lemon/circulation.h
author Alpar Juttner <alpar@cs.elte.hu>
Fri, 20 Jul 2012 21:23:17 +0200
changeset 1015 d32e4453b48c
parent 688 1f08e846df29
child 998 7fdaa05a69a1
permissions -rw-r--r--
Fix missing initialization in CplexEnv::CplexEnv() (#445)
alpar@399
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@399
     2
 *
alpar@399
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@399
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@399
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@399
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@399
     8
 *
alpar@399
     9
 * Permission to use, modify and distribute this software is granted
alpar@399
    10
 * provided that this copyright notice appears in all copies. For
alpar@399
    11
 * precise terms see the accompanying LICENSE file.
alpar@399
    12
 *
alpar@399
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@399
    14
 * express or implied, and with no claim as to its suitability for any
alpar@399
    15
 * purpose.
alpar@399
    16
 *
alpar@399
    17
 */
alpar@399
    18
alpar@399
    19
#ifndef LEMON_CIRCULATION_H
alpar@399
    20
#define LEMON_CIRCULATION_H
alpar@399
    21
alpar@399
    22
#include <lemon/tolerance.h>
alpar@399
    23
#include <lemon/elevator.h>
kpeter@622
    24
#include <limits>
alpar@399
    25
alpar@399
    26
///\ingroup max_flow
alpar@399
    27
///\file
kpeter@402
    28
///\brief Push-relabel algorithm for finding a feasible circulation.
alpar@399
    29
///
alpar@399
    30
namespace lemon {
alpar@399
    31
alpar@399
    32
  /// \brief Default traits class of Circulation class.
alpar@399
    33
  ///
alpar@399
    34
  /// Default traits class of Circulation class.
kpeter@610
    35
  ///
kpeter@610
    36
  /// \tparam GR Type of the digraph the algorithm runs on.
kpeter@610
    37
  /// \tparam LM The type of the lower bound map.
kpeter@610
    38
  /// \tparam UM The type of the upper bound (capacity) map.
kpeter@610
    39
  /// \tparam SM The type of the supply map.
kpeter@503
    40
  template <typename GR, typename LM,
kpeter@610
    41
            typename UM, typename SM>
alpar@399
    42
  struct CirculationDefaultTraits {
alpar@399
    43
kpeter@402
    44
    /// \brief The type of the digraph the algorithm runs on.
kpeter@503
    45
    typedef GR Digraph;
alpar@399
    46
kpeter@610
    47
    /// \brief The type of the lower bound map.
alpar@399
    48
    ///
kpeter@610
    49
    /// The type of the map that stores the lower bounds on the arcs.
kpeter@610
    50
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
kpeter@610
    51
    typedef LM LowerMap;
alpar@399
    52
kpeter@610
    53
    /// \brief The type of the upper bound (capacity) map.
alpar@399
    54
    ///
kpeter@610
    55
    /// The type of the map that stores the upper bounds (capacities)
kpeter@610
    56
    /// on the arcs.
kpeter@610
    57
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
kpeter@610
    58
    typedef UM UpperMap;
alpar@399
    59
kpeter@610
    60
    /// \brief The type of supply map.
alpar@399
    61
    ///
kpeter@610
    62
    /// The type of the map that stores the signed supply values of the 
kpeter@610
    63
    /// nodes. 
kpeter@610
    64
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
kpeter@610
    65
    typedef SM SupplyMap;
alpar@399
    66
kpeter@641
    67
    /// \brief The type of the flow and supply values.
kpeter@641
    68
    typedef typename SupplyMap::Value Value;
alpar@399
    69
kpeter@402
    70
    /// \brief The type of the map that stores the flow values.
alpar@399
    71
    ///
kpeter@402
    72
    /// The type of the map that stores the flow values.
kpeter@610
    73
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
kpeter@610
    74
    /// concept.
kpeter@641
    75
    typedef typename Digraph::template ArcMap<Value> FlowMap;
alpar@399
    76
alpar@399
    77
    /// \brief Instantiates a FlowMap.
alpar@399
    78
    ///
alpar@399
    79
    /// This function instantiates a \ref FlowMap.
kpeter@610
    80
    /// \param digraph The digraph for which we would like to define
alpar@399
    81
    /// the flow map.
alpar@399
    82
    static FlowMap* createFlowMap(const Digraph& digraph) {
alpar@399
    83
      return new FlowMap(digraph);
alpar@399
    84
    }
alpar@399
    85
kpeter@402
    86
    /// \brief The elevator type used by the algorithm.
alpar@399
    87
    ///
kpeter@402
    88
    /// The elevator type used by the algorithm.
alpar@399
    89
    ///
alpar@399
    90
    /// \sa Elevator
alpar@399
    91
    /// \sa LinkedElevator
alpar@399
    92
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
alpar@399
    93
alpar@399
    94
    /// \brief Instantiates an Elevator.
alpar@399
    95
    ///
kpeter@402
    96
    /// This function instantiates an \ref Elevator.
kpeter@610
    97
    /// \param digraph The digraph for which we would like to define
alpar@399
    98
    /// the elevator.
alpar@399
    99
    /// \param max_level The maximum level of the elevator.
alpar@399
   100
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
alpar@399
   101
      return new Elevator(digraph, max_level);
alpar@399
   102
    }
alpar@399
   103
alpar@399
   104
    /// \brief The tolerance used by the algorithm
alpar@399
   105
    ///
alpar@399
   106
    /// The tolerance used by the algorithm to handle inexact computation.
kpeter@641
   107
    typedef lemon::Tolerance<Value> Tolerance;
alpar@399
   108
alpar@399
   109
  };
alpar@399
   110
kpeter@402
   111
  /**
kpeter@402
   112
     \brief Push-relabel algorithm for the network circulation problem.
alpar@399
   113
alpar@399
   114
     \ingroup max_flow
kpeter@610
   115
     This class implements a push-relabel algorithm for the \e network
kpeter@610
   116
     \e circulation problem.
kpeter@402
   117
     It is to find a feasible circulation when lower and upper bounds
kpeter@610
   118
     are given for the flow values on the arcs and lower bounds are
kpeter@610
   119
     given for the difference between the outgoing and incoming flow
kpeter@610
   120
     at the nodes.
kpeter@402
   121
alpar@399
   122
     The exact formulation of this problem is the following.
kpeter@622
   123
     Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
kpeter@622
   124
     \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
kpeter@622
   125
     upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
kpeter@610
   126
     holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
kpeter@610
   127
     denotes the signed supply values of the nodes.
kpeter@610
   128
     If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
kpeter@610
   129
     supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
kpeter@610
   130
     \f$-sup(u)\f$ demand.
kpeter@622
   131
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
kpeter@610
   132
     solution of the following problem.
kpeter@402
   133
kpeter@610
   134
     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
kpeter@610
   135
     \geq sup(u) \quad \forall u\in V, \f]
kpeter@610
   136
     \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
kpeter@610
   137
     
kpeter@610
   138
     The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
kpeter@610
   139
     zero or negative in order to have a feasible solution (since the sum
kpeter@610
   140
     of the expressions on the left-hand side of the inequalities is zero).
kpeter@610
   141
     It means that the total demand must be greater or equal to the total
kpeter@610
   142
     supply and all the supplies have to be carried out from the supply nodes,
kpeter@610
   143
     but there could be demands that are not satisfied.
kpeter@610
   144
     If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
kpeter@610
   145
     constraints have to be satisfied with equality, i.e. all demands
kpeter@610
   146
     have to be satisfied and all supplies have to be used.
kpeter@610
   147
     
kpeter@610
   148
     If you need the opposite inequalities in the supply/demand constraints
kpeter@610
   149
     (i.e. the total demand is less than the total supply and all the demands
kpeter@610
   150
     have to be satisfied while there could be supplies that are not used),
kpeter@610
   151
     then you could easily transform the problem to the above form by reversing
kpeter@610
   152
     the direction of the arcs and taking the negative of the supply values
kpeter@610
   153
     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
kpeter@610
   154
kpeter@622
   155
     This algorithm either calculates a feasible circulation, or provides
kpeter@622
   156
     a \ref barrier() "barrier", which prooves that a feasible soultion
kpeter@622
   157
     cannot exist.
kpeter@622
   158
kpeter@610
   159
     Note that this algorithm also provides a feasible solution for the
kpeter@610
   160
     \ref min_cost_flow "minimum cost flow problem".
kpeter@402
   161
kpeter@503
   162
     \tparam GR The type of the digraph the algorithm runs on.
kpeter@610
   163
     \tparam LM The type of the lower bound map. The default
kpeter@503
   164
     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
kpeter@610
   165
     \tparam UM The type of the upper bound (capacity) map.
kpeter@610
   166
     The default map type is \c LM.
kpeter@610
   167
     \tparam SM The type of the supply map. The default map type is
kpeter@503
   168
     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
alpar@399
   169
  */
kpeter@402
   170
#ifdef DOXYGEN
kpeter@503
   171
template< typename GR,
kpeter@503
   172
          typename LM,
kpeter@503
   173
          typename UM,
kpeter@610
   174
          typename SM,
kpeter@503
   175
          typename TR >
kpeter@402
   176
#else
kpeter@503
   177
template< typename GR,
kpeter@503
   178
          typename LM = typename GR::template ArcMap<int>,
kpeter@503
   179
          typename UM = LM,
kpeter@610
   180
          typename SM = typename GR::template NodeMap<typename UM::Value>,
kpeter@610
   181
          typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
kpeter@402
   182
#endif
alpar@399
   183
  class Circulation {
kpeter@402
   184
  public:
alpar@399
   185
kpeter@402
   186
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
kpeter@503
   187
    typedef TR Traits;
kpeter@402
   188
    ///The type of the digraph the algorithm runs on.
alpar@399
   189
    typedef typename Traits::Digraph Digraph;
kpeter@641
   190
    ///The type of the flow and supply values.
kpeter@641
   191
    typedef typename Traits::Value Value;
alpar@399
   192
kpeter@610
   193
    ///The type of the lower bound map.
kpeter@610
   194
    typedef typename Traits::LowerMap LowerMap;
kpeter@610
   195
    ///The type of the upper bound (capacity) map.
kpeter@610
   196
    typedef typename Traits::UpperMap UpperMap;
kpeter@610
   197
    ///The type of the supply map.
kpeter@610
   198
    typedef typename Traits::SupplyMap SupplyMap;
kpeter@402
   199
    ///The type of the flow map.
alpar@399
   200
    typedef typename Traits::FlowMap FlowMap;
kpeter@402
   201
kpeter@402
   202
    ///The type of the elevator.
alpar@399
   203
    typedef typename Traits::Elevator Elevator;
kpeter@402
   204
    ///The type of the tolerance.
alpar@399
   205
    typedef typename Traits::Tolerance Tolerance;
alpar@399
   206
kpeter@402
   207
  private:
kpeter@402
   208
kpeter@402
   209
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
alpar@399
   210
alpar@399
   211
    const Digraph &_g;
alpar@399
   212
    int _node_num;
alpar@399
   213
kpeter@610
   214
    const LowerMap *_lo;
kpeter@610
   215
    const UpperMap *_up;
kpeter@610
   216
    const SupplyMap *_supply;
alpar@399
   217
alpar@399
   218
    FlowMap *_flow;
alpar@399
   219
    bool _local_flow;
alpar@399
   220
alpar@399
   221
    Elevator* _level;
alpar@399
   222
    bool _local_level;
alpar@399
   223
kpeter@641
   224
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
alpar@399
   225
    ExcessMap* _excess;
alpar@399
   226
alpar@399
   227
    Tolerance _tol;
alpar@399
   228
    int _el;
alpar@399
   229
alpar@399
   230
  public:
alpar@399
   231
alpar@399
   232
    typedef Circulation Create;
alpar@399
   233
kpeter@402
   234
    ///\name Named Template Parameters
alpar@399
   235
alpar@399
   236
    ///@{
alpar@399
   237
kpeter@559
   238
    template <typename T>
alpar@401
   239
    struct SetFlowMapTraits : public Traits {
kpeter@559
   240
      typedef T FlowMap;
alpar@399
   241
      static FlowMap *createFlowMap(const Digraph&) {
alpar@399
   242
        LEMON_ASSERT(false, "FlowMap is not initialized");
alpar@399
   243
        return 0; // ignore warnings
alpar@399
   244
      }
alpar@399
   245
    };
alpar@399
   246
alpar@399
   247
    /// \brief \ref named-templ-param "Named parameter" for setting
alpar@399
   248
    /// FlowMap type
alpar@399
   249
    ///
alpar@399
   250
    /// \ref named-templ-param "Named parameter" for setting FlowMap
kpeter@402
   251
    /// type.
kpeter@559
   252
    template <typename T>
alpar@401
   253
    struct SetFlowMap
kpeter@610
   254
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
kpeter@559
   255
                           SetFlowMapTraits<T> > {
kpeter@610
   256
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
kpeter@559
   257
                          SetFlowMapTraits<T> > Create;
alpar@399
   258
    };
alpar@399
   259
kpeter@559
   260
    template <typename T>
alpar@401
   261
    struct SetElevatorTraits : public Traits {
kpeter@559
   262
      typedef T Elevator;
alpar@399
   263
      static Elevator *createElevator(const Digraph&, int) {
alpar@399
   264
        LEMON_ASSERT(false, "Elevator is not initialized");
alpar@399
   265
        return 0; // ignore warnings
alpar@399
   266
      }
alpar@399
   267
    };
alpar@399
   268
alpar@399
   269
    /// \brief \ref named-templ-param "Named parameter" for setting
alpar@399
   270
    /// Elevator type
alpar@399
   271
    ///
alpar@399
   272
    /// \ref named-templ-param "Named parameter" for setting Elevator
kpeter@402
   273
    /// type. If this named parameter is used, then an external
kpeter@402
   274
    /// elevator object must be passed to the algorithm using the
kpeter@402
   275
    /// \ref elevator(Elevator&) "elevator()" function before calling
kpeter@402
   276
    /// \ref run() or \ref init().
kpeter@402
   277
    /// \sa SetStandardElevator
kpeter@559
   278
    template <typename T>
alpar@401
   279
    struct SetElevator
kpeter@610
   280
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
kpeter@559
   281
                           SetElevatorTraits<T> > {
kpeter@610
   282
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
kpeter@559
   283
                          SetElevatorTraits<T> > Create;
alpar@399
   284
    };
alpar@399
   285
kpeter@559
   286
    template <typename T>
alpar@401
   287
    struct SetStandardElevatorTraits : public Traits {
kpeter@559
   288
      typedef T Elevator;
alpar@399
   289
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
alpar@399
   290
        return new Elevator(digraph, max_level);
alpar@399
   291
      }
alpar@399
   292
    };
alpar@399
   293
alpar@399
   294
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@402
   295
    /// Elevator type with automatic allocation
alpar@399
   296
    ///
alpar@399
   297
    /// \ref named-templ-param "Named parameter" for setting Elevator
kpeter@402
   298
    /// type with automatic allocation.
kpeter@402
   299
    /// The Elevator should have standard constructor interface to be
kpeter@402
   300
    /// able to automatically created by the algorithm (i.e. the
kpeter@402
   301
    /// digraph and the maximum level should be passed to it).
kpeter@402
   302
    /// However an external elevator object could also be passed to the
kpeter@402
   303
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
kpeter@402
   304
    /// before calling \ref run() or \ref init().
kpeter@402
   305
    /// \sa SetElevator
kpeter@559
   306
    template <typename T>
alpar@401
   307
    struct SetStandardElevator
kpeter@610
   308
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
kpeter@559
   309
                       SetStandardElevatorTraits<T> > {
kpeter@610
   310
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
kpeter@559
   311
                      SetStandardElevatorTraits<T> > Create;
alpar@399
   312
    };
alpar@399
   313
alpar@399
   314
    /// @}
alpar@399
   315
alpar@399
   316
  protected:
alpar@399
   317
alpar@399
   318
    Circulation() {}
alpar@399
   319
alpar@399
   320
  public:
alpar@399
   321
kpeter@610
   322
    /// Constructor.
alpar@399
   323
alpar@399
   324
    /// The constructor of the class.
kpeter@610
   325
    ///
kpeter@610
   326
    /// \param graph The digraph the algorithm runs on.
kpeter@610
   327
    /// \param lower The lower bounds for the flow values on the arcs.
kpeter@610
   328
    /// \param upper The upper bounds (capacities) for the flow values 
kpeter@610
   329
    /// on the arcs.
kpeter@610
   330
    /// \param supply The signed supply values of the nodes.
kpeter@610
   331
    Circulation(const Digraph &graph, const LowerMap &lower,
kpeter@610
   332
                const UpperMap &upper, const SupplyMap &supply)
kpeter@610
   333
      : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
kpeter@610
   334
        _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
kpeter@610
   335
        _excess(NULL) {}
alpar@399
   336
kpeter@402
   337
    /// Destructor.
alpar@399
   338
    ~Circulation() {
alpar@399
   339
      destroyStructures();
alpar@399
   340
    }
alpar@399
   341
kpeter@402
   342
alpar@399
   343
  private:
alpar@399
   344
kpeter@622
   345
    bool checkBoundMaps() {
kpeter@622
   346
      for (ArcIt e(_g);e!=INVALID;++e) {
kpeter@622
   347
        if (_tol.less((*_up)[e], (*_lo)[e])) return false;
kpeter@622
   348
      }
kpeter@622
   349
      return true;
kpeter@622
   350
    }
kpeter@622
   351
alpar@399
   352
    void createStructures() {
alpar@399
   353
      _node_num = _el = countNodes(_g);
alpar@399
   354
alpar@399
   355
      if (!_flow) {
alpar@399
   356
        _flow = Traits::createFlowMap(_g);
alpar@399
   357
        _local_flow = true;
alpar@399
   358
      }
alpar@399
   359
      if (!_level) {
alpar@399
   360
        _level = Traits::createElevator(_g, _node_num);
alpar@399
   361
        _local_level = true;
alpar@399
   362
      }
alpar@399
   363
      if (!_excess) {
alpar@399
   364
        _excess = new ExcessMap(_g);
alpar@399
   365
      }
alpar@399
   366
    }
alpar@399
   367
alpar@399
   368
    void destroyStructures() {
alpar@399
   369
      if (_local_flow) {
alpar@399
   370
        delete _flow;
alpar@399
   371
      }
alpar@399
   372
      if (_local_level) {
alpar@399
   373
        delete _level;
alpar@399
   374
      }
alpar@399
   375
      if (_excess) {
alpar@399
   376
        delete _excess;
alpar@399
   377
      }
alpar@399
   378
    }
alpar@399
   379
alpar@399
   380
  public:
alpar@399
   381
kpeter@610
   382
    /// Sets the lower bound map.
alpar@399
   383
kpeter@610
   384
    /// Sets the lower bound map.
kpeter@402
   385
    /// \return <tt>(*this)</tt>
kpeter@610
   386
    Circulation& lowerMap(const LowerMap& map) {
alpar@399
   387
      _lo = &map;
alpar@399
   388
      return *this;
alpar@399
   389
    }
alpar@399
   390
kpeter@610
   391
    /// Sets the upper bound (capacity) map.
alpar@399
   392
kpeter@610
   393
    /// Sets the upper bound (capacity) map.
kpeter@402
   394
    /// \return <tt>(*this)</tt>
kpeter@622
   395
    Circulation& upperMap(const UpperMap& map) {
alpar@399
   396
      _up = &map;
alpar@399
   397
      return *this;
alpar@399
   398
    }
alpar@399
   399
kpeter@610
   400
    /// Sets the supply map.
alpar@399
   401
kpeter@610
   402
    /// Sets the supply map.
kpeter@402
   403
    /// \return <tt>(*this)</tt>
kpeter@610
   404
    Circulation& supplyMap(const SupplyMap& map) {
kpeter@610
   405
      _supply = &map;
alpar@399
   406
      return *this;
alpar@399
   407
    }
alpar@399
   408
kpeter@402
   409
    /// \brief Sets the flow map.
kpeter@402
   410
    ///
alpar@399
   411
    /// Sets the flow map.
kpeter@402
   412
    /// If you don't use this function before calling \ref run() or
kpeter@402
   413
    /// \ref init(), an instance will be allocated automatically.
kpeter@402
   414
    /// The destructor deallocates this automatically allocated map,
kpeter@402
   415
    /// of course.
kpeter@402
   416
    /// \return <tt>(*this)</tt>
alpar@399
   417
    Circulation& flowMap(FlowMap& map) {
alpar@399
   418
      if (_local_flow) {
alpar@399
   419
        delete _flow;
alpar@399
   420
        _local_flow = false;
alpar@399
   421
      }
alpar@399
   422
      _flow = &map;
alpar@399
   423
      return *this;
alpar@399
   424
    }
alpar@399
   425
kpeter@402
   426
    /// \brief Sets the elevator used by algorithm.
alpar@399
   427
    ///
kpeter@402
   428
    /// Sets the elevator used by algorithm.
kpeter@402
   429
    /// If you don't use this function before calling \ref run() or
kpeter@402
   430
    /// \ref init(), an instance will be allocated automatically.
kpeter@402
   431
    /// The destructor deallocates this automatically allocated elevator,
kpeter@402
   432
    /// of course.
kpeter@402
   433
    /// \return <tt>(*this)</tt>
alpar@399
   434
    Circulation& elevator(Elevator& elevator) {
alpar@399
   435
      if (_local_level) {
alpar@399
   436
        delete _level;
alpar@399
   437
        _local_level = false;
alpar@399
   438
      }
alpar@399
   439
      _level = &elevator;
alpar@399
   440
      return *this;
alpar@399
   441
    }
alpar@399
   442
kpeter@402
   443
    /// \brief Returns a const reference to the elevator.
alpar@399
   444
    ///
kpeter@402
   445
    /// Returns a const reference to the elevator.
kpeter@402
   446
    ///
kpeter@402
   447
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@402
   448
    /// using this function.
kpeter@420
   449
    const Elevator& elevator() const {
alpar@399
   450
      return *_level;
alpar@399
   451
    }
alpar@399
   452
kpeter@402
   453
    /// \brief Sets the tolerance used by algorithm.
kpeter@402
   454
    ///
alpar@399
   455
    /// Sets the tolerance used by algorithm.
kpeter@688
   456
    Circulation& tolerance(const Tolerance& tolerance) {
alpar@399
   457
      _tol = tolerance;
alpar@399
   458
      return *this;
alpar@399
   459
    }
alpar@399
   460
kpeter@402
   461
    /// \brief Returns a const reference to the tolerance.
alpar@399
   462
    ///
kpeter@402
   463
    /// Returns a const reference to the tolerance.
alpar@399
   464
    const Tolerance& tolerance() const {
kpeter@688
   465
      return _tol;
alpar@399
   466
    }
alpar@399
   467
kpeter@402
   468
    /// \name Execution Control
kpeter@402
   469
    /// The simplest way to execute the algorithm is to call \ref run().\n
kpeter@402
   470
    /// If you need more control on the initial solution or the execution,
kpeter@402
   471
    /// first you have to call one of the \ref init() functions, then
kpeter@402
   472
    /// the \ref start() function.
alpar@399
   473
alpar@399
   474
    ///@{
alpar@399
   475
alpar@399
   476
    /// Initializes the internal data structures.
alpar@399
   477
kpeter@402
   478
    /// Initializes the internal data structures and sets all flow values
kpeter@402
   479
    /// to the lower bound.
alpar@399
   480
    void init()
alpar@399
   481
    {
kpeter@622
   482
      LEMON_DEBUG(checkBoundMaps(),
kpeter@622
   483
        "Upper bounds must be greater or equal to the lower bounds");
kpeter@622
   484
alpar@399
   485
      createStructures();
alpar@399
   486
alpar@399
   487
      for(NodeIt n(_g);n!=INVALID;++n) {
alpar@611
   488
        (*_excess)[n] = (*_supply)[n];
alpar@399
   489
      }
alpar@399
   490
alpar@399
   491
      for (ArcIt e(_g);e!=INVALID;++e) {
alpar@399
   492
        _flow->set(e, (*_lo)[e]);
kpeter@581
   493
        (*_excess)[_g.target(e)] += (*_flow)[e];
kpeter@581
   494
        (*_excess)[_g.source(e)] -= (*_flow)[e];
alpar@399
   495
      }
alpar@399
   496
alpar@399
   497
      // global relabeling tested, but in general case it provides
alpar@399
   498
      // worse performance for random digraphs
alpar@399
   499
      _level->initStart();
alpar@399
   500
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   501
        _level->initAddItem(n);
alpar@399
   502
      _level->initFinish();
alpar@399
   503
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   504
        if(_tol.positive((*_excess)[n]))
alpar@399
   505
          _level->activate(n);
alpar@399
   506
    }
alpar@399
   507
kpeter@402
   508
    /// Initializes the internal data structures using a greedy approach.
alpar@399
   509
kpeter@402
   510
    /// Initializes the internal data structures using a greedy approach
kpeter@402
   511
    /// to construct the initial solution.
alpar@399
   512
    void greedyInit()
alpar@399
   513
    {
kpeter@622
   514
      LEMON_DEBUG(checkBoundMaps(),
kpeter@622
   515
        "Upper bounds must be greater or equal to the lower bounds");
kpeter@622
   516
alpar@399
   517
      createStructures();
alpar@399
   518
alpar@399
   519
      for(NodeIt n(_g);n!=INVALID;++n) {
alpar@611
   520
        (*_excess)[n] = (*_supply)[n];
alpar@399
   521
      }
alpar@399
   522
alpar@399
   523
      for (ArcIt e(_g);e!=INVALID;++e) {
kpeter@622
   524
        if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
alpar@399
   525
          _flow->set(e, (*_up)[e]);
kpeter@581
   526
          (*_excess)[_g.target(e)] += (*_up)[e];
kpeter@581
   527
          (*_excess)[_g.source(e)] -= (*_up)[e];
kpeter@622
   528
        } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
alpar@399
   529
          _flow->set(e, (*_lo)[e]);
kpeter@581
   530
          (*_excess)[_g.target(e)] += (*_lo)[e];
kpeter@581
   531
          (*_excess)[_g.source(e)] -= (*_lo)[e];
alpar@399
   532
        } else {
kpeter@641
   533
          Value fc = -(*_excess)[_g.target(e)];
alpar@399
   534
          _flow->set(e, fc);
kpeter@581
   535
          (*_excess)[_g.target(e)] = 0;
kpeter@581
   536
          (*_excess)[_g.source(e)] -= fc;
alpar@399
   537
        }
alpar@399
   538
      }
alpar@399
   539
alpar@399
   540
      _level->initStart();
alpar@399
   541
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   542
        _level->initAddItem(n);
alpar@399
   543
      _level->initFinish();
alpar@399
   544
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   545
        if(_tol.positive((*_excess)[n]))
alpar@399
   546
          _level->activate(n);
alpar@399
   547
    }
alpar@399
   548
kpeter@402
   549
    ///Executes the algorithm
alpar@399
   550
kpeter@402
   551
    ///This function executes the algorithm.
kpeter@402
   552
    ///
kpeter@402
   553
    ///\return \c true if a feasible circulation is found.
alpar@399
   554
    ///
alpar@399
   555
    ///\sa barrier()
kpeter@402
   556
    ///\sa barrierMap()
alpar@399
   557
    bool start()
alpar@399
   558
    {
alpar@399
   559
alpar@399
   560
      Node act;
alpar@399
   561
      while((act=_level->highestActive())!=INVALID) {
alpar@399
   562
        int actlevel=(*_level)[act];
alpar@399
   563
        int mlevel=_node_num;
kpeter@641
   564
        Value exc=(*_excess)[act];
alpar@399
   565
alpar@399
   566
        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
alpar@399
   567
          Node v = _g.target(e);
kpeter@641
   568
          Value fc=(*_up)[e]-(*_flow)[e];
alpar@399
   569
          if(!_tol.positive(fc)) continue;
alpar@399
   570
          if((*_level)[v]<actlevel) {
alpar@399
   571
            if(!_tol.less(fc, exc)) {
alpar@399
   572
              _flow->set(e, (*_flow)[e] + exc);
kpeter@581
   573
              (*_excess)[v] += exc;
alpar@399
   574
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
alpar@399
   575
                _level->activate(v);
kpeter@581
   576
              (*_excess)[act] = 0;
alpar@399
   577
              _level->deactivate(act);
alpar@399
   578
              goto next_l;
alpar@399
   579
            }
alpar@399
   580
            else {
alpar@399
   581
              _flow->set(e, (*_up)[e]);
kpeter@581
   582
              (*_excess)[v] += fc;
alpar@399
   583
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
alpar@399
   584
                _level->activate(v);
alpar@399
   585
              exc-=fc;
alpar@399
   586
            }
alpar@399
   587
          }
alpar@399
   588
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
alpar@399
   589
        }
alpar@399
   590
        for(InArcIt e(_g,act);e!=INVALID; ++e) {
alpar@399
   591
          Node v = _g.source(e);
kpeter@641
   592
          Value fc=(*_flow)[e]-(*_lo)[e];
alpar@399
   593
          if(!_tol.positive(fc)) continue;
alpar@399
   594
          if((*_level)[v]<actlevel) {
alpar@399
   595
            if(!_tol.less(fc, exc)) {
alpar@399
   596
              _flow->set(e, (*_flow)[e] - exc);
kpeter@581
   597
              (*_excess)[v] += exc;
alpar@399
   598
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
alpar@399
   599
                _level->activate(v);
kpeter@581
   600
              (*_excess)[act] = 0;
alpar@399
   601
              _level->deactivate(act);
alpar@399
   602
              goto next_l;
alpar@399
   603
            }
alpar@399
   604
            else {
alpar@399
   605
              _flow->set(e, (*_lo)[e]);
kpeter@581
   606
              (*_excess)[v] += fc;
alpar@399
   607
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
alpar@399
   608
                _level->activate(v);
alpar@399
   609
              exc-=fc;
alpar@399
   610
            }
alpar@399
   611
          }
alpar@399
   612
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
alpar@399
   613
        }
alpar@399
   614
kpeter@581
   615
        (*_excess)[act] = exc;
alpar@399
   616
        if(!_tol.positive(exc)) _level->deactivate(act);
alpar@399
   617
        else if(mlevel==_node_num) {
alpar@399
   618
          _level->liftHighestActiveToTop();
alpar@399
   619
          _el = _node_num;
alpar@399
   620
          return false;
alpar@399
   621
        }
alpar@399
   622
        else {
alpar@399
   623
          _level->liftHighestActive(mlevel+1);
alpar@399
   624
          if(_level->onLevel(actlevel)==0) {
alpar@399
   625
            _el = actlevel;
alpar@399
   626
            return false;
alpar@399
   627
          }
alpar@399
   628
        }
alpar@399
   629
      next_l:
alpar@399
   630
        ;
alpar@399
   631
      }
alpar@399
   632
      return true;
alpar@399
   633
    }
alpar@399
   634
kpeter@402
   635
    /// Runs the algorithm.
alpar@399
   636
kpeter@402
   637
    /// This function runs the algorithm.
kpeter@402
   638
    ///
kpeter@402
   639
    /// \return \c true if a feasible circulation is found.
kpeter@402
   640
    ///
kpeter@402
   641
    /// \note Apart from the return value, c.run() is just a shortcut of
kpeter@402
   642
    /// the following code.
alpar@399
   643
    /// \code
kpeter@402
   644
    ///   c.greedyInit();
kpeter@402
   645
    ///   c.start();
alpar@399
   646
    /// \endcode
alpar@399
   647
    bool run() {
alpar@399
   648
      greedyInit();
alpar@399
   649
      return start();
alpar@399
   650
    }
alpar@399
   651
alpar@399
   652
    /// @}
alpar@399
   653
alpar@399
   654
    /// \name Query Functions
kpeter@402
   655
    /// The results of the circulation algorithm can be obtained using
kpeter@402
   656
    /// these functions.\n
kpeter@402
   657
    /// Either \ref run() or \ref start() should be called before
kpeter@402
   658
    /// using them.
alpar@399
   659
alpar@399
   660
    ///@{
alpar@399
   661
kpeter@641
   662
    /// \brief Returns the flow value on the given arc.
kpeter@402
   663
    ///
kpeter@641
   664
    /// Returns the flow value on the given arc.
kpeter@402
   665
    ///
kpeter@402
   666
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@402
   667
    /// using this function.
kpeter@641
   668
    Value flow(const Arc& arc) const {
kpeter@402
   669
      return (*_flow)[arc];
kpeter@402
   670
    }
kpeter@402
   671
kpeter@402
   672
    /// \brief Returns a const reference to the flow map.
kpeter@402
   673
    ///
kpeter@402
   674
    /// Returns a const reference to the arc map storing the found flow.
kpeter@402
   675
    ///
kpeter@402
   676
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@402
   677
    /// using this function.
kpeter@420
   678
    const FlowMap& flowMap() const {
kpeter@402
   679
      return *_flow;
kpeter@402
   680
    }
kpeter@402
   681
alpar@399
   682
    /**
kpeter@402
   683
       \brief Returns \c true if the given node is in a barrier.
kpeter@402
   684
alpar@399
   685
       Barrier is a set \e B of nodes for which
kpeter@402
   686
kpeter@610
   687
       \f[ \sum_{uv\in A: u\in B} upper(uv) -
kpeter@610
   688
           \sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
kpeter@402
   689
kpeter@402
   690
       holds. The existence of a set with this property prooves that a
kpeter@402
   691
       feasible circualtion cannot exist.
kpeter@402
   692
kpeter@402
   693
       This function returns \c true if the given node is in the found
kpeter@402
   694
       barrier. If a feasible circulation is found, the function
kpeter@402
   695
       gives back \c false for every node.
kpeter@402
   696
kpeter@402
   697
       \pre Either \ref run() or \ref init() must be called before
kpeter@402
   698
       using this function.
kpeter@402
   699
kpeter@402
   700
       \sa barrierMap()
alpar@399
   701
       \sa checkBarrier()
alpar@399
   702
    */
kpeter@420
   703
    bool barrier(const Node& node) const
kpeter@402
   704
    {
kpeter@402
   705
      return (*_level)[node] >= _el;
kpeter@402
   706
    }
kpeter@402
   707
kpeter@402
   708
    /// \brief Gives back a barrier.
kpeter@402
   709
    ///
kpeter@402
   710
    /// This function sets \c bar to the characteristic vector of the
kpeter@402
   711
    /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
kpeter@402
   712
    /// node map with \c bool (or convertible) value type.
kpeter@402
   713
    ///
kpeter@402
   714
    /// If a feasible circulation is found, the function gives back an
kpeter@402
   715
    /// empty set, so \c bar[v] will be \c false for all nodes \c v.
kpeter@402
   716
    ///
kpeter@402
   717
    /// \note This function calls \ref barrier() for each node,
kpeter@559
   718
    /// so it runs in O(n) time.
kpeter@402
   719
    ///
kpeter@402
   720
    /// \pre Either \ref run() or \ref init() must be called before
kpeter@402
   721
    /// using this function.
kpeter@402
   722
    ///
kpeter@402
   723
    /// \sa barrier()
kpeter@402
   724
    /// \sa checkBarrier()
kpeter@402
   725
    template<class BarrierMap>
kpeter@420
   726
    void barrierMap(BarrierMap &bar) const
alpar@399
   727
    {
alpar@399
   728
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   729
        bar.set(n, (*_level)[n] >= _el);
alpar@399
   730
    }
alpar@399
   731
alpar@399
   732
    /// @}
alpar@399
   733
alpar@399
   734
    /// \name Checker Functions
kpeter@402
   735
    /// The feasibility of the results can be checked using
kpeter@402
   736
    /// these functions.\n
kpeter@402
   737
    /// Either \ref run() or \ref start() should be called before
kpeter@402
   738
    /// using them.
alpar@399
   739
alpar@399
   740
    ///@{
alpar@399
   741
kpeter@402
   742
    ///Check if the found flow is a feasible circulation
kpeter@402
   743
kpeter@402
   744
    ///Check if the found flow is a feasible circulation,
kpeter@402
   745
    ///
kpeter@420
   746
    bool checkFlow() const {
alpar@399
   747
      for(ArcIt e(_g);e!=INVALID;++e)
alpar@399
   748
        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
alpar@399
   749
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   750
        {
kpeter@641
   751
          Value dif=-(*_supply)[n];
alpar@399
   752
          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
alpar@399
   753
          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
alpar@399
   754
          if(_tol.negative(dif)) return false;
alpar@399
   755
        }
alpar@399
   756
      return true;
alpar@399
   757
    }
alpar@399
   758
alpar@399
   759
    ///Check whether or not the last execution provides a barrier
alpar@399
   760
kpeter@402
   761
    ///Check whether or not the last execution provides a barrier.
alpar@399
   762
    ///\sa barrier()
kpeter@402
   763
    ///\sa barrierMap()
kpeter@420
   764
    bool checkBarrier() const
alpar@399
   765
    {
kpeter@641
   766
      Value delta=0;
kpeter@641
   767
      Value inf_cap = std::numeric_limits<Value>::has_infinity ?
kpeter@641
   768
        std::numeric_limits<Value>::infinity() :
kpeter@641
   769
        std::numeric_limits<Value>::max();
alpar@399
   770
      for(NodeIt n(_g);n!=INVALID;++n)
alpar@399
   771
        if(barrier(n))
kpeter@610
   772
          delta-=(*_supply)[n];
alpar@399
   773
      for(ArcIt e(_g);e!=INVALID;++e)
alpar@399
   774
        {
alpar@399
   775
          Node s=_g.source(e);
alpar@399
   776
          Node t=_g.target(e);
kpeter@622
   777
          if(barrier(s)&&!barrier(t)) {
kpeter@622
   778
            if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
kpeter@622
   779
            delta+=(*_up)[e];
kpeter@622
   780
          }
alpar@399
   781
          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
alpar@399
   782
        }
alpar@399
   783
      return _tol.negative(delta);
alpar@399
   784
    }
alpar@399
   785
alpar@399
   786
    /// @}
alpar@399
   787
alpar@399
   788
  };
alpar@399
   789
alpar@399
   790
}
alpar@399
   791
alpar@399
   792
#endif