal(const Graph& graph, const In& in, Out& out)
alpar@103
   307
#endif
alpar@103
   308
  {
alpar@103
   309
    return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
alpar@103
   310
      kruskal(graph, in, out);
alpar@103
   311
  }
alpar@103
   312
alpar@209
   313
alpar@103
   314
  template <class Graph, class In, class Out>
alpar@103
   315
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
alpar@103
   316
  kruskal(const Graph& graph, const In& in, const Out& out)
alpar@103
   317
  {
alpar@103
   318
    return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
alpar@103
   319
      kruskal(graph, in, out);
alpar@209
   320
  }
alpar@103
   321
alpar@103
   322
} //namespace lemon
alpar@103
   323
alpar@103
   324
#endif //LEMON_KRUSKAL_H