alpar@440
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
alpar@345
|
2 |
*
|
alpar@440
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
alpar@345
|
4 |
*
|
alpar@440
|
5 |
* Copyright (C) 2003-2009
|
alpar@345
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
alpar@345
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
alpar@345
|
8 |
*
|
alpar@345
|
9 |
* Permission to use, modify and distribute this software is granted
|
alpar@345
|
10 |
* provided that this copyright notice appears in all copies. For
|
alpar@345
|
11 |
* precise terms see the accompanying LICENSE file.
|
alpar@345
|
12 |
*
|
alpar@345
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
alpar@345
|
14 |
* express or implied, and with no claim as to its suitability for any
|
alpar@345
|
15 |
* purpose.
|
alpar@345
|
16 |
*
|
alpar@345
|
17 |
*/
|
alpar@345
|
18 |
|
alpar@345
|
19 |
#ifndef LEMON_SUURBALLE_H
|
alpar@345
|
20 |
#define LEMON_SUURBALLE_H
|
alpar@345
|
21 |
|
alpar@345
|
22 |
///\ingroup shortest_path
|
alpar@345
|
23 |
///\file
|
alpar@345
|
24 |
///\brief An algorithm for finding arc-disjoint paths between two
|
alpar@345
|
25 |
/// nodes having minimum total length.
|
alpar@345
|
26 |
|
alpar@345
|
27 |
#include <vector>
|
kpeter@623
|
28 |
#include <limits>
|
alpar@345
|
29 |
#include <lemon/bin_heap.h>
|
alpar@345
|
30 |
#include <lemon/path.h>
|
deba@519
|
31 |
#include <lemon/list_graph.h>
|
kpeter@854
|
32 |
#include <lemon/dijkstra.h>
|
deba@519
|
33 |
#include <lemon/maps.h>
|
alpar@345
|
34 |
|
alpar@345
|
35 |
namespace lemon {
|
alpar@345
|
36 |
|
kpeter@857
|
37 |
/// \brief Default traits class of Suurballe algorithm.
|
kpeter@857
|
38 |
///
|
kpeter@857
|
39 |
/// Default traits class of Suurballe algorithm.
|
kpeter@857
|
40 |
/// \tparam GR The digraph type the algorithm runs on.
|
kpeter@857
|
41 |
/// \tparam LEN The type of the length map.
|
kpeter@857
|
42 |
/// The default value is <tt>GR::ArcMap<int></tt>.
|
kpeter@857
|
43 |
#ifdef DOXYGEN
|
kpeter@857
|
44 |
template <typename GR, typename LEN>
|
kpeter@857
|
45 |
#else
|
kpeter@857
|
46 |
template < typename GR,
|
kpeter@857
|
47 |
typename LEN = typename GR::template ArcMap<int> >
|
kpeter@857
|
48 |
#endif
|
kpeter@857
|
49 |
struct SuurballeDefaultTraits
|
kpeter@857
|
50 |
{
|
kpeter@857
|
51 |
/// The type of the digraph.
|
kpeter@857
|
52 |
typedef GR Digraph;
|
kpeter@857
|
53 |
/// The type of the length map.
|
kpeter@857
|
54 |
typedef LEN LengthMap;
|
kpeter@857
|
55 |
/// The type of the lengths.
|
kpeter@857
|
56 |
typedef typename LEN::Value Length;
|
kpeter@857
|
57 |
/// The type of the flow map.
|
kpeter@857
|
58 |
typedef typename GR::template ArcMap<int> FlowMap;
|
kpeter@857
|
59 |
/// The type of the potential map.
|
kpeter@857
|
60 |
typedef typename GR::template NodeMap<Length> PotentialMap;
|
kpeter@857
|
61 |
|
kpeter@857
|
62 |
/// \brief The path type
|
kpeter@857
|
63 |
///
|
kpeter@857
|
64 |
/// The type used for storing the found arc-disjoint paths.
|
kpeter@857
|
65 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept
|
kpeter@857
|
66 |
/// and it must have an \c addBack() function.
|
kpeter@857
|
67 |
typedef lemon::Path<Digraph> Path;
|
kpeter@857
|
68 |
|
kpeter@857
|
69 |
/// The cross reference type used for the heap.
|
kpeter@857
|
70 |
typedef typename GR::template NodeMap<int> HeapCrossRef;
|
kpeter@857
|
71 |
|
kpeter@857
|
72 |
/// \brief The heap type used for internal Dijkstra computations.
|
kpeter@857
|
73 |
///
|
kpeter@857
|
74 |
/// The type of the heap used for internal Dijkstra computations.
|
kpeter@857
|
75 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept
|
kpeter@857
|
76 |
/// and its priority type must be \c Length.
|
kpeter@857
|
77 |
typedef BinHeap<Length, HeapCrossRef> Heap;
|
kpeter@857
|
78 |
};
|
kpeter@857
|
79 |
|
alpar@345
|
80 |
/// \addtogroup shortest_path
|
alpar@345
|
81 |
/// @{
|
alpar@345
|
82 |
|
kpeter@346
|
83 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes
|
kpeter@346
|
84 |
/// having minimum total length.
|
alpar@345
|
85 |
///
|
alpar@345
|
86 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for
|
alpar@345
|
87 |
/// finding arc-disjoint paths having minimum total length (cost)
|
kpeter@346
|
88 |
/// from a given source node to a given target node in a digraph.
|
alpar@345
|
89 |
///
|
kpeter@623
|
90 |
/// Note that this problem is a special case of the \ref min_cost_flow
|
kpeter@623
|
91 |
/// "minimum cost flow problem". This implementation is actually an
|
kpeter@623
|
92 |
/// efficient specialized version of the \ref CapacityScaling
|
kpeter@853
|
93 |
/// "successive shortest path" algorithm directly for this problem.
|
kpeter@623
|
94 |
/// Therefore this class provides query functions for flow values and
|
kpeter@623
|
95 |
/// node potentials (the dual solution) just like the minimum cost flow
|
kpeter@623
|
96 |
/// algorithms.
|
alpar@345
|
97 |
///
|
kpeter@559
|
98 |
/// \tparam GR The digraph type the algorithm runs on.
|
kpeter@623
|
99 |
/// \tparam LEN The type of the length map.
|
kpeter@623
|
100 |
/// The default value is <tt>GR::ArcMap<int></tt>.
|
alpar@345
|
101 |
///
|
kpeter@852
|
102 |
/// \warning Length values should be \e non-negative.
|
alpar@345
|
103 |
///
|
kpeter@853
|
104 |
/// \note For finding \e node-disjoint paths, this algorithm can be used
|
kpeter@623
|
105 |
/// along with the \ref SplitNodes adaptor.
|
kpeter@346
|
106 |
#ifdef DOXYGEN
|
kpeter@857
|
107 |
template <typename GR, typename LEN, typename TR>
|
kpeter@346
|
108 |
#else
|
kpeter@623
|
109 |
template < typename GR,
|
kpeter@857
|
110 |
typename LEN = typename GR::template ArcMap<int>,
|
kpeter@857
|
111 |
typename TR = SuurballeDefaultTraits<GR, LEN> >
|
kpeter@346
|
112 |
#endif
|
alpar@345
|
113 |
class Suurballe
|
alpar@345
|
114 |
{
|
kpeter@559
|
115 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
alpar@345
|
116 |
|
alpar@345
|
117 |
typedef ConstMap<Arc, int> ConstArcMap;
|
kpeter@559
|
118 |
typedef typename GR::template NodeMap<Arc> PredMap;
|
alpar@345
|
119 |
|
alpar@345
|
120 |
public:
|
alpar@345
|
121 |
|
kpeter@857
|
122 |
/// The type of the digraph.
|
kpeter@857
|
123 |
typedef typename TR::Digraph Digraph;
|
kpeter@559
|
124 |
/// The type of the length map.
|
kpeter@857
|
125 |
typedef typename TR::LengthMap LengthMap;
|
kpeter@559
|
126 |
/// The type of the lengths.
|
kpeter@857
|
127 |
typedef typename TR::Length Length;
|
kpeter@857
|
128 |
|
kpeter@623
|
129 |
/// The type of the flow map.
|
kpeter@857
|
130 |
typedef typename TR::FlowMap FlowMap;
|
kpeter@623
|
131 |
/// The type of the potential map.
|
kpeter@857
|
132 |
typedef typename TR::PotentialMap PotentialMap;
|
kpeter@857
|
133 |
/// The type of the path structures.
|
kpeter@857
|
134 |
typedef typename TR::Path Path;
|
kpeter@857
|
135 |
/// The cross reference type used for the heap.
|
kpeter@857
|
136 |
typedef typename TR::HeapCrossRef HeapCrossRef;
|
kpeter@857
|
137 |
/// The heap type used for internal Dijkstra computations.
|
kpeter@857
|
138 |
typedef typename TR::Heap Heap;
|
kpeter@623
|
139 |
|
kpeter@857
|
140 |
/// The \ref SuurballeDefaultTraits "traits class" of the algorithm.
|
kpeter@857
|
141 |
typedef TR Traits;
|
alpar@345
|
142 |
|
alpar@345
|
143 |
private:
|
alpar@440
|
144 |
|
kpeter@623
|
145 |
// ResidualDijkstra is a special implementation of the
|
kpeter@623
|
146 |
// Dijkstra algorithm for finding shortest paths in the
|
kpeter@623
|
147 |
// residual network with respect to the reduced arc lengths
|
kpeter@623
|
148 |
// and modifying the node potentials according to the
|
kpeter@623
|
149 |
// distance of the nodes.
|
alpar@345
|
150 |
class ResidualDijkstra
|
alpar@345
|
151 |
{
|
alpar@345
|
152 |
private:
|
alpar@345
|
153 |
|
alpar@345
|
154 |
const Digraph &_graph;
|
kpeter@853
|
155 |
const LengthMap &_length;
|
alpar@345
|
156 |
const FlowMap &_flow;
|
kpeter@853
|
157 |
PotentialMap &_pi;
|
alpar@345
|
158 |
PredMap &_pred;
|
alpar@345
|
159 |
Node _s;
|
alpar@345
|
160 |
Node _t;
|
kpeter@853
|
161 |
|
kpeter@853
|
162 |
PotentialMap _dist;
|
kpeter@853
|
163 |
std::vector<Node> _proc_nodes;
|
alpar@345
|
164 |
|
alpar@345
|
165 |
public:
|
alpar@345
|
166 |
|
kpeter@853
|
167 |
// Constructor
|
kpeter@853
|
168 |
ResidualDijkstra(Suurballe &srb) :
|
kpeter@853
|
169 |
_graph(srb._graph), _length(srb._length),
|
kpeter@853
|
170 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
|
kpeter@853
|
171 |
_s(srb._s), _t(srb._t), _dist(_graph) {}
|
kpeter@853
|
172 |
|
kpeter@853
|
173 |
// Run the algorithm and return true if a path is found
|
kpeter@853
|
174 |
// from the source node to the target node.
|
kpeter@853
|
175 |
bool run(int cnt) {
|
kpeter@853
|
176 |
return cnt == 0 ? startFirst() : start();
|
kpeter@853
|
177 |
}
|
alpar@345
|
178 |
|
kpeter@853
|
179 |
private:
|
kpeter@853
|
180 |
|
kpeter@853
|
181 |
// Execute the algorithm for the first time (the flow and potential
|
kpeter@853
|
182 |
// functions have to be identically zero).
|
kpeter@853
|
183 |
bool startFirst() {
|
alpar@345
|
184 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
|
alpar@345
|
185 |
Heap heap(heap_cross_ref);
|
alpar@345
|
186 |
heap.push(_s, 0);
|
alpar@345
|
187 |
_pred[_s] = INVALID;
|
alpar@345
|
188 |
_proc_nodes.clear();
|
alpar@345
|
189 |
|
kpeter@346
|
190 |
// Process nodes
|
alpar@345
|
191 |
while (!heap.empty() && heap.top() != _t) {
|
alpar@345
|
192 |
Node u = heap.top(), v;
|
kpeter@853
|
193 |
Length d = heap.prio(), dn;
|
alpar@345
|
194 |
_dist[u] = heap.prio();
|
kpeter@853
|
195 |
_proc_nodes.push_back(u);
|
alpar@345
|
196 |
heap.pop();
|
kpeter@853
|
197 |
|
kpeter@853
|
198 |
// Traverse outgoing arcs
|
kpeter@853
|
199 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
kpeter@853
|
200 |
v = _graph.target(e);
|
kpeter@853
|
201 |
switch(heap.state(v)) {
|
kpeter@853
|
202 |
case Heap::PRE_HEAP:
|
kpeter@853
|
203 |
heap.push(v, d + _length[e]);
|
kpeter@853
|
204 |
_pred[v] = e;
|
kpeter@853
|
205 |
break;
|
kpeter@853
|
206 |
case Heap::IN_HEAP:
|
kpeter@853
|
207 |
dn = d + _length[e];
|
kpeter@853
|
208 |
if (dn < heap[v]) {
|
kpeter@853
|
209 |
heap.decrease(v, dn);
|
kpeter@853
|
210 |
_pred[v] = e;
|
kpeter@853
|
211 |
}
|
kpeter@853
|
212 |
break;
|
kpeter@853
|
213 |
case Heap::POST_HEAP:
|
kpeter@853
|
214 |
break;
|
kpeter@853
|
215 |
}
|
kpeter@853
|
216 |
}
|
kpeter@853
|
217 |
}
|
kpeter@853
|
218 |
if (heap.empty()) return false;
|
kpeter@853
|
219 |
|
kpeter@853
|
220 |
// Update potentials of processed nodes
|
kpeter@853
|
221 |
Length t_dist = heap.prio();
|
kpeter@853
|
222 |
for (int i = 0; i < int(_proc_nodes.size()); ++i)
|
kpeter@853
|
223 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist;
|
kpeter@853
|
224 |
return true;
|
kpeter@853
|
225 |
}
|
kpeter@853
|
226 |
|
kpeter@853
|
227 |
// Execute the algorithm.
|
kpeter@853
|
228 |
bool start() {
|
kpeter@853
|
229 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
|
kpeter@853
|
230 |
Heap heap(heap_cross_ref);
|
kpeter@853
|
231 |
heap.push(_s, 0);
|
kpeter@853
|
232 |
_pred[_s] = INVALID;
|
kpeter@853
|
233 |
_proc_nodes.clear();
|
kpeter@853
|
234 |
|
kpeter@853
|
235 |
// Process nodes
|
kpeter@853
|
236 |
while (!heap.empty() && heap.top() != _t) {
|
kpeter@853
|
237 |
Node u = heap.top(), v;
|
kpeter@853
|
238 |
Length d = heap.prio() + _pi[u], dn;
|
kpeter@853
|
239 |
_dist[u] = heap.prio();
|
alpar@345
|
240 |
_proc_nodes.push_back(u);
|
kpeter@853
|
241 |
heap.pop();
|
alpar@345
|
242 |
|
kpeter@346
|
243 |
// Traverse outgoing arcs
|
alpar@345
|
244 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
alpar@345
|
245 |
if (_flow[e] == 0) {
|
alpar@345
|
246 |
v = _graph.target(e);
|
alpar@345
|
247 |
switch(heap.state(v)) {
|
kpeter@853
|
248 |
case Heap::PRE_HEAP:
|
kpeter@853
|
249 |
heap.push(v, d + _length[e] - _pi[v]);
|
alpar@345
|
250 |
_pred[v] = e;
|
kpeter@853
|
251 |
break;
|
kpeter@853
|
252 |
case Heap::IN_HEAP:
|
kpeter@853
|
253 |
dn = d + _length[e] - _pi[v];
|
kpeter@853
|
254 |
if (dn < heap[v]) {
|
kpeter@853
|
255 |
heap.decrease(v, dn);
|
kpeter@853
|
256 |
_pred[v] = e;
|
kpeter@853
|
257 |
}
|
kpeter@853
|
258 |
break;
|
kpeter@853
|
259 |
case Heap::POST_HEAP:
|
kpeter@853
|
260 |
break;
|
alpar@345
|
261 |
}
|
alpar@345
|
262 |
}
|
alpar@345
|
263 |
}
|
alpar@345
|
264 |
|
kpeter@346
|
265 |
// Traverse incoming arcs
|
alpar@345
|
266 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
alpar@345
|
267 |
if (_flow[e] == 1) {
|
alpar@345
|
268 |
v = _graph.source(e);
|
alpar@345
|
269 |
switch(heap.state(v)) {
|
kpeter@853
|
270 |
case Heap::PRE_HEAP:
|
kpeter@853
|
271 |
heap.push(v, d - _length[e] - _pi[v]);
|
alpar@345
|
272 |
_pred[v] = e;
|
kpeter@853
|
273 |
break;
|
kpeter@853
|
274 |
case Heap::IN_HEAP:
|
kpeter@853
|
275 |
dn = d - _length[e] - _pi[v];
|
kpeter@853
|
276 |
if (dn < heap[v]) {
|
kpeter@853
|
277 |
heap.decrease(v, dn);
|
kpeter@853
|
278 |
_pred[v] = e;
|
kpeter@853
|
279 |
}
|
kpeter@853
|
280 |
break;
|
kpeter@853
|
281 |
case Heap::POST_HEAP:
|
kpeter@853
|
282 |
break;
|
alpar@345
|
283 |
}
|
alpar@345
|
284 |
}
|
alpar@345
|
285 |
}
|
alpar@345
|
286 |
}
|
alpar@345
|
287 |
if (heap.empty()) return false;
|
alpar@345
|
288 |
|
kpeter@346
|
289 |
// Update potentials of processed nodes
|
alpar@345
|
290 |
Length t_dist = heap.prio();
|
alpar@345
|
291 |
for (int i = 0; i < int(_proc_nodes.size()); ++i)
|
kpeter@853
|
292 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
|
alpar@345
|
293 |
return true;
|
alpar@345
|
294 |
}
|
alpar@345
|
295 |
|
alpar@345
|
296 |
}; //class ResidualDijkstra
|
alpar@345
|
297 |
|
kpeter@857
|
298 |
public:
|
kpeter@857
|
299 |
|
kpeter@857
|
300 |
/// \name Named Template Parameters
|
kpeter@857
|
301 |
/// @{
|
kpeter@857
|
302 |
|
kpeter@857
|
303 |
template <typename T>
|
kpeter@857
|
304 |
struct SetFlowMapTraits : public Traits {
|
kpeter@857
|
305 |
typedef T FlowMap;
|
kpeter@857
|
306 |
};
|
kpeter@857
|
307 |
|
kpeter@857
|
308 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
kpeter@857
|
309 |
/// \c FlowMap type.
|
kpeter@857
|
310 |
///
|
kpeter@857
|
311 |
/// \ref named-templ-param "Named parameter" for setting
|
kpeter@857
|
312 |
/// \c FlowMap type.
|
kpeter@857
|
313 |
template <typename T>
|
kpeter@857
|
314 |
struct SetFlowMap
|
kpeter@857
|
315 |
: public Suurballe<GR, LEN, SetFlowMapTraits<T> > {
|
kpeter@857
|
316 |
typedef Suurballe<GR, LEN, SetFlowMapTraits<T> > Create;
|
kpeter@857
|
317 |
};
|
kpeter@857
|
318 |
|
kpeter@857
|
319 |
template <typename T>
|
kpeter@857
|
320 |
struct SetPotentialMapTraits : public Traits {
|
kpeter@857
|
321 |
typedef T PotentialMap;
|
kpeter@857
|
322 |
};
|
kpeter@857
|
323 |
|
kpeter@857
|
324 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
kpeter@857
|
325 |
/// \c PotentialMap type.
|
kpeter@857
|
326 |
///
|
kpeter@857
|
327 |
/// \ref named-templ-param "Named parameter" for setting
|
kpeter@857
|
328 |
/// \c PotentialMap type.
|
kpeter@857
|
329 |
template <typename T>
|
kpeter@857
|
330 |
struct SetPotentialMap
|
kpeter@857
|
331 |
: public Suurballe<GR, LEN, SetPotentialMapTraits<T> > {
|
kpeter@857
|
332 |
typedef Suurballe<GR, LEN, SetPotentialMapTraits<T> > Create;
|
kpeter@857
|
333 |
};
|
kpeter@857
|
334 |
|
kpeter@857
|
335 |
template <typename T>
|
kpeter@857
|
336 |
struct SetPathTraits : public Traits {
|
kpeter@857
|
337 |
typedef T Path;
|
kpeter@857
|
338 |
};
|
kpeter@857
|
339 |
|
kpeter@857
|
340 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
kpeter@857
|
341 |
/// \c %Path type.
|
kpeter@857
|
342 |
///
|
kpeter@857
|
343 |
/// \ref named-templ-param "Named parameter" for setting \c %Path type.
|
kpeter@857
|
344 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept
|
kpeter@857
|
345 |
/// and it must have an \c addBack() function.
|
kpeter@857
|
346 |
template <typename T>
|
kpeter@857
|
347 |
struct SetPath
|
kpeter@857
|
348 |
: public Suurballe<GR, LEN, SetPathTraits<T> > {
|
kpeter@857
|
349 |
typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
|
kpeter@857
|
350 |
};
|
kpeter@857
|
351 |
|
kpeter@857
|
352 |
template <typename H, typename CR>
|
kpeter@857
|
353 |
struct SetHeapTraits : public Traits {
|
kpeter@857
|
354 |
typedef H Heap;
|
kpeter@857
|
355 |
typedef CR HeapCrossRef;
|
kpeter@857
|
356 |
};
|
kpeter@857
|
357 |
|
kpeter@857
|
358 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
kpeter@857
|
359 |
/// \c Heap and \c HeapCrossRef types.
|
kpeter@857
|
360 |
///
|
kpeter@857
|
361 |
/// \ref named-templ-param "Named parameter" for setting \c Heap
|
kpeter@857
|
362 |
/// and \c HeapCrossRef types with automatic allocation.
|
kpeter@857
|
363 |
/// They will be used for internal Dijkstra computations.
|
kpeter@857
|
364 |
/// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
|
kpeter@857
|
365 |
/// concept and its priority type must be \c Length.
|
kpeter@857
|
366 |
template <typename H,
|
kpeter@857
|
367 |
typename CR = typename Digraph::template NodeMap<int> >
|
kpeter@857
|
368 |
struct SetHeap
|
kpeter@857
|
369 |
: public Suurballe<GR, LEN, SetHeapTraits<H, CR> > {
|
kpeter@857
|
370 |
typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create;
|
kpeter@857
|
371 |
};
|
kpeter@857
|
372 |
|
kpeter@857
|
373 |
/// @}
|
kpeter@857
|
374 |
|
alpar@345
|
375 |
private:
|
alpar@345
|
376 |
|
kpeter@346
|
377 |
// The digraph the algorithm runs on
|
alpar@345
|
378 |
const Digraph &_graph;
|
alpar@345
|
379 |
// The length map
|
alpar@345
|
380 |
const LengthMap &_length;
|
alpar@440
|
381 |
|
alpar@345
|
382 |
// Arc map of the current flow
|
alpar@345
|
383 |
FlowMap *_flow;
|
alpar@345
|
384 |
bool _local_flow;
|
alpar@345
|
385 |
// Node map of the current potentials
|
alpar@345
|
386 |
PotentialMap *_potential;
|
alpar@345
|
387 |
bool _local_potential;
|
alpar@345
|
388 |
|
alpar@345
|
389 |
// The source node
|
kpeter@853
|
390 |
Node _s;
|
alpar@345
|
391 |
// The target node
|
kpeter@853
|
392 |
Node _t;
|
alpar@345
|
393 |
|
alpar@345
|
394 |
// Container to store the found paths
|
kpeter@853
|
395 |
std::vector<Path> _paths;
|
alpar@345
|
396 |
int _path_num;
|
alpar@345
|
397 |
|
alpar@345
|
398 |
// The pred arc map
|
alpar@345
|
399 |
PredMap _pred;
|
kpeter@854
|
400 |
|
kpeter@854
|
401 |
// Data for full init
|
kpeter@854
|
402 |
PotentialMap *_init_dist;
|
kpeter@854
|
403 |
PredMap *_init_pred;
|
kpeter@854
|
404 |
bool _full_init;
|
alpar@345
|
405 |
|
kpeter@863
|
406 |
protected:
|
kpeter@863
|
407 |
|
kpeter@863
|
408 |
Suurballe() {}
|
kpeter@863
|
409 |
|
alpar@345
|
410 |
public:
|
alpar@345
|
411 |
|
alpar@345
|
412 |
/// \brief Constructor.
|
alpar@345
|
413 |
///
|
alpar@345
|
414 |
/// Constructor.
|
alpar@345
|
415 |
///
|
kpeter@623
|
416 |
/// \param graph The digraph the algorithm runs on.
|
alpar@345
|
417 |
/// \param length The length (cost) values of the arcs.
|
kpeter@623
|
418 |
Suurballe( const Digraph &graph,
|
kpeter@623
|
419 |
const LengthMap &length ) :
|
kpeter@623
|
420 |
_graph(graph), _length(length), _flow(0), _local_flow(false),
|
kpeter@854
|
421 |
_potential(0), _local_potential(false), _pred(graph),
|
kpeter@854
|
422 |
_init_dist(0), _init_pred(0)
|
kpeter@852
|
423 |
{}
|
alpar@345
|
424 |
|
alpar@345
|
425 |
/// Destructor.
|
alpar@345
|
426 |
~Suurballe() {
|
alpar@345
|
427 |
if (_local_flow) delete _flow;
|
alpar@345
|
428 |
if (_local_potential) delete _potential;
|
kpeter@854
|
429 |
delete _init_dist;
|
kpeter@854
|
430 |
delete _init_pred;
|
alpar@345
|
431 |
}
|
alpar@345
|
432 |
|
kpeter@346
|
433 |
/// \brief Set the flow map.
|
alpar@345
|
434 |
///
|
kpeter@346
|
435 |
/// This function sets the flow map.
|
kpeter@623
|
436 |
/// If it is not used before calling \ref run() or \ref init(),
|
kpeter@623
|
437 |
/// an instance will be allocated automatically. The destructor
|
kpeter@623
|
438 |
/// deallocates this automatically allocated map, of course.
|
alpar@345
|
439 |
///
|
kpeter@623
|
440 |
/// The found flow contains only 0 and 1 values, since it is the
|
kpeter@623
|
441 |
/// union of the found arc-disjoint paths.
|
alpar@345
|
442 |
///
|
kpeter@559
|
443 |
/// \return <tt>(*this)</tt>
|
alpar@345
|
444 |
Suurballe& flowMap(FlowMap &map) {
|
alpar@345
|
445 |
if (_local_flow) {
|
alpar@345
|
446 |
delete _flow;
|
alpar@345
|
447 |
_local_flow = false;
|
alpar@345
|
448 |
}
|
alpar@345
|
449 |
_flow = ↦
|
alpar@345
|
450 |
return *this;
|
alpar@345
|
451 |
}
|
alpar@345
|
452 |
|
kpeter@346
|
453 |
/// \brief Set the potential map.
|
alpar@345
|
454 |
///
|
kpeter@346
|
455 |
/// This function sets the potential map.
|
kpeter@623
|
456 |
/// If it is not used before calling \ref run() or \ref init(),
|
kpeter@623
|
457 |
/// an instance will be allocated automatically. The destructor
|
kpeter@623
|
458 |
/// deallocates this automatically allocated map, of course.
|
alpar@345
|
459 |
///
|
kpeter@623
|
460 |
/// The node potentials provide the dual solution of the underlying
|
kpeter@623
|
461 |
/// \ref min_cost_flow "minimum cost flow problem".
|
alpar@345
|
462 |
///
|
kpeter@559
|
463 |
/// \return <tt>(*this)</tt>
|
alpar@345
|
464 |
Suurballe& potentialMap(PotentialMap &map) {
|
alpar@345
|
465 |
if (_local_potential) {
|
alpar@345
|
466 |
delete _potential;
|
alpar@345
|
467 |
_local_potential = false;
|
alpar@345
|
468 |
}
|
alpar@345
|
469 |
_potential = ↦
|
alpar@345
|
470 |
return *this;
|
alpar@345
|
471 |
}
|
alpar@345
|
472 |
|
kpeter@584
|
473 |
/// \name Execution Control
|
alpar@345
|
474 |
/// The simplest way to execute the algorithm is to call the run()
|
kpeter@854
|
475 |
/// function.\n
|
kpeter@854
|
476 |
/// If you need to execute the algorithm many times using the same
|
kpeter@854
|
477 |
/// source node, then you may call fullInit() once and start()
|
kpeter@854
|
478 |
/// for each target node.\n
|
alpar@345
|
479 |
/// If you only need the flow that is the union of the found
|
kpeter@854
|
480 |
/// arc-disjoint paths, then you may call findFlow() instead of
|
kpeter@854
|
481 |
/// start().
|
alpar@345
|
482 |
|
alpar@345
|
483 |
/// @{
|
alpar@345
|
484 |
|
kpeter@346
|
485 |
/// \brief Run the algorithm.
|
alpar@345
|
486 |
///
|
kpeter@346
|
487 |
/// This function runs the algorithm.
|
alpar@345
|
488 |
///
|
kpeter@623
|
489 |
/// \param s The source node.
|
kpeter@623
|
490 |
/// \param t The target node.
|
alpar@345
|
491 |
/// \param k The number of paths to be found.
|
alpar@345
|
492 |
///
|
kpeter@346
|
493 |
/// \return \c k if there are at least \c k arc-disjoint paths from
|
kpeter@346
|
494 |
/// \c s to \c t in the digraph. Otherwise it returns the number of
|
alpar@345
|
495 |
/// arc-disjoint paths found.
|
alpar@345
|
496 |
///
|
kpeter@623
|
497 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is
|
kpeter@623
|
498 |
/// just a shortcut of the following code.
|
alpar@345
|
499 |
/// \code
|
kpeter@623
|
500 |
/// s.init(s);
|
kpeter@854
|
501 |
/// s.start(t, k);
|
alpar@345
|
502 |
/// \endcode
|
kpeter@623
|
503 |
int run(const Node& s, const Node& t, int k = 2) {
|
kpeter@623
|
504 |
init(s);
|
kpeter@854
|
505 |
start(t, k);
|
alpar@345
|
506 |
return _path_num;
|
alpar@345
|
507 |
}
|
alpar@345
|
508 |
|
kpeter@346
|
509 |
/// \brief Initialize the algorithm.
|
alpar@345
|
510 |
///
|
kpeter@854
|
511 |
/// This function initializes the algorithm with the given source node.
|
kpeter@623
|
512 |
///
|
kpeter@623
|
513 |
/// \param s The source node.
|
kpeter@623
|
514 |
void init(const Node& s) {
|
kpeter@853
|
515 |
_s = s;
|
kpeter@623
|
516 |
|
kpeter@346
|
517 |
// Initialize maps
|
alpar@345
|
518 |
if (!_flow) {
|
alpar@345
|
519 |
_flow = new FlowMap(_graph);
|
alpar@345
|
520 |
_local_flow = true;
|
alpar@345
|
521 |
}
|
alpar@345
|
522 |
if (!_potential) {
|
alpar@345
|
523 |
_potential = new PotentialMap(_graph);
|
alpar@345
|
524 |
_local_potential = true;
|
alpar@345
|
525 |
}
|
kpeter@854
|
526 |
_full_init = false;
|
kpeter@854
|
527 |
}
|
kpeter@854
|
528 |
|
kpeter@854
|
529 |
/// \brief Initialize the algorithm and perform Dijkstra.
|
kpeter@854
|
530 |
///
|
kpeter@854
|
531 |
/// This function initializes the algorithm and performs a full
|
kpeter@854
|
532 |
/// Dijkstra search from the given source node. It makes consecutive
|
kpeter@854
|
533 |
/// executions of \ref start() "start(t, k)" faster, since they
|
kpeter@854
|
534 |
/// have to perform %Dijkstra only k-1 times.
|
kpeter@854
|
535 |
///
|
kpeter@854
|
536 |
/// This initialization is usually worth using instead of \ref init()
|
kpeter@854
|
537 |
/// if the algorithm is executed many times using the same source node.
|
kpeter@854
|
538 |
///
|
kpeter@854
|
539 |
/// \param s The source node.
|
kpeter@854
|
540 |
void fullInit(const Node& s) {
|
kpeter@854
|
541 |
// Initialize maps
|
kpeter@854
|
542 |
init(s);
|
kpeter@854
|
543 |
if (!_init_dist) {
|
kpeter@854
|
544 |
_init_dist = new PotentialMap(_graph);
|
kpeter@854
|
545 |
}
|
kpeter@854
|
546 |
if (!_init_pred) {
|
kpeter@854
|
547 |
_init_pred = new PredMap(_graph);
|
kpeter@854
|
548 |
}
|
kpeter@854
|
549 |
|
kpeter@854
|
550 |
// Run a full Dijkstra
|
kpeter@854
|
551 |
typename Dijkstra<Digraph, LengthMap>
|
kpeter@854
|
552 |
::template SetStandardHeap<Heap>
|
kpeter@854
|
553 |
::template SetDistMap<PotentialMap>
|
kpeter@854
|
554 |
::template SetPredMap<PredMap>
|
kpeter@854
|
555 |
::Create dijk(_graph, _length);
|
kpeter@854
|
556 |
dijk.distMap(*_init_dist).predMap(*_init_pred);
|
kpeter@854
|
557 |
dijk.run(s);
|
kpeter@854
|
558 |
|
kpeter@854
|
559 |
_full_init = true;
|
kpeter@854
|
560 |
}
|
kpeter@854
|
561 |
|
kpeter@854
|
562 |
/// \brief Execute the algorithm.
|
kpeter@854
|
563 |
///
|
kpeter@854
|
564 |
/// This function executes the algorithm.
|
kpeter@854
|
565 |
///
|
kpeter@854
|
566 |
/// \param t The target node.
|
kpeter@854
|
567 |
/// \param k The number of paths to be found.
|
kpeter@854
|
568 |
///
|
kpeter@854
|
569 |
/// \return \c k if there are at least \c k arc-disjoint paths from
|
kpeter@854
|
570 |
/// \c s to \c t in the digraph. Otherwise it returns the number of
|
kpeter@854
|
571 |
/// arc-disjoint paths found.
|
kpeter@854
|
572 |
///
|
kpeter@854
|
573 |
/// \note Apart from the return value, <tt>s.start(t, k)</tt> is
|
kpeter@854
|
574 |
/// just a shortcut of the following code.
|
kpeter@854
|
575 |
/// \code
|
kpeter@854
|
576 |
/// s.findFlow(t, k);
|
kpeter@854
|
577 |
/// s.findPaths();
|
kpeter@854
|
578 |
/// \endcode
|
kpeter@854
|
579 |
int start(const Node& t, int k = 2) {
|
kpeter@854
|
580 |
findFlow(t, k);
|
kpeter@854
|
581 |
findPaths();
|
kpeter@854
|
582 |
return _path_num;
|
alpar@345
|
583 |
}
|
alpar@345
|
584 |
|
kpeter@623
|
585 |
/// \brief Execute the algorithm to find an optimal flow.
|
alpar@345
|
586 |
///
|
kpeter@346
|
587 |
/// This function executes the successive shortest path algorithm to
|
kpeter@623
|
588 |
/// find a minimum cost flow, which is the union of \c k (or less)
|
alpar@345
|
589 |
/// arc-disjoint paths.
|
alpar@345
|
590 |
///
|
kpeter@623
|
591 |
/// \param t The target node.
|
kpeter@623
|
592 |
/// \param k The number of paths to be found.
|
kpeter@623
|
593 |
///
|
kpeter@346
|
594 |
/// \return \c k if there are at least \c k arc-disjoint paths from
|
kpeter@623
|
595 |
/// the source node to the given node \c t in the digraph.
|
kpeter@623
|
596 |
/// Otherwise it returns the number of arc-disjoint paths found.
|
alpar@345
|
597 |
///
|
alpar@345
|
598 |
/// \pre \ref init() must be called before using this function.
|
kpeter@623
|
599 |
int findFlow(const Node& t, int k = 2) {
|
kpeter@853
|
600 |
_t = t;
|
kpeter@853
|
601 |
ResidualDijkstra dijkstra(*this);
|
kpeter@854
|
602 |
|
kpeter@854
|
603 |
// Initialization
|
kpeter@854
|
604 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
kpeter@854
|
605 |
(*_flow)[e] = 0;
|
kpeter@854
|
606 |
}
|
kpeter@854
|
607 |
if (_full_init) {
|
kpeter@854
|
608 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@854
|
609 |
(*_potential)[n] = (*_init_dist)[n];
|
kpeter@854
|
610 |
}
|
kpeter@854
|
611 |
Node u = _t;
|
kpeter@854
|
612 |
Arc e;
|
kpeter@854
|
613 |
while ((e = (*_init_pred)[u]) != INVALID) {
|
kpeter@854
|
614 |
(*_flow)[e] = 1;
|
kpeter@854
|
615 |
u = _graph.source(e);
|
kpeter@854
|
616 |
}
|
kpeter@854
|
617 |
_path_num = 1;
|
kpeter@854
|
618 |
} else {
|
kpeter@854
|
619 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@854
|
620 |
(*_potential)[n] = 0;
|
kpeter@854
|
621 |
}
|
kpeter@854
|
622 |
_path_num = 0;
|
kpeter@854
|
623 |
}
|
kpeter@623
|
624 |
|
kpeter@346
|
625 |
// Find shortest paths
|
alpar@345
|
626 |
while (_path_num < k) {
|
kpeter@346
|
627 |
// Run Dijkstra
|
kpeter@853
|
628 |
if (!dijkstra.run(_path_num)) break;
|
alpar@345
|
629 |
++_path_num;
|
alpar@345
|
630 |
|
kpeter@346
|
631 |
// Set the flow along the found shortest path
|
kpeter@853
|
632 |
Node u = _t;
|
alpar@345
|
633 |
Arc e;
|
alpar@345
|
634 |
while ((e = _pred[u]) != INVALID) {
|
alpar@345
|
635 |
if (u == _graph.target(e)) {
|
alpar@345
|
636 |
(*_flow)[e] = 1;
|
alpar@345
|
637 |
u = _graph.source(e);
|
alpar@345
|
638 |
} else {
|
alpar@345
|
639 |
(*_flow)[e] = 0;
|
alpar@345
|
640 |
u = _graph.target(e);
|
alpar@345
|
641 |
}
|
alpar@345
|
642 |
}
|
alpar@345
|
643 |
}
|
alpar@345
|
644 |
return _path_num;
|
alpar@345
|
645 |
}
|
alpar@440
|
646 |
|
kpeter@346
|
647 |
/// \brief Compute the paths from the flow.
|
alpar@345
|
648 |
///
|
kpeter@853
|
649 |
/// This function computes arc-disjoint paths from the found minimum
|
kpeter@853
|
650 |
/// cost flow, which is the union of them.
|
alpar@345
|
651 |
///
|
alpar@345
|
652 |
/// \pre \ref init() and \ref findFlow() must be called before using
|
alpar@345
|
653 |
/// this function.
|
alpar@345
|
654 |
void findPaths() {
|
alpar@345
|
655 |
FlowMap res_flow(_graph);
|
kpeter@346
|
656 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a];
|
alpar@345
|
657 |
|
kpeter@853
|
658 |
_paths.clear();
|
kpeter@853
|
659 |
_paths.resize(_path_num);
|
alpar@345
|
660 |
for (int i = 0; i < _path_num; ++i) {
|
kpeter@853
|
661 |
Node n = _s;
|
kpeter@853
|
662 |
while (n != _t) {
|
alpar@345
|
663 |
OutArcIt e(_graph, n);
|
alpar@345
|
664 |
for ( ; res_flow[e] == 0; ++e) ;
|
alpar@345
|
665 |
n = _graph.target(e);
|
kpeter@853
|
666 |
_paths[i].addBack(e);
|
alpar@345
|
667 |
res_flow[e] = 0;
|
alpar@345
|
668 |
}
|
alpar@345
|
669 |
}
|
alpar@345
|
670 |
}
|
alpar@345
|
671 |
|
alpar@345
|
672 |
/// @}
|
alpar@345
|
673 |
|
alpar@345
|
674 |
/// \name Query Functions
|
kpeter@346
|
675 |
/// The results of the algorithm can be obtained using these
|
alpar@345
|
676 |
/// functions.
|
alpar@345
|
677 |
/// \n The algorithm should be executed before using them.
|
alpar@345
|
678 |
|
alpar@345
|
679 |
/// @{
|
alpar@345
|
680 |
|
kpeter@623
|
681 |
/// \brief Return the total length of the found paths.
|
kpeter@623
|
682 |
///
|
kpeter@623
|
683 |
/// This function returns the total length of the found paths, i.e.
|
kpeter@623
|
684 |
/// the total cost of the found flow.
|
kpeter@623
|
685 |
/// The complexity of the function is O(e).
|
kpeter@623
|
686 |
///
|
kpeter@623
|
687 |
/// \pre \ref run() or \ref findFlow() must be called before using
|
kpeter@623
|
688 |
/// this function.
|
kpeter@623
|
689 |
Length totalLength() const {
|
kpeter@623
|
690 |
Length c = 0;
|
kpeter@623
|
691 |
for (ArcIt e(_graph); e != INVALID; ++e)
|
kpeter@623
|
692 |
c += (*_flow)[e] * _length[e];
|
kpeter@623
|
693 |
return c;
|
kpeter@623
|
694 |
}
|
kpeter@623
|
695 |
|
kpeter@623
|
696 |
/// \brief Return the flow value on the given arc.
|
kpeter@623
|
697 |
///
|
kpeter@623
|
698 |
/// This function returns the flow value on the given arc.
|
kpeter@623
|
699 |
/// It is \c 1 if the arc is involved in one of the found arc-disjoint
|
kpeter@623
|
700 |
/// paths, otherwise it is \c 0.
|
kpeter@623
|
701 |
///
|
kpeter@623
|
702 |
/// \pre \ref run() or \ref findFlow() must be called before using
|
kpeter@623
|
703 |
/// this function.
|
kpeter@623
|
704 |
int flow(const Arc& arc) const {
|
kpeter@623
|
705 |
return (*_flow)[arc];
|
kpeter@623
|
706 |
}
|
kpeter@623
|
707 |
|
kpeter@623
|
708 |
/// \brief Return a const reference to an arc map storing the
|
alpar@345
|
709 |
/// found flow.
|
alpar@345
|
710 |
///
|
kpeter@623
|
711 |
/// This function returns a const reference to an arc map storing
|
kpeter@346
|
712 |
/// the flow that is the union of the found arc-disjoint paths.
|
alpar@345
|
713 |
///
|
kpeter@346
|
714 |
/// \pre \ref run() or \ref findFlow() must be called before using
|
kpeter@346
|
715 |
/// this function.
|
alpar@345
|
716 |
const FlowMap& flowMap() const {
|
alpar@345
|
717 |
return *_flow;
|
alpar@345
|
718 |
}
|
alpar@345
|
719 |
|
kpeter@346
|
720 |
/// \brief Return the potential of the given node.
|
alpar@345
|
721 |
///
|
kpeter@346
|
722 |
/// This function returns the potential of the given node.
|
kpeter@623
|
723 |
/// The node potentials provide the dual solution of the
|
kpeter@623
|
724 |
/// underlying \ref min_cost_flow "minimum cost flow problem".
|
alpar@345
|
725 |
///
|
kpeter@346
|
726 |
/// \pre \ref run() or \ref findFlow() must be called before using
|
kpeter@346
|
727 |
/// this function.
|
alpar@345
|
728 |
Length potential(const Node& node) const {
|
alpar@345
|
729 |
return (*_potential)[node];
|
alpar@345
|
730 |
}
|
alpar@345
|
731 |
|
kpeter@623
|
732 |
/// \brief Return a const reference to a node map storing the
|
kpeter@623
|
733 |
/// found potentials (the dual solution).
|
alpar@345
|
734 |
///
|
kpeter@623
|
735 |
/// This function returns a const reference to a node map storing
|
kpeter@623
|
736 |
/// the found potentials that provide the dual solution of the
|
kpeter@623
|
737 |
/// underlying \ref min_cost_flow "minimum cost flow problem".
|
alpar@345
|
738 |
///
|
kpeter@346
|
739 |
/// \pre \ref run() or \ref findFlow() must be called before using
|
kpeter@346
|
740 |
/// this function.
|
kpeter@623
|
741 |
const PotentialMap& potentialMap() const {
|
kpeter@623
|
742 |
return *_potential;
|
alpar@345
|
743 |
}
|
alpar@345
|
744 |
|
kpeter@346
|
745 |
/// \brief Return the number of the found paths.
|
alpar@345
|
746 |
///
|
kpeter@346
|
747 |
/// This function returns the number of the found paths.
|
alpar@345
|
748 |
///
|
kpeter@346
|
749 |
/// \pre \ref run() or \ref findFlow() must be called before using
|
kpeter@346
|
750 |
/// this function.
|
alpar@345
|
751 |
int pathNum() const {
|
alpar@345
|
752 |
return _path_num;
|
alpar@345
|
753 |
}
|
alpar@345
|
754 |
|
kpeter@346
|
755 |
/// \brief Return a const reference to the specified path.
|
alpar@345
|
756 |
///
|
kpeter@346
|
757 |
/// This function returns a const reference to the specified path.
|
alpar@345
|
758 |
///
|
kpeter@623
|
759 |
/// \param i The function returns the <tt>i</tt>-th path.
|
alpar@345
|
760 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>.
|
alpar@345
|
761 |
///
|
kpeter@346
|
762 |
/// \pre \ref run() or \ref findPaths() must be called before using
|
kpeter@346
|
763 |
/// this function.
|
kpeter@851
|
764 |
const Path& path(int i) const {
|
kpeter@853
|
765 |
return _paths[i];
|
alpar@345
|
766 |
}
|
alpar@345
|
767 |
|
alpar@345
|
768 |
/// @}
|
alpar@345
|
769 |
|
alpar@345
|
770 |
}; //class Suurballe
|
alpar@345
|
771 |
|
alpar@345
|
772 |
///@}
|
alpar@345
|
773 |
|
alpar@345
|
774 |
} //namespace lemon
|
alpar@345
|
775 |
|
alpar@345
|
776 |
#endif //LEMON_SUURBALLE_H
|