lemon/time_measure.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 06 May 2009 14:37:44 +0200
changeset 647 dcba640438c7
parent 548 94387da47f79
child 786 e20173729589
permissions -rw-r--r--
Bug fixes in connectivity.h (#285)

- Bug fix in tree().
- Rename simpleDigraph() to simpleGraph() (it works for both
directed and undirected graphs).
- Possibly faster implementation for parallelFree() and
simpleGraph().
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@119
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@119
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@119
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@119
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@119
     8
 *
alpar@119
     9
 * Permission to use, modify and distribute this software is granted
alpar@119
    10
 * provided that this copyright notice appears in all copies. For
alpar@119
    11
 * precise terms see the accompanying LICENSE file.
alpar@119
    12
 *
alpar@119
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@119
    14
 * express or implied, and with no claim as to its suitability for any
alpar@119
    15
 * purpose.
alpar@119
    16
 *
alpar@119
    17
 */
alpar@119
    18
alpar@119
    19
#ifndef LEMON_TIME_MEASURE_H
alpar@119
    20
#define LEMON_TIME_MEASURE_H
alpar@119
    21
alpar@119
    22
///\ingroup timecount
alpar@119
    23
///\file
alpar@119
    24
///\brief Tools for measuring cpu usage
alpar@119
    25
deba@126
    26
#ifdef WIN32
alpar@491
    27
#include <lemon/bits/windows.h>
deba@126
    28
#else
alpar@482
    29
#include <unistd.h>
alpar@119
    30
#include <sys/times.h>
deba@126
    31
#include <sys/time.h>
deba@126
    32
#endif
alpar@119
    33
alpar@143
    34
#include <string>
alpar@119
    35
#include <fstream>
alpar@119
    36
#include <iostream>
alpar@119
    37
alpar@119
    38
namespace lemon {
alpar@119
    39
alpar@119
    40
  /// \addtogroup timecount
alpar@119
    41
  /// @{
alpar@119
    42
alpar@119
    43
  /// A class to store (cpu)time instances.
alpar@119
    44
alpar@119
    45
  /// This class stores five time values.
alpar@119
    46
  /// - a real time
alpar@119
    47
  /// - a user cpu time
alpar@119
    48
  /// - a system cpu time
alpar@119
    49
  /// - a user cpu time of children
alpar@119
    50
  /// - a system cpu time of children
alpar@119
    51
  ///
alpar@119
    52
  /// TimeStamp's can be added to or substracted from each other and
alpar@119
    53
  /// they can be pushed to a stream.
alpar@119
    54
  ///
alpar@119
    55
  /// In most cases, perhaps the \ref Timer or the \ref TimeReport
alpar@119
    56
  /// class is what you want to use instead.
alpar@119
    57
alpar@119
    58
  class TimeStamp
alpar@119
    59
  {
deba@126
    60
    double utime;
deba@126
    61
    double stime;
deba@126
    62
    double cutime;
deba@126
    63
    double cstime;
deba@126
    64
    double rtime;
alpar@209
    65
alpar@209
    66
    void _reset() {
deba@126
    67
      utime = stime = cutime = cstime = rtime = 0;
alpar@119
    68
    }
alpar@119
    69
alpar@119
    70
  public:
alpar@119
    71
alpar@119
    72
    ///Read the current time values of the process
alpar@119
    73
    void stamp()
alpar@119
    74
    {
deba@126
    75
#ifndef WIN32
alpar@119
    76
      timeval tv;
deba@126
    77
      gettimeofday(&tv, 0);
deba@126
    78
      rtime=tv.tv_sec+double(tv.tv_usec)/1e6;
deba@126
    79
deba@126
    80
      tms ts;
deba@126
    81
      double tck=sysconf(_SC_CLK_TCK);
deba@126
    82
      times(&ts);
deba@126
    83
      utime=ts.tms_utime/tck;
deba@126
    84
      stime=ts.tms_stime/tck;
deba@126
    85
      cutime=ts.tms_cutime/tck;
deba@126
    86
      cstime=ts.tms_cstime/tck;
deba@126
    87
#else
alpar@491
    88
      bits::getWinProcTimes(rtime, utime, stime, cutime, cstime);
alpar@209
    89
#endif
alpar@119
    90
    }
alpar@209
    91
alpar@119
    92
    /// Constructor initializing with zero
alpar@119
    93
    TimeStamp()
alpar@119
    94
    { _reset(); }
alpar@119
    95
    ///Constructor initializing with the current time values of the process
alpar@119
    96
    TimeStamp(void *) { stamp();}
alpar@209
    97
alpar@119
    98
    ///Set every time value to zero
alpar@119
    99
    TimeStamp &reset() {_reset();return *this;}
alpar@119
   100
alpar@119
   101
    ///\e
alpar@119
   102
    TimeStamp &operator+=(const TimeStamp &b)
alpar@119
   103
    {
deba@126
   104
      utime+=b.utime;
deba@126
   105
      stime+=b.stime;
deba@126
   106
      cutime+=b.cutime;
deba@126
   107
      cstime+=b.cstime;
deba@126
   108
      rtime+=b.rtime;
alpar@119
   109
      return *this;
alpar@119
   110
    }
alpar@119
   111
    ///\e
alpar@119
   112
    TimeStamp operator+(const TimeStamp &b) const
alpar@119
   113
    {
alpar@119
   114
      TimeStamp t(*this);
alpar@119
   115
      return t+=b;
alpar@119
   116
    }
alpar@119
   117
    ///\e
alpar@119
   118
    TimeStamp &operator-=(const TimeStamp &b)
alpar@119
   119
    {
deba@126
   120
      utime-=b.utime;
deba@126
   121
      stime-=b.stime;
deba@126
   122
      cutime-=b.cutime;
deba@126
   123
      cstime-=b.cstime;
deba@126
   124
      rtime-=b.rtime;
alpar@119
   125
      return *this;
alpar@119
   126
    }
alpar@119
   127
    ///\e
alpar@119
   128
    TimeStamp operator-(const TimeStamp &b) const
alpar@119
   129
    {
alpar@119
   130
      TimeStamp t(*this);
alpar@119
   131
      return t-=b;
alpar@119
   132
    }
alpar@119
   133
    ///\e
alpar@119
   134
    TimeStamp &operator*=(double b)
alpar@119
   135
    {
deba@126
   136
      utime*=b;
deba@126
   137
      stime*=b;
deba@126
   138
      cutime*=b;
deba@126
   139
      cstime*=b;
deba@126
   140
      rtime*=b;
alpar@119
   141
      return *this;
alpar@119
   142
    }
alpar@119
   143
    ///\e
alpar@119
   144
    TimeStamp operator*(double b) const
alpar@119
   145
    {
alpar@119
   146
      TimeStamp t(*this);
alpar@119
   147
      return t*=b;
alpar@119
   148
    }
alpar@119
   149
    friend TimeStamp operator*(double b,const TimeStamp &t);
alpar@119
   150
    ///\e
alpar@119
   151
    TimeStamp &operator/=(double b)
alpar@119
   152
    {
deba@126
   153
      utime/=b;
deba@126
   154
      stime/=b;
deba@126
   155
      cutime/=b;
deba@126
   156
      cstime/=b;
deba@126
   157
      rtime/=b;
alpar@119
   158
      return *this;
alpar@119
   159
    }
alpar@119
   160
    ///\e
alpar@119
   161
    TimeStamp operator/(double b) const
alpar@119
   162
    {
alpar@119
   163
      TimeStamp t(*this);
alpar@119
   164
      return t/=b;
alpar@119
   165
    }
alpar@119
   166
    ///The time ellapsed since the last call of stamp()
alpar@119
   167
    TimeStamp ellapsed() const
alpar@119
   168
    {
alpar@119
   169
      TimeStamp t(NULL);
alpar@119
   170
      return t-*this;
alpar@119
   171
    }
alpar@209
   172
alpar@119
   173
    friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t);
alpar@209
   174
alpar@119
   175
    ///Gives back the user time of the process
alpar@119
   176
    double userTime() const
alpar@119
   177
    {
deba@126
   178
      return utime;
alpar@119
   179
    }
alpar@119
   180
    ///Gives back the system time of the process
alpar@119
   181
    double systemTime() const
alpar@119
   182
    {
deba@126
   183
      return stime;
alpar@119
   184
    }
alpar@119
   185
    ///Gives back the user time of the process' children
deba@126
   186
alpar@209
   187
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   188
    ///
alpar@119
   189
    double cUserTime() const
alpar@119
   190
    {
deba@126
   191
      return cutime;
alpar@119
   192
    }
alpar@119
   193
    ///Gives back the user time of the process' children
deba@126
   194
alpar@209
   195
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   196
    ///
alpar@119
   197
    double cSystemTime() const
alpar@119
   198
    {
deba@126
   199
      return cstime;
alpar@119
   200
    }
alpar@119
   201
    ///Gives back the real time
deba@126
   202
    double realTime() const {return rtime;}
alpar@119
   203
  };
alpar@119
   204
alpar@505
   205
  inline TimeStamp operator*(double b,const TimeStamp &t)
alpar@119
   206
  {
alpar@119
   207
    return t*b;
alpar@119
   208
  }
alpar@209
   209
alpar@119
   210
  ///Prints the time counters
alpar@119
   211
alpar@119
   212
  ///Prints the time counters in the following form:
alpar@119
   213
  ///
alpar@119
   214
  /// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt>
alpar@119
   215
  ///
alpar@119
   216
  /// where the values are the
alpar@119
   217
  /// \li \c u: user cpu time,
alpar@119
   218
  /// \li \c s: system cpu time,
alpar@119
   219
  /// \li \c cu: user cpu time of children,
alpar@119
   220
  /// \li \c cs: system cpu time of children,
alpar@119
   221
  /// \li \c real: real time.
alpar@119
   222
  /// \relates TimeStamp
deba@126
   223
  /// \note On <tt>WIN32</tt> platform the cummulative values are not
deba@126
   224
  /// calculated.
alpar@119
   225
  inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t)
alpar@119
   226
  {
deba@126
   227
    os << "u: " << t.userTime() <<
deba@126
   228
      "s, s: " << t.systemTime() <<
deba@126
   229
      "s, cu: " << t.cUserTime() <<
deba@126
   230
      "s, cs: " << t.cSystemTime() <<
alpar@119
   231
      "s, real: " << t.realTime() << "s";
alpar@119
   232
    return os;
alpar@119
   233
  }
alpar@119
   234
alpar@119
   235
  ///Class for measuring the cpu time and real time usage of the process
alpar@119
   236
alpar@119
   237
  ///Class for measuring the cpu time and real time usage of the process.
alpar@119
   238
  ///It is quite easy-to-use, here is a short example.
alpar@119
   239
  ///\code
alpar@119
   240
  /// #include<lemon/time_measure.h>
alpar@119
   241
  /// #include<iostream>
alpar@119
   242
  ///
alpar@119
   243
  /// int main()
alpar@119
   244
  /// {
alpar@119
   245
  ///
alpar@119
   246
  ///   ...
alpar@119
   247
  ///
alpar@119
   248
  ///   Timer t;
alpar@119
   249
  ///   doSomething();
alpar@119
   250
  ///   std::cout << t << '\n';
alpar@119
   251
  ///   t.restart();
alpar@119
   252
  ///   doSomethingElse();
alpar@119
   253
  ///   std::cout << t << '\n';
alpar@119
   254
  ///
alpar@119
   255
  ///   ...
alpar@119
   256
  ///
alpar@119
   257
  /// }
alpar@119
   258
  ///\endcode
alpar@119
   259
  ///
alpar@119
   260
  ///The \ref Timer can also be \ref stop() "stopped" and
alpar@119
   261
  ///\ref start() "started" again, so it is possible to compute collected
alpar@119
   262
  ///running times.
alpar@119
   263
  ///
alpar@119
   264
  ///\warning Depending on the operation system and its actual configuration
alpar@119
   265
  ///the time counters have a certain (10ms on a typical Linux system)
alpar@119
   266
  ///granularity.
alpar@119
   267
  ///Therefore this tool is not appropriate to measure very short times.
alpar@119
   268
  ///Also, if you start and stop the timer very frequently, it could lead to
alpar@119
   269
  ///distorted results.
alpar@119
   270
  ///
alpar@119
   271
  ///\note If you want to measure the running time of the execution of a certain
alpar@119
   272
  ///function, consider the usage of \ref TimeReport instead.
alpar@119
   273
  ///
alpar@119
   274
  ///\sa TimeReport
alpar@119
   275
  class Timer
alpar@119
   276
  {
alpar@119
   277
    int _running; //Timer is running iff _running>0; (_running>=0 always holds)
alpar@119
   278
    TimeStamp start_time; //This is the relativ start-time if the timer
alpar@119
   279
                          //is _running, the collected _running time otherwise.
alpar@209
   280
alpar@119
   281
    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
alpar@209
   282
alpar@209
   283
  public:
alpar@119
   284
    ///Constructor.
alpar@119
   285
alpar@119
   286
    ///\param run indicates whether or not the timer starts immediately.
alpar@119
   287
    ///
alpar@119
   288
    Timer(bool run=true) :_running(run) {_reset();}
alpar@119
   289
kpeter@584
   290
    ///\name Control the State of the Timer
alpar@119
   291
    ///Basically a Timer can be either running or stopped,
alpar@119
   292
    ///but it provides a bit finer control on the execution.
kpeter@314
   293
    ///The \ref lemon::Timer "Timer" also counts the number of
kpeter@314
   294
    ///\ref lemon::Timer::start() "start()" executions, and it stops
kpeter@313
   295
    ///only after the same amount (or more) \ref lemon::Timer::stop()
kpeter@313
   296
    ///"stop()"s. This can be useful e.g. to compute the running time
alpar@119
   297
    ///of recursive functions.
alpar@119
   298
alpar@119
   299
    ///@{
alpar@119
   300
alpar@119
   301
    ///Reset and stop the time counters
alpar@119
   302
alpar@119
   303
    ///This function resets and stops the time counters
alpar@119
   304
    ///\sa restart()
alpar@119
   305
    void reset()
alpar@119
   306
    {
alpar@119
   307
      _running=0;
alpar@119
   308
      _reset();
alpar@119
   309
    }
alpar@119
   310
alpar@119
   311
    ///Start the time counters
alpar@209
   312
alpar@119
   313
    ///This function starts the time counters.
alpar@119
   314
    ///
alpar@119
   315
    ///If the timer is started more than ones, it will remain running
alpar@119
   316
    ///until the same amount of \ref stop() is called.
alpar@119
   317
    ///\sa stop()
alpar@209
   318
    void start()
alpar@119
   319
    {
alpar@119
   320
      if(_running) _running++;
alpar@119
   321
      else {
alpar@209
   322
        _running=1;
alpar@209
   323
        TimeStamp t;
alpar@209
   324
        t.stamp();
alpar@209
   325
        start_time=t-start_time;
alpar@119
   326
      }
alpar@119
   327
    }
alpar@119
   328
alpar@209
   329
alpar@119
   330
    ///Stop the time counters
alpar@119
   331
alpar@119
   332
    ///This function stops the time counters. If start() was executed more than
alpar@119
   333
    ///once, then the same number of stop() execution is necessary the really
alpar@119
   334
    ///stop the timer.
alpar@209
   335
    ///
alpar@119
   336
    ///\sa halt()
alpar@119
   337
    ///\sa start()
alpar@119
   338
    ///\sa restart()
alpar@119
   339
    ///\sa reset()
alpar@119
   340
alpar@209
   341
    void stop()
alpar@119
   342
    {
alpar@119
   343
      if(_running && !--_running) {
alpar@209
   344
        TimeStamp t;
alpar@209
   345
        t.stamp();
alpar@209
   346
        start_time=t-start_time;
alpar@119
   347
      }
alpar@119
   348
    }
alpar@119
   349
alpar@119
   350
    ///Halt (i.e stop immediately) the time counters
alpar@119
   351
alpar@120
   352
    ///This function stops immediately the time counters, i.e. <tt>t.halt()</tt>
alpar@119
   353
    ///is a faster
alpar@119
   354
    ///equivalent of the following.
alpar@119
   355
    ///\code
alpar@119
   356
    ///  while(t.running()) t.stop()
alpar@119
   357
    ///\endcode
alpar@119
   358
    ///
alpar@119
   359
    ///
alpar@119
   360
    ///\sa stop()
alpar@119
   361
    ///\sa restart()
alpar@119
   362
    ///\sa reset()
alpar@119
   363
alpar@209
   364
    void halt()
alpar@119
   365
    {
alpar@119
   366
      if(_running) {
alpar@209
   367
        _running=0;
alpar@209
   368
        TimeStamp t;
alpar@209
   369
        t.stamp();
alpar@209
   370
        start_time=t-start_time;
alpar@119
   371
      }
alpar@119
   372
    }
alpar@119
   373
alpar@119
   374
    ///Returns the running state of the timer
alpar@119
   375
alpar@119
   376
    ///This function returns the number of stop() exections that is
alpar@119
   377
    ///necessary to really stop the timer.
alpar@119
   378
    ///For example the timer
alpar@119
   379
    ///is running if and only if the return value is \c true
alpar@119
   380
    ///(i.e. greater than
alpar@119
   381
    ///zero).
alpar@119
   382
    int running()  { return _running; }
alpar@209
   383
alpar@209
   384
alpar@119
   385
    ///Restart the time counters
alpar@119
   386
alpar@119
   387
    ///This function is a shorthand for
alpar@119
   388
    ///a reset() and a start() calls.
alpar@119
   389
    ///
alpar@209
   390
    void restart()
alpar@119
   391
    {
alpar@119
   392
      reset();
alpar@119
   393
      start();
alpar@119
   394
    }
alpar@209
   395
alpar@119
   396
    ///@}
alpar@119
   397
kpeter@584
   398
    ///\name Query Functions for the Ellapsed Time
alpar@119
   399
alpar@119
   400
    ///@{
alpar@119
   401
alpar@119
   402
    ///Gives back the ellapsed user time of the process
alpar@119
   403
    double userTime() const
alpar@119
   404
    {
alpar@119
   405
      return operator TimeStamp().userTime();
alpar@119
   406
    }
alpar@119
   407
    ///Gives back the ellapsed system time of the process
alpar@119
   408
    double systemTime() const
alpar@119
   409
    {
alpar@119
   410
      return operator TimeStamp().systemTime();
alpar@119
   411
    }
alpar@119
   412
    ///Gives back the ellapsed user time of the process' children
deba@126
   413
alpar@209
   414
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   415
    ///
alpar@119
   416
    double cUserTime() const
alpar@119
   417
    {
alpar@119
   418
      return operator TimeStamp().cUserTime();
alpar@119
   419
    }
alpar@119
   420
    ///Gives back the ellapsed user time of the process' children
deba@126
   421
alpar@209
   422
    ///\note On <tt>WIN32</tt> platform this value is not calculated.
deba@126
   423
    ///
alpar@119
   424
    double cSystemTime() const
alpar@119
   425
    {
alpar@119
   426
      return operator TimeStamp().cSystemTime();
alpar@119
   427
    }
alpar@119
   428
    ///Gives back the ellapsed real time
alpar@119
   429
    double realTime() const
alpar@119
   430
    {
alpar@119
   431
      return operator TimeStamp().realTime();
alpar@119
   432
    }
alpar@119
   433
    ///Computes the ellapsed time
alpar@119
   434
alpar@119
   435
    ///This conversion computes the ellapsed time, therefore you can print
alpar@119
   436
    ///the ellapsed time like this.
alpar@119
   437
    ///\code
alpar@119
   438
    ///  Timer t;
alpar@119
   439
    ///  doSomething();
alpar@119
   440
    ///  std::cout << t << '\n';
alpar@119
   441
    ///\endcode
alpar@119
   442
    operator TimeStamp () const
alpar@119
   443
    {
alpar@119
   444
      TimeStamp t;
alpar@119
   445
      t.stamp();
alpar@119
   446
      return _running?t-start_time:start_time;
alpar@119
   447
    }
alpar@119
   448
alpar@119
   449
alpar@119
   450
    ///@}
alpar@119
   451
  };
alpar@119
   452
kpeter@313
   453
  ///Same as Timer but prints a report on destruction.
alpar@119
   454
alpar@119
   455
  ///Same as \ref Timer but prints a report on destruction.
alpar@119
   456
  ///This example shows its usage.
alpar@119
   457
  ///\code
alpar@119
   458
  ///  void myAlg(ListGraph &g,int n)
alpar@119
   459
  ///  {
alpar@119
   460
  ///    TimeReport tr("Running time of myAlg: ");
alpar@119
   461
  ///    ... //Here comes the algorithm
alpar@119
   462
  ///  }
alpar@119
   463
  ///\endcode
alpar@119
   464
  ///
alpar@119
   465
  ///\sa Timer
alpar@119
   466
  ///\sa NoTimeReport
alpar@209
   467
  class TimeReport : public Timer
alpar@119
   468
  {
alpar@119
   469
    std::string _title;
alpar@119
   470
    std::ostream &_os;
alpar@119
   471
  public:
kpeter@313
   472
    ///Constructor
alpar@119
   473
kpeter@313
   474
    ///Constructor.
alpar@119
   475
    ///\param title This text will be printed before the ellapsed time.
alpar@119
   476
    ///\param os The stream to print the report to.
alpar@119
   477
    ///\param run Sets whether the timer should start immediately.
alpar@209
   478
    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
alpar@119
   479
      : Timer(run), _title(title), _os(os){}
kpeter@313
   480
    ///Destructor that prints the ellapsed time
alpar@209
   481
    ~TimeReport()
alpar@119
   482
    {
alpar@119
   483
      _os << _title << *this << std::endl;
alpar@119
   484
    }
alpar@119
   485
  };
alpar@209
   486
kpeter@313
   487
  ///'Do nothing' version of TimeReport
alpar@119
   488
alpar@119
   489
  ///\sa TimeReport
alpar@119
   490
  ///
alpar@119
   491
  class NoTimeReport
alpar@119
   492
  {
alpar@119
   493
  public:
alpar@119
   494
    ///\e
alpar@119
   495
    NoTimeReport(std::string,std::ostream &,bool) {}
alpar@119
   496
    ///\e
alpar@119
   497
    NoTimeReport(std::string,std::ostream &) {}
alpar@119
   498
    ///\e
alpar@119
   499
    NoTimeReport(std::string) {}
alpar@119
   500
    ///\e Do nothing.
alpar@119
   501
    ~NoTimeReport() {}
alpar@119
   502
alpar@119
   503
    operator TimeStamp () const { return TimeStamp(); }
alpar@119
   504
    void reset() {}
alpar@119
   505
    void start() {}
alpar@119
   506
    void stop() {}
alpar@209
   507
    void halt() {}
alpar@119
   508
    int running() { return 0; }
alpar@119
   509
    void restart() {}
alpar@119
   510
    double userTime() const { return 0; }
alpar@119
   511
    double systemTime() const { return 0; }
alpar@119
   512
    double cUserTime() const { return 0; }
alpar@119
   513
    double cSystemTime() const { return 0; }
alpar@119
   514
    double realTime() const { return 0; }
alpar@119
   515
  };
alpar@209
   516
alpar@119
   517
  ///Tool to measure the running time more exactly.
alpar@209
   518
alpar@119
   519
  ///This function calls \c f several times and returns the average
alpar@119
   520
  ///running time. The number of the executions will be choosen in such a way
alpar@119
   521
  ///that the full real running time will be roughly between \c min_time
alpar@119
   522
  ///and <tt>2*min_time</tt>.
alpar@119
   523
  ///\param f the function object to be measured.
alpar@119
   524
  ///\param min_time the minimum total running time.
alpar@119
   525
  ///\retval num if it is not \c NULL, then the actual
alpar@119
   526
  ///        number of execution of \c f will be written into <tt>*num</tt>.
alpar@119
   527
  ///\retval full_time if it is not \c NULL, then the actual
alpar@119
   528
  ///        total running time will be written into <tt>*full_time</tt>.
alpar@119
   529
  ///\return The average running time of \c f.
alpar@209
   530
alpar@119
   531
  template<class F>
alpar@119
   532
  TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL,
alpar@119
   533
                            TimeStamp *full_time=NULL)
alpar@119
   534
  {
alpar@119
   535
    TimeStamp full;
alpar@119
   536
    unsigned int total=0;
alpar@119
   537
    Timer t;
alpar@119
   538
    for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
alpar@119
   539
      for(;total<tn;total++) f();
alpar@119
   540
      full=t;
alpar@119
   541
    }
alpar@119
   542
    if(num) *num=total;
alpar@119
   543
    if(full_time) *full_time=full;
alpar@119
   544
    return full/total;
alpar@119
   545
  }
alpar@209
   546
alpar@209
   547
  /// @}
alpar@119
   548
alpar@119
   549
alpar@119
   550
} //namespace lemon
alpar@119
   551
alpar@119
   552
#endif //LEMON_TIME_MEASURE_H