lemon/adaptors.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 15 Mar 2011 19:32:21 +0100
changeset 936 ddd3c0d3d9bf
parent 787 c2230649a493
child 998 7fdaa05a69a1
permissions -rw-r--r--
Implement the scaling Price Refinement heuristic in CostScaling (#417)
instead of Early Termination.

These two heuristics are similar, but the newer one is faster
and not only makes it possible to skip some epsilon phases, but
it can improve the performance of the other phases, as well.
deba@416
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@414
     2
 *
deba@416
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@414
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
deba@414
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@414
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@414
     8
 *
deba@414
     9
 * Permission to use, modify and distribute this software is granted
deba@414
    10
 * provided that this copyright notice appears in all copies. For
deba@414
    11
 * precise terms see the accompanying LICENSE file.
deba@414
    12
 *
deba@414
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@414
    14
 * express or implied, and with no claim as to its suitability for any
deba@414
    15
 * purpose.
deba@414
    16
 *
deba@414
    17
 */
deba@414
    18
deba@416
    19
#ifndef LEMON_ADAPTORS_H
deba@416
    20
#define LEMON_ADAPTORS_H
deba@416
    21
deba@416
    22
/// \ingroup graph_adaptors
deba@416
    23
/// \file
kpeter@451
    24
/// \brief Adaptor classes for digraphs and graphs
deba@414
    25
///
deba@416
    26
/// This file contains several useful adaptors for digraphs and graphs.
deba@414
    27
deba@414
    28
#include <lemon/core.h>
deba@414
    29
#include <lemon/maps.h>
deba@414
    30
#include <lemon/bits/variant.h>
deba@414
    31
deba@414
    32
#include <lemon/bits/graph_adaptor_extender.h>
deba@519
    33
#include <lemon/bits/map_extender.h>
deba@414
    34
#include <lemon/tolerance.h>
deba@414
    35
deba@414
    36
#include <algorithm>
deba@414
    37
deba@414
    38
namespace lemon {
deba@414
    39
deba@488
    40
#ifdef _MSC_VER
deba@488
    41
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
deba@488
    42
#else
deba@488
    43
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
deba@488
    44
#endif
deba@488
    45
deba@488
    46
  template<typename DGR>
deba@414
    47
  class DigraphAdaptorBase {
deba@414
    48
  public:
deba@488
    49
    typedef DGR Digraph;
deba@414
    50
    typedef DigraphAdaptorBase Adaptor;
deba@414
    51
deba@414
    52
  protected:
deba@488
    53
    DGR* _digraph;
deba@414
    54
    DigraphAdaptorBase() : _digraph(0) { }
deba@488
    55
    void initialize(DGR& digraph) { _digraph = &digraph; }
deba@414
    56
deba@414
    57
  public:
deba@488
    58
    DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
deba@488
    59
deba@488
    60
    typedef typename DGR::Node Node;
deba@488
    61
    typedef typename DGR::Arc Arc;
deba@416
    62
deba@414
    63
    void first(Node& i) const { _digraph->first(i); }
deba@414
    64
    void first(Arc& i) const { _digraph->first(i); }
deba@414
    65
    void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
deba@414
    66
    void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
deba@414
    67
deba@414
    68
    void next(Node& i) const { _digraph->next(i); }
deba@414
    69
    void next(Arc& i) const { _digraph->next(i); }
deba@414
    70
    void nextIn(Arc& i) const { _digraph->nextIn(i); }
deba@414
    71
    void nextOut(Arc& i) const { _digraph->nextOut(i); }
deba@414
    72
deba@414
    73
    Node source(const Arc& a) const { return _digraph->source(a); }
deba@414
    74
    Node target(const Arc& a) const { return _digraph->target(a); }
deba@414
    75
deba@488
    76
    typedef NodeNumTagIndicator<DGR> NodeNumTag;
deba@414
    77
    int nodeNum() const { return _digraph->nodeNum(); }
deba@416
    78
deba@488
    79
    typedef ArcNumTagIndicator<DGR> ArcNumTag;
deba@414
    80
    int arcNum() const { return _digraph->arcNum(); }
deba@414
    81
deba@488
    82
    typedef FindArcTagIndicator<DGR> FindArcTag;
kpeter@448
    83
    Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
deba@414
    84
      return _digraph->findArc(u, v, prev);
deba@414
    85
    }
deba@416
    86
deba@414
    87
    Node addNode() { return _digraph->addNode(); }
deba@414
    88
    Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
deba@414
    89
kpeter@448
    90
    void erase(const Node& n) { _digraph->erase(n); }
kpeter@448
    91
    void erase(const Arc& a) { _digraph->erase(a); }
kpeter@448
    92
kpeter@448
    93
    void clear() { _digraph->clear(); }
deba@416
    94
deba@414
    95
    int id(const Node& n) const { return _digraph->id(n); }
deba@414
    96
    int id(const Arc& a) const { return _digraph->id(a); }
deba@414
    97
deba@414
    98
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
deba@414
    99
    Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
deba@414
   100
deba@414
   101
    int maxNodeId() const { return _digraph->maxNodeId(); }
deba@414
   102
    int maxArcId() const { return _digraph->maxArcId(); }
deba@414
   103
deba@488
   104
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
deba@416
   105
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
deba@414
   106
deba@488
   107
    typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
deba@416
   108
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
deba@416
   109
deba@488
   110
    template <typename V>
deba@488
   111
    class NodeMap : public DGR::template NodeMap<V> {
kpeter@617
   112
      typedef typename DGR::template NodeMap<V> Parent;
kpeter@617
   113
deba@414
   114
    public:
deba@416
   115
      explicit NodeMap(const Adaptor& adaptor)
deba@416
   116
        : Parent(*adaptor._digraph) {}
deba@488
   117
      NodeMap(const Adaptor& adaptor, const V& value)
deba@416
   118
        : Parent(*adaptor._digraph, value) { }
deba@414
   119
deba@414
   120
    private:
deba@414
   121
      NodeMap& operator=(const NodeMap& cmap) {
deba@414
   122
        return operator=<NodeMap>(cmap);
deba@414
   123
      }
deba@414
   124
deba@414
   125
      template <typename CMap>
deba@414
   126
      NodeMap& operator=(const CMap& cmap) {
deba@414
   127
        Parent::operator=(cmap);
deba@414
   128
        return *this;
deba@414
   129
      }
deba@416
   130
deba@414
   131
    };
deba@414
   132
deba@488
   133
    template <typename V>
deba@488
   134
    class ArcMap : public DGR::template ArcMap<V> {
kpeter@617
   135
      typedef typename DGR::template ArcMap<V> Parent;
kpeter@617
   136
deba@414
   137
    public:
deba@488
   138
      explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
deba@416
   139
        : Parent(*adaptor._digraph) {}
deba@488
   140
      ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
deba@416
   141
        : Parent(*adaptor._digraph, value) {}
deba@414
   142
deba@414
   143
    private:
deba@414
   144
      ArcMap& operator=(const ArcMap& cmap) {
deba@414
   145
        return operator=<ArcMap>(cmap);
deba@414
   146
      }
deba@414
   147
deba@414
   148
      template <typename CMap>
deba@414
   149
      ArcMap& operator=(const CMap& cmap) {
deba@414
   150
        Parent::operator=(cmap);
deba@414
   151
        return *this;
deba@414
   152
      }
deba@414
   153
deba@414
   154
    };
deba@414
   155
deba@414
   156
  };
deba@414
   157
deba@488
   158
  template<typename GR>
deba@416
   159
  class GraphAdaptorBase {
deba@416
   160
  public:
deba@488
   161
    typedef GR Graph;
deba@416
   162
deba@416
   163
  protected:
deba@488
   164
    GR* _graph;
deba@416
   165
deba@416
   166
    GraphAdaptorBase() : _graph(0) {}
deba@416
   167
deba@488
   168
    void initialize(GR& graph) { _graph = &graph; }
deba@416
   169
deba@416
   170
  public:
deba@488
   171
    GraphAdaptorBase(GR& graph) : _graph(&graph) {}
deba@488
   172
deba@488
   173
    typedef typename GR::Node Node;
deba@488
   174
    typedef typename GR::Arc Arc;
deba@488
   175
    typedef typename GR::Edge Edge;
deba@416
   176
deba@416
   177
    void first(Node& i) const { _graph->first(i); }
deba@416
   178
    void first(Arc& i) const { _graph->first(i); }
deba@416
   179
    void first(Edge& i) const { _graph->first(i); }
deba@416
   180
    void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
deba@416
   181
    void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
deba@416
   182
    void firstInc(Edge &i, bool &d, const Node &n) const {
deba@416
   183
      _graph->firstInc(i, d, n);
deba@416
   184
    }
deba@416
   185
deba@416
   186
    void next(Node& i) const { _graph->next(i); }
deba@416
   187
    void next(Arc& i) const { _graph->next(i); }
deba@416
   188
    void next(Edge& i) const { _graph->next(i); }
deba@416
   189
    void nextIn(Arc& i) const { _graph->nextIn(i); }
deba@416
   190
    void nextOut(Arc& i) const { _graph->nextOut(i); }
deba@416
   191
    void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
deba@416
   192
deba@416
   193
    Node u(const Edge& e) const { return _graph->u(e); }
deba@416
   194
    Node v(const Edge& e) const { return _graph->v(e); }
deba@416
   195
deba@416
   196
    Node source(const Arc& a) const { return _graph->source(a); }
deba@416
   197
    Node target(const Arc& a) const { return _graph->target(a); }
deba@416
   198
deba@416
   199
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
deba@416
   200
    int nodeNum() const { return _graph->nodeNum(); }
deba@416
   201
kpeter@446
   202
    typedef ArcNumTagIndicator<Graph> ArcNumTag;
kpeter@446
   203
    int arcNum() const { return _graph->arcNum(); }
kpeter@446
   204
deba@416
   205
    typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
deba@416
   206
    int edgeNum() const { return _graph->edgeNum(); }
deba@416
   207
kpeter@446
   208
    typedef FindArcTagIndicator<Graph> FindArcTag;
kpeter@448
   209
    Arc findArc(const Node& u, const Node& v,
kpeter@448
   210
                const Arc& prev = INVALID) const {
deba@416
   211
      return _graph->findArc(u, v, prev);
deba@416
   212
    }
kpeter@446
   213
kpeter@446
   214
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
kpeter@448
   215
    Edge findEdge(const Node& u, const Node& v,
kpeter@448
   216
                  const Edge& prev = INVALID) const {
deba@416
   217
      return _graph->findEdge(u, v, prev);
deba@416
   218
    }
deba@416
   219
deba@416
   220
    Node addNode() { return _graph->addNode(); }
deba@416
   221
    Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
deba@416
   222
deba@416
   223
    void erase(const Node& i) { _graph->erase(i); }
deba@416
   224
    void erase(const Edge& i) { _graph->erase(i); }
deba@416
   225
deba@416
   226
    void clear() { _graph->clear(); }
deba@416
   227
deba@416
   228
    bool direction(const Arc& a) const { return _graph->direction(a); }
deba@416
   229
    Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
deba@416
   230
deba@416
   231
    int id(const Node& v) const { return _graph->id(v); }
deba@416
   232
    int id(const Arc& a) const { return _graph->id(a); }
deba@416
   233
    int id(const Edge& e) const { return _graph->id(e); }
deba@416
   234
deba@416
   235
    Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
deba@416
   236
    Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
deba@416
   237
    Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
deba@416
   238
deba@416
   239
    int maxNodeId() const { return _graph->maxNodeId(); }
deba@416
   240
    int maxArcId() const { return _graph->maxArcId(); }
deba@416
   241
    int maxEdgeId() const { return _graph->maxEdgeId(); }
deba@416
   242
deba@488
   243
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
deba@416
   244
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
deba@416
   245
deba@488
   246
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
deba@416
   247
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
deba@416
   248
deba@488
   249
    typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
deba@416
   250
    EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
deba@416
   251
deba@488
   252
    template <typename V>
deba@488
   253
    class NodeMap : public GR::template NodeMap<V> {
kpeter@617
   254
      typedef typename GR::template NodeMap<V> Parent;
kpeter@617
   255
deba@416
   256
    public:
deba@488
   257
      explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
deba@416
   258
        : Parent(*adapter._graph) {}
deba@488
   259
      NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
deba@416
   260
        : Parent(*adapter._graph, value) {}
deba@416
   261
deba@416
   262
    private:
deba@416
   263
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
   264
        return operator=<NodeMap>(cmap);
deba@416
   265
      }
deba@416
   266
deba@416
   267
      template <typename CMap>
deba@416
   268
      NodeMap& operator=(const CMap& cmap) {
deba@416
   269
        Parent::operator=(cmap);
deba@416
   270
        return *this;
deba@416
   271
      }
deba@416
   272
deba@416
   273
    };
deba@416
   274
deba@488
   275
    template <typename V>
deba@488
   276
    class ArcMap : public GR::template ArcMap<V> {
kpeter@617
   277
      typedef typename GR::template ArcMap<V> Parent;
kpeter@617
   278
deba@416
   279
    public:
deba@488
   280
      explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
deba@416
   281
        : Parent(*adapter._graph) {}
deba@488
   282
      ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
deba@416
   283
        : Parent(*adapter._graph, value) {}
deba@416
   284
deba@416
   285
    private:
deba@416
   286
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
   287
        return operator=<ArcMap>(cmap);
deba@416
   288
      }
deba@416
   289
deba@416
   290
      template <typename CMap>
deba@416
   291
      ArcMap& operator=(const CMap& cmap) {
deba@416
   292
        Parent::operator=(cmap);
deba@416
   293
        return *this;
deba@416
   294
      }
deba@416
   295
    };
deba@416
   296
deba@488
   297
    template <typename V>
deba@488
   298
    class EdgeMap : public GR::template EdgeMap<V> {
kpeter@617
   299
      typedef typename GR::template EdgeMap<V> Parent;
kpeter@617
   300
deba@416
   301
    public:
deba@488
   302
      explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
deba@416
   303
        : Parent(*adapter._graph) {}
deba@488
   304
      EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
deba@416
   305
        : Parent(*adapter._graph, value) {}
deba@416
   306
deba@416
   307
    private:
deba@416
   308
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@416
   309
        return operator=<EdgeMap>(cmap);
deba@416
   310
      }
deba@416
   311
deba@416
   312
      template <typename CMap>
deba@416
   313
      EdgeMap& operator=(const CMap& cmap) {
deba@416
   314
        Parent::operator=(cmap);
deba@416
   315
        return *this;
deba@416
   316
      }
deba@416
   317
    };
deba@416
   318
deba@416
   319
  };
deba@414
   320
deba@488
   321
  template <typename DGR>
deba@488
   322
  class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
kpeter@617
   323
    typedef DigraphAdaptorBase<DGR> Parent;
deba@414
   324
  public:
deba@488
   325
    typedef DGR Digraph;
deba@414
   326
  protected:
deba@416
   327
    ReverseDigraphBase() : Parent() { }
deba@414
   328
  public:
deba@414
   329
    typedef typename Parent::Node Node;
deba@414
   330
    typedef typename Parent::Arc Arc;
deba@414
   331
deba@414
   332
    void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
deba@414
   333
    void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
deba@414
   334
deba@414
   335
    void nextIn(Arc& a) const { Parent::nextOut(a); }
deba@414
   336
    void nextOut(Arc& a) const { Parent::nextIn(a); }
deba@414
   337
deba@414
   338
    Node source(const Arc& a) const { return Parent::target(a); }
deba@414
   339
    Node target(const Arc& a) const { return Parent::source(a); }
deba@414
   340
deba@416
   341
    Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
deba@416
   342
deba@488
   343
    typedef FindArcTagIndicator<DGR> FindArcTag;
deba@416
   344
    Arc findArc(const Node& u, const Node& v,
kpeter@448
   345
                const Arc& prev = INVALID) const {
deba@414
   346
      return Parent::findArc(v, u, prev);
deba@414
   347
    }
deba@414
   348
deba@414
   349
  };
deba@416
   350
deba@416
   351
  /// \ingroup graph_adaptors
deba@414
   352
  ///
kpeter@451
   353
  /// \brief Adaptor class for reversing the orientation of the arcs in
kpeter@451
   354
  /// a digraph.
deba@414
   355
  ///
kpeter@451
   356
  /// ReverseDigraph can be used for reversing the arcs in a digraph.
kpeter@451
   357
  /// It conforms to the \ref concepts::Digraph "Digraph" concept.
deba@414
   358
  ///
kpeter@451
   359
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
   360
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
   361
  /// parameter is set to be \c const.
kpeter@451
   362
  ///
kpeter@787
   363
  /// This class provides item counting in the same time as the adapted
kpeter@787
   364
  /// digraph structure.
kpeter@787
   365
  ///
deba@488
   366
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
   367
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
   368
  /// It can also be specified to be \c const.
kpeter@451
   369
  ///
kpeter@451
   370
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
kpeter@451
   371
  /// digraph are convertible to each other.
deba@488
   372
  template<typename DGR>
kpeter@453
   373
#ifdef DOXYGEN
kpeter@453
   374
  class ReverseDigraph {
kpeter@453
   375
#else
deba@416
   376
  class ReverseDigraph :
deba@488
   377
    public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
kpeter@453
   378
#endif
kpeter@617
   379
    typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
deba@414
   380
  public:
kpeter@453
   381
    /// The type of the adapted digraph.
deba@488
   382
    typedef DGR Digraph;
deba@414
   383
  protected:
deba@416
   384
    ReverseDigraph() { }
deba@414
   385
  public:
deba@415
   386
deba@415
   387
    /// \brief Constructor
deba@415
   388
    ///
kpeter@451
   389
    /// Creates a reverse digraph adaptor for the given digraph.
deba@488
   390
    explicit ReverseDigraph(DGR& digraph) {
deba@488
   391
      Parent::initialize(digraph);
deba@414
   392
    }
deba@414
   393
  };
deba@414
   394
kpeter@451
   395
  /// \brief Returns a read-only ReverseDigraph adaptor
deba@414
   396
  ///
kpeter@451
   397
  /// This function just returns a read-only \ref ReverseDigraph adaptor.
kpeter@451
   398
  /// \ingroup graph_adaptors
kpeter@451
   399
  /// \relates ReverseDigraph
deba@488
   400
  template<typename DGR>
deba@488
   401
  ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
deba@488
   402
    return ReverseDigraph<const DGR>(digraph);
deba@414
   403
  }
deba@414
   404
kpeter@451
   405
deba@488
   406
  template <typename DGR, typename NF, typename AF, bool ch = true>
deba@488
   407
  class SubDigraphBase : public DigraphAdaptorBase<DGR> {
kpeter@617
   408
    typedef DigraphAdaptorBase<DGR> Parent;
deba@414
   409
  public:
deba@488
   410
    typedef DGR Digraph;
deba@488
   411
    typedef NF NodeFilterMap;
deba@488
   412
    typedef AF ArcFilterMap;
deba@414
   413
deba@416
   414
    typedef SubDigraphBase Adaptor;
deba@414
   415
  protected:
deba@488
   416
    NF* _node_filter;
deba@488
   417
    AF* _arc_filter;
deba@416
   418
    SubDigraphBase()
deba@414
   419
      : Parent(), _node_filter(0), _arc_filter(0) { }
deba@414
   420
deba@488
   421
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
deba@488
   422
      Parent::initialize(digraph);
deba@414
   423
      _node_filter = &node_filter;
alpar@877
   424
      _arc_filter = &arc_filter;
deba@414
   425
    }
deba@414
   426
deba@414
   427
  public:
deba@414
   428
deba@414
   429
    typedef typename Parent::Node Node;
deba@414
   430
    typedef typename Parent::Arc Arc;
deba@414
   431
deba@416
   432
    void first(Node& i) const {
deba@416
   433
      Parent::first(i);
deba@416
   434
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   435
    }
deba@414
   436
deba@416
   437
    void first(Arc& i) const {
deba@416
   438
      Parent::first(i);
deba@416
   439
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   440
                              || !(*_node_filter)[Parent::source(i)]
deba@416
   441
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   442
        Parent::next(i);
deba@414
   443
    }
deba@414
   444
deba@416
   445
    void firstIn(Arc& i, const Node& n) const {
deba@416
   446
      Parent::firstIn(i, n);
deba@416
   447
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   448
                              || !(*_node_filter)[Parent::source(i)]))
deba@416
   449
        Parent::nextIn(i);
deba@414
   450
    }
deba@414
   451
deba@416
   452
    void firstOut(Arc& i, const Node& n) const {
deba@416
   453
      Parent::firstOut(i, n);
deba@416
   454
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   455
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   456
        Parent::nextOut(i);
deba@414
   457
    }
deba@414
   458
deba@416
   459
    void next(Node& i) const {
deba@416
   460
      Parent::next(i);
deba@416
   461
      while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   462
    }
deba@414
   463
deba@416
   464
    void next(Arc& i) const {
deba@416
   465
      Parent::next(i);
deba@416
   466
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   467
                              || !(*_node_filter)[Parent::source(i)]
deba@416
   468
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   469
        Parent::next(i);
deba@414
   470
    }
deba@414
   471
deba@416
   472
    void nextIn(Arc& i) const {
deba@416
   473
      Parent::nextIn(i);
deba@416
   474
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   475
                              || !(*_node_filter)[Parent::source(i)]))
deba@416
   476
        Parent::nextIn(i);
deba@414
   477
    }
deba@414
   478
deba@416
   479
    void nextOut(Arc& i) const {
deba@416
   480
      Parent::nextOut(i);
deba@416
   481
      while (i != INVALID && (!(*_arc_filter)[i]
deba@416
   482
                              || !(*_node_filter)[Parent::target(i)]))
deba@416
   483
        Parent::nextOut(i);
deba@414
   484
    }
deba@414
   485
kpeter@452
   486
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
kpeter@452
   487
    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
kpeter@452
   488
kpeter@452
   489
    bool status(const Node& n) const { return (*_node_filter)[n]; }
kpeter@452
   490
    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
deba@414
   491
deba@414
   492
    typedef False NodeNumTag;
kpeter@446
   493
    typedef False ArcNumTag;
kpeter@446
   494
deba@488
   495
    typedef FindArcTagIndicator<DGR> FindArcTag;
deba@416
   496
    Arc findArc(const Node& source, const Node& target,
kpeter@448
   497
                const Arc& prev = INVALID) const {
deba@414
   498
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
deba@414
   499
        return INVALID;
deba@414
   500
      }
deba@414
   501
      Arc arc = Parent::findArc(source, target, prev);
deba@414
   502
      while (arc != INVALID && !(*_arc_filter)[arc]) {
deba@414
   503
        arc = Parent::findArc(source, target, arc);
deba@414
   504
      }
deba@414
   505
      return arc;
deba@414
   506
    }
deba@414
   507
deba@488
   508
  public:
deba@488
   509
deba@488
   510
    template <typename V>
alpar@877
   511
    class NodeMap
alpar@877
   512
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
alpar@877
   513
              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
kpeter@617
   514
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
alpar@877
   515
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
kpeter@617
   516
deba@414
   517
    public:
deba@488
   518
      typedef V Value;
deba@488
   519
deba@488
   520
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
deba@488
   521
        : Parent(adaptor) {}
deba@488
   522
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
deba@488
   523
        : Parent(adaptor, value) {}
deba@416
   524
deba@414
   525
    private:
deba@414
   526
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
   527
        return operator=<NodeMap>(cmap);
deba@414
   528
      }
deba@416
   529
deba@414
   530
      template <typename CMap>
deba@414
   531
      NodeMap& operator=(const CMap& cmap) {
deba@488
   532
        Parent::operator=(cmap);
deba@416
   533
        return *this;
deba@414
   534
      }
deba@414
   535
    };
deba@414
   536
deba@488
   537
    template <typename V>
alpar@877
   538
    class ArcMap
deba@488
   539
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
alpar@877
   540
              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
kpeter@617
   541
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
kpeter@617
   542
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
kpeter@617
   543
deba@414
   544
    public:
deba@488
   545
      typedef V Value;
deba@488
   546
deba@488
   547
      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
deba@488
   548
        : Parent(adaptor) {}
deba@488
   549
      ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
deba@488
   550
        : Parent(adaptor, value) {}
deba@416
   551
deba@414
   552
    private:
deba@414
   553
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
   554
        return operator=<ArcMap>(cmap);
deba@414
   555
      }
deba@416
   556
deba@414
   557
      template <typename CMap>
deba@414
   558
      ArcMap& operator=(const CMap& cmap) {
deba@488
   559
        Parent::operator=(cmap);
deba@416
   560
        return *this;
deba@414
   561
      }
deba@414
   562
    };
deba@414
   563
deba@414
   564
  };
deba@414
   565
deba@488
   566
  template <typename DGR, typename NF, typename AF>
deba@488
   567
  class SubDigraphBase<DGR, NF, AF, false>
deba@488
   568
    : public DigraphAdaptorBase<DGR> {
kpeter@617
   569
    typedef DigraphAdaptorBase<DGR> Parent;
deba@414
   570
  public:
deba@488
   571
    typedef DGR Digraph;
deba@488
   572
    typedef NF NodeFilterMap;
deba@488
   573
    typedef AF ArcFilterMap;
deba@414
   574
deba@416
   575
    typedef SubDigraphBase Adaptor;
deba@414
   576
  protected:
deba@488
   577
    NF* _node_filter;
deba@488
   578
    AF* _arc_filter;
deba@416
   579
    SubDigraphBase()
deba@414
   580
      : Parent(), _node_filter(0), _arc_filter(0) { }
deba@414
   581
deba@488
   582
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
deba@488
   583
      Parent::initialize(digraph);
deba@414
   584
      _node_filter = &node_filter;
alpar@877
   585
      _arc_filter = &arc_filter;
deba@414
   586
    }
deba@414
   587
deba@414
   588
  public:
deba@414
   589
deba@414
   590
    typedef typename Parent::Node Node;
deba@414
   591
    typedef typename Parent::Arc Arc;
deba@414
   592
deba@416
   593
    void first(Node& i) const {
deba@416
   594
      Parent::first(i);
deba@416
   595
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   596
    }
deba@414
   597
deba@416
   598
    void first(Arc& i) const {
deba@416
   599
      Parent::first(i);
deba@416
   600
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
deba@414
   601
    }
deba@414
   602
deba@416
   603
    void firstIn(Arc& i, const Node& n) const {
deba@416
   604
      Parent::firstIn(i, n);
deba@416
   605
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
deba@414
   606
    }
deba@414
   607
deba@416
   608
    void firstOut(Arc& i, const Node& n) const {
deba@416
   609
      Parent::firstOut(i, n);
deba@416
   610
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
deba@414
   611
    }
deba@414
   612
deba@416
   613
    void next(Node& i) const {
deba@416
   614
      Parent::next(i);
deba@416
   615
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@414
   616
    }
deba@416
   617
    void next(Arc& i) const {
deba@416
   618
      Parent::next(i);
deba@416
   619
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
deba@414
   620
    }
deba@416
   621
    void nextIn(Arc& i) const {
deba@416
   622
      Parent::nextIn(i);
deba@416
   623
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
deba@414
   624
    }
deba@414
   625
deba@416
   626
    void nextOut(Arc& i) const {
deba@416
   627
      Parent::nextOut(i);
deba@416
   628
      while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
deba@414
   629
    }
deba@414
   630
kpeter@452
   631
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
kpeter@452
   632
    void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
kpeter@452
   633
kpeter@452
   634
    bool status(const Node& n) const { return (*_node_filter)[n]; }
kpeter@452
   635
    bool status(const Arc& a) const { return (*_arc_filter)[a]; }
deba@414
   636
deba@414
   637
    typedef False NodeNumTag;
kpeter@446
   638
    typedef False ArcNumTag;
kpeter@446
   639
deba@488
   640
    typedef FindArcTagIndicator<DGR> FindArcTag;
deba@416
   641
    Arc findArc(const Node& source, const Node& target,
kpeter@448
   642
                const Arc& prev = INVALID) const {
deba@414
   643
      if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
deba@414
   644
        return INVALID;
deba@414
   645
      }
deba@414
   646
      Arc arc = Parent::findArc(source, target, prev);
deba@414
   647
      while (arc != INVALID && !(*_arc_filter)[arc]) {
deba@414
   648
        arc = Parent::findArc(source, target, arc);
deba@414
   649
      }
deba@414
   650
      return arc;
deba@414
   651
    }
deba@414
   652
deba@488
   653
    template <typename V>
alpar@877
   654
    class NodeMap
deba@488
   655
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
deba@488
   656
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
alpar@877
   657
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
kpeter@617
   658
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
kpeter@617
   659
deba@414
   660
    public:
deba@488
   661
      typedef V Value;
deba@488
   662
deba@488
   663
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
deba@488
   664
        : Parent(adaptor) {}
deba@488
   665
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
deba@488
   666
        : Parent(adaptor, value) {}
deba@416
   667
deba@414
   668
    private:
deba@414
   669
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
   670
        return operator=<NodeMap>(cmap);
deba@414
   671
      }
deba@416
   672
deba@414
   673
      template <typename CMap>
deba@414
   674
      NodeMap& operator=(const CMap& cmap) {
deba@488
   675
        Parent::operator=(cmap);
deba@416
   676
        return *this;
deba@414
   677
      }
deba@414
   678
    };
deba@414
   679
deba@488
   680
    template <typename V>
alpar@877
   681
    class ArcMap
deba@488
   682
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
deba@488
   683
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
kpeter@617
   684
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
kpeter@617
   685
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
kpeter@617
   686
deba@414
   687
    public:
deba@488
   688
      typedef V Value;
deba@488
   689
deba@488
   690
      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
deba@488
   691
        : Parent(adaptor) {}
deba@488
   692
      ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
deba@488
   693
        : Parent(adaptor, value) {}
deba@416
   694
deba@414
   695
    private:
deba@414
   696
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
   697
        return operator=<ArcMap>(cmap);
deba@414
   698
      }
deba@416
   699
deba@414
   700
      template <typename CMap>
deba@414
   701
      ArcMap& operator=(const CMap& cmap) {
deba@488
   702
        Parent::operator=(cmap);
deba@416
   703
        return *this;
deba@414
   704
      }
deba@414
   705
    };
deba@414
   706
deba@414
   707
  };
deba@414
   708
deba@414
   709
  /// \ingroup graph_adaptors
deba@414
   710
  ///
kpeter@451
   711
  /// \brief Adaptor class for hiding nodes and arcs in a digraph
deba@416
   712
  ///
kpeter@451
   713
  /// SubDigraph can be used for hiding nodes and arcs in a digraph.
kpeter@451
   714
  /// A \c bool node map and a \c bool arc map must be specified, which
kpeter@451
   715
  /// define the filters for nodes and arcs.
kpeter@451
   716
  /// Only the nodes and arcs with \c true filter value are
kpeter@453
   717
  /// shown in the subdigraph. The arcs that are incident to hidden
kpeter@453
   718
  /// nodes are also filtered out.
kpeter@453
   719
  /// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
deba@416
   720
  ///
kpeter@451
   721
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
   722
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
   723
  /// parameter is set to be \c const.
kpeter@451
   724
  ///
kpeter@787
   725
  /// This class provides only linear time counting for nodes and arcs.
kpeter@787
   726
  ///
deba@488
   727
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
   728
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
   729
  /// It can also be specified to be \c const.
kpeter@453
   730
  /// \tparam NF The type of the node filter map.
kpeter@453
   731
  /// It must be a \c bool (or convertible) node map of the
kpeter@453
   732
  /// adapted digraph. The default type is
deba@488
   733
  /// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
kpeter@453
   734
  /// \tparam AF The type of the arc filter map.
kpeter@453
   735
  /// It must be \c bool (or convertible) arc map of the
kpeter@453
   736
  /// adapted digraph. The default type is
deba@488
   737
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
kpeter@451
   738
  ///
kpeter@451
   739
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
kpeter@451
   740
  /// digraph are convertible to each other.
deba@416
   741
  ///
deba@416
   742
  /// \see FilterNodes
deba@416
   743
  /// \see FilterArcs
kpeter@451
   744
#ifdef DOXYGEN
deba@488
   745
  template<typename DGR, typename NF, typename AF>
kpeter@453
   746
  class SubDigraph {
kpeter@451
   747
#else
deba@488
   748
  template<typename DGR,
deba@488
   749
           typename NF = typename DGR::template NodeMap<bool>,
deba@488
   750
           typename AF = typename DGR::template ArcMap<bool> >
kpeter@453
   751
  class SubDigraph :
deba@488
   752
    public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
kpeter@451
   753
#endif
deba@414
   754
  public:
kpeter@451
   755
    /// The type of the adapted digraph.
deba@488
   756
    typedef DGR Digraph;
kpeter@451
   757
    /// The type of the node filter map.
kpeter@453
   758
    typedef NF NodeFilterMap;
kpeter@451
   759
    /// The type of the arc filter map.
kpeter@453
   760
    typedef AF ArcFilterMap;
kpeter@453
   761
deba@488
   762
    typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
kpeter@453
   763
      Parent;
deba@414
   764
deba@415
   765
    typedef typename Parent::Node Node;
deba@415
   766
    typedef typename Parent::Arc Arc;
deba@415
   767
deba@414
   768
  protected:
deba@416
   769
    SubDigraph() { }
deba@414
   770
  public:
deba@414
   771
deba@415
   772
    /// \brief Constructor
deba@415
   773
    ///
kpeter@451
   774
    /// Creates a subdigraph for the given digraph with the
kpeter@451
   775
    /// given node and arc filter maps.
deba@488
   776
    SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
deba@488
   777
      Parent::initialize(digraph, node_filter, arc_filter);
deba@414
   778
    }
deba@414
   779
kpeter@452
   780
    /// \brief Sets the status of the given node
deba@415
   781
    ///
kpeter@452
   782
    /// This function sets the status of the given node.
kpeter@451
   783
    /// It is done by simply setting the assigned value of \c n
kpeter@452
   784
    /// to \c v in the node filter map.
kpeter@452
   785
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
   786
kpeter@452
   787
    /// \brief Sets the status of the given arc
deba@415
   788
    ///
kpeter@452
   789
    /// This function sets the status of the given arc.
kpeter@451
   790
    /// It is done by simply setting the assigned value of \c a
kpeter@452
   791
    /// to \c v in the arc filter map.
kpeter@452
   792
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
kpeter@452
   793
kpeter@452
   794
    /// \brief Returns the status of the given node
deba@415
   795
    ///
kpeter@452
   796
    /// This function returns the status of the given node.
kpeter@452
   797
    /// It is \c true if the given node is enabled (i.e. not hidden).
kpeter@452
   798
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
   799
kpeter@452
   800
    /// \brief Returns the status of the given arc
deba@415
   801
    ///
kpeter@452
   802
    /// This function returns the status of the given arc.
kpeter@452
   803
    /// It is \c true if the given arc is enabled (i.e. not hidden).
kpeter@452
   804
    bool status(const Arc& a) const { return Parent::status(a); }
kpeter@452
   805
kpeter@452
   806
    /// \brief Disables the given node
deba@415
   807
    ///
kpeter@452
   808
    /// This function disables the given node in the subdigraph,
kpeter@452
   809
    /// so the iteration jumps over it.
kpeter@452
   810
    /// It is the same as \ref status() "status(n, false)".
kpeter@452
   811
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
   812
kpeter@452
   813
    /// \brief Disables the given arc
deba@415
   814
    ///
kpeter@452
   815
    /// This function disables the given arc in the subdigraph,
kpeter@452
   816
    /// so the iteration jumps over it.
kpeter@452
   817
    /// It is the same as \ref status() "status(a, false)".
kpeter@452
   818
    void disable(const Arc& a) const { Parent::status(a, false); }
kpeter@452
   819
kpeter@452
   820
    /// \brief Enables the given node
kpeter@452
   821
    ///
kpeter@452
   822
    /// This function enables the given node in the subdigraph.
kpeter@452
   823
    /// It is the same as \ref status() "status(n, true)".
kpeter@452
   824
    void enable(const Node& n) const { Parent::status(n, true); }
kpeter@452
   825
kpeter@452
   826
    /// \brief Enables the given arc
kpeter@452
   827
    ///
kpeter@452
   828
    /// This function enables the given arc in the subdigraph.
kpeter@452
   829
    /// It is the same as \ref status() "status(a, true)".
kpeter@452
   830
    void enable(const Arc& a) const { Parent::status(a, true); }
deba@415
   831
deba@414
   832
  };
deba@414
   833
kpeter@451
   834
  /// \brief Returns a read-only SubDigraph adaptor
deba@414
   835
  ///
kpeter@451
   836
  /// This function just returns a read-only \ref SubDigraph adaptor.
kpeter@451
   837
  /// \ingroup graph_adaptors
kpeter@451
   838
  /// \relates SubDigraph
deba@488
   839
  template<typename DGR, typename NF, typename AF>
deba@488
   840
  SubDigraph<const DGR, NF, AF>
deba@488
   841
  subDigraph(const DGR& digraph,
deba@488
   842
             NF& node_filter, AF& arc_filter) {
deba@488
   843
    return SubDigraph<const DGR, NF, AF>
deba@488
   844
      (digraph, node_filter, arc_filter);
deba@414
   845
  }
deba@414
   846
deba@488
   847
  template<typename DGR, typename NF, typename AF>
deba@488
   848
  SubDigraph<const DGR, const NF, AF>
deba@488
   849
  subDigraph(const DGR& digraph,
deba@488
   850
             const NF& node_filter, AF& arc_filter) {
deba@488
   851
    return SubDigraph<const DGR, const NF, AF>
deba@488
   852
      (digraph, node_filter, arc_filter);
deba@414
   853
  }
deba@414
   854
deba@488
   855
  template<typename DGR, typename NF, typename AF>
deba@488
   856
  SubDigraph<const DGR, NF, const AF>
deba@488
   857
  subDigraph(const DGR& digraph,
deba@488
   858
             NF& node_filter, const AF& arc_filter) {
deba@488
   859
    return SubDigraph<const DGR, NF, const AF>
deba@488
   860
      (digraph, node_filter, arc_filter);
deba@414
   861
  }
deba@414
   862
deba@488
   863
  template<typename DGR, typename NF, typename AF>
deba@488
   864
  SubDigraph<const DGR, const NF, const AF>
deba@488
   865
  subDigraph(const DGR& digraph,
deba@488
   866
             const NF& node_filter, const AF& arc_filter) {
deba@488
   867
    return SubDigraph<const DGR, const NF, const AF>
deba@488
   868
      (digraph, node_filter, arc_filter);
deba@414
   869
  }
deba@414
   870
deba@414
   871
deba@488
   872
  template <typename GR, typename NF, typename EF, bool ch = true>
deba@488
   873
  class SubGraphBase : public GraphAdaptorBase<GR> {
kpeter@617
   874
    typedef GraphAdaptorBase<GR> Parent;
deba@416
   875
  public:
deba@488
   876
    typedef GR Graph;
deba@488
   877
    typedef NF NodeFilterMap;
deba@488
   878
    typedef EF EdgeFilterMap;
kpeter@449
   879
deba@416
   880
    typedef SubGraphBase Adaptor;
deba@416
   881
  protected:
deba@416
   882
deba@488
   883
    NF* _node_filter;
deba@488
   884
    EF* _edge_filter;
deba@416
   885
deba@416
   886
    SubGraphBase()
deba@488
   887
      : Parent(), _node_filter(0), _edge_filter(0) { }
deba@488
   888
deba@488
   889
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
deba@488
   890
      Parent::initialize(graph);
deba@488
   891
      _node_filter = &node_filter;
deba@488
   892
      _edge_filter = &edge_filter;
deba@416
   893
    }
deba@416
   894
deba@416
   895
  public:
deba@416
   896
deba@416
   897
    typedef typename Parent::Node Node;
deba@416
   898
    typedef typename Parent::Arc Arc;
deba@416
   899
    typedef typename Parent::Edge Edge;
deba@416
   900
deba@416
   901
    void first(Node& i) const {
deba@416
   902
      Parent::first(i);
deba@488
   903
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
   904
    }
deba@416
   905
deba@416
   906
    void first(Arc& i) const {
deba@416
   907
      Parent::first(i);
deba@488
   908
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   909
                            || !(*_node_filter)[Parent::source(i)]
deba@488
   910
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   911
        Parent::next(i);
deba@416
   912
    }
deba@416
   913
deba@416
   914
    void first(Edge& i) const {
deba@416
   915
      Parent::first(i);
deba@488
   916
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   917
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   918
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   919
        Parent::next(i);
deba@416
   920
    }
deba@416
   921
deba@416
   922
    void firstIn(Arc& i, const Node& n) const {
deba@416
   923
      Parent::firstIn(i, n);
deba@488
   924
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   925
                            || !(*_node_filter)[Parent::source(i)]))
deba@416
   926
        Parent::nextIn(i);
deba@416
   927
    }
deba@416
   928
deba@416
   929
    void firstOut(Arc& i, const Node& n) const {
deba@416
   930
      Parent::firstOut(i, n);
deba@488
   931
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   932
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   933
        Parent::nextOut(i);
deba@416
   934
    }
deba@416
   935
deba@416
   936
    void firstInc(Edge& i, bool& d, const Node& n) const {
deba@416
   937
      Parent::firstInc(i, d, n);
deba@488
   938
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   939
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   940
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   941
        Parent::nextInc(i, d);
deba@416
   942
    }
deba@416
   943
deba@416
   944
    void next(Node& i) const {
deba@416
   945
      Parent::next(i);
deba@488
   946
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
   947
    }
deba@416
   948
deba@416
   949
    void next(Arc& i) const {
deba@416
   950
      Parent::next(i);
deba@488
   951
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   952
                            || !(*_node_filter)[Parent::source(i)]
deba@488
   953
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   954
        Parent::next(i);
deba@416
   955
    }
deba@416
   956
deba@416
   957
    void next(Edge& i) const {
deba@416
   958
      Parent::next(i);
deba@488
   959
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   960
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   961
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   962
        Parent::next(i);
deba@416
   963
    }
deba@416
   964
deba@416
   965
    void nextIn(Arc& i) const {
deba@416
   966
      Parent::nextIn(i);
deba@488
   967
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   968
                            || !(*_node_filter)[Parent::source(i)]))
deba@416
   969
        Parent::nextIn(i);
deba@416
   970
    }
deba@416
   971
deba@416
   972
    void nextOut(Arc& i) const {
deba@416
   973
      Parent::nextOut(i);
deba@488
   974
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   975
                            || !(*_node_filter)[Parent::target(i)]))
deba@416
   976
        Parent::nextOut(i);
deba@416
   977
    }
deba@416
   978
deba@416
   979
    void nextInc(Edge& i, bool& d) const {
deba@416
   980
      Parent::nextInc(i, d);
deba@488
   981
      while (i!=INVALID && (!(*_edge_filter)[i]
deba@488
   982
                            || !(*_node_filter)[Parent::u(i)]
deba@488
   983
                            || !(*_node_filter)[Parent::v(i)]))
deba@416
   984
        Parent::nextInc(i, d);
deba@416
   985
    }
deba@416
   986
deba@488
   987
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
deba@488
   988
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
deba@488
   989
deba@488
   990
    bool status(const Node& n) const { return (*_node_filter)[n]; }
deba@488
   991
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
deba@416
   992
deba@416
   993
    typedef False NodeNumTag;
kpeter@446
   994
    typedef False ArcNumTag;
deba@416
   995
    typedef False EdgeNumTag;
deba@416
   996
kpeter@446
   997
    typedef FindArcTagIndicator<Graph> FindArcTag;
deba@416
   998
    Arc findArc(const Node& u, const Node& v,
kpeter@448
   999
                const Arc& prev = INVALID) const {
deba@488
  1000
      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
deba@416
  1001
        return INVALID;
deba@416
  1002
      }
deba@416
  1003
      Arc arc = Parent::findArc(u, v, prev);
deba@488
  1004
      while (arc != INVALID && !(*_edge_filter)[arc]) {
deba@416
  1005
        arc = Parent::findArc(u, v, arc);
deba@416
  1006
      }
deba@416
  1007
      return arc;
deba@416
  1008
    }
kpeter@446
  1009
kpeter@446
  1010
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@416
  1011
    Edge findEdge(const Node& u, const Node& v,
kpeter@448
  1012
                  const Edge& prev = INVALID) const {
deba@488
  1013
      if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
deba@416
  1014
        return INVALID;
deba@416
  1015
      }
deba@416
  1016
      Edge edge = Parent::findEdge(u, v, prev);
deba@488
  1017
      while (edge != INVALID && !(*_edge_filter)[edge]) {
deba@416
  1018
        edge = Parent::findEdge(u, v, edge);
deba@416
  1019
      }
deba@416
  1020
      return edge;
deba@416
  1021
    }
deba@416
  1022
deba@488
  1023
    template <typename V>
alpar@877
  1024
    class NodeMap
deba@488
  1025
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
deba@488
  1026
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
alpar@877
  1027
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
kpeter@617
  1028
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
kpeter@617
  1029
deba@416
  1030
    public:
deba@488
  1031
      typedef V Value;
deba@488
  1032
deba@488
  1033
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
deba@488
  1034
        : Parent(adaptor) {}
deba@488
  1035
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
deba@488
  1036
        : Parent(adaptor, value) {}
deba@416
  1037
deba@416
  1038
    private:
deba@416
  1039
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  1040
        return operator=<NodeMap>(cmap);
deba@416
  1041
      }
deba@416
  1042
deba@416
  1043
      template <typename CMap>
deba@416
  1044
      NodeMap& operator=(const CMap& cmap) {
deba@488
  1045
        Parent::operator=(cmap);
deba@416
  1046
        return *this;
deba@416
  1047
      }
deba@416
  1048
    };
deba@416
  1049
deba@488
  1050
    template <typename V>
alpar@877
  1051
    class ArcMap
deba@488
  1052
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
deba@488
  1053
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
alpar@877
  1054
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
kpeter@617
  1055
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
kpeter@617
  1056
deba@416
  1057
    public:
deba@488
  1058
      typedef V Value;
deba@488
  1059
deba@488
  1060
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
deba@488
  1061
        : Parent(adaptor) {}
deba@488
  1062
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
deba@488
  1063
        : Parent(adaptor, value) {}
deba@416
  1064
deba@416
  1065
    private:
deba@416
  1066
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  1067
        return operator=<ArcMap>(cmap);
deba@416
  1068
      }
deba@416
  1069
deba@416
  1070
      template <typename CMap>
deba@416
  1071
      ArcMap& operator=(const CMap& cmap) {
deba@488
  1072
        Parent::operator=(cmap);
deba@416
  1073
        return *this;
deba@416
  1074
      }
deba@416
  1075
    };
deba@416
  1076
deba@488
  1077
    template <typename V>
alpar@877
  1078
    class EdgeMap
deba@488
  1079
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
deba@488
  1080
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
alpar@877
  1081
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
kpeter@617
  1082
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
kpeter@617
  1083
deba@416
  1084
    public:
deba@488
  1085
      typedef V Value;
deba@488
  1086
deba@488
  1087
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
deba@488
  1088
        : Parent(adaptor) {}
deba@488
  1089
deba@488
  1090
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
deba@488
  1091
        : Parent(adaptor, value) {}
deba@416
  1092
deba@416
  1093
    private:
deba@416
  1094
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@416
  1095
        return operator=<EdgeMap>(cmap);
deba@416
  1096
      }
deba@416
  1097
deba@416
  1098
      template <typename CMap>
deba@416
  1099
      EdgeMap& operator=(const CMap& cmap) {
deba@488
  1100
        Parent::operator=(cmap);
deba@416
  1101
        return *this;
deba@416
  1102
      }
deba@416
  1103
    };
deba@416
  1104
deba@416
  1105
  };
deba@416
  1106
deba@488
  1107
  template <typename GR, typename NF, typename EF>
deba@488
  1108
  class SubGraphBase<GR, NF, EF, false>
deba@488
  1109
    : public GraphAdaptorBase<GR> {
kpeter@617
  1110
    typedef GraphAdaptorBase<GR> Parent;
deba@416
  1111
  public:
deba@488
  1112
    typedef GR Graph;
deba@488
  1113
    typedef NF NodeFilterMap;
deba@488
  1114
    typedef EF EdgeFilterMap;
kpeter@449
  1115
deba@416
  1116
    typedef SubGraphBase Adaptor;
deba@416
  1117
  protected:
deba@488
  1118
    NF* _node_filter;
deba@488
  1119
    EF* _edge_filter;
alpar@877
  1120
    SubGraphBase()
alpar@877
  1121
          : Parent(), _node_filter(0), _edge_filter(0) { }
deba@488
  1122
deba@488
  1123
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
deba@488
  1124
      Parent::initialize(graph);
deba@488
  1125
      _node_filter = &node_filter;
deba@488
  1126
      _edge_filter = &edge_filter;
deba@416
  1127
    }
deba@416
  1128
deba@416
  1129
  public:
deba@416
  1130
deba@416
  1131
    typedef typename Parent::Node Node;
deba@416
  1132
    typedef typename Parent::Arc Arc;
deba@416
  1133
    typedef typename Parent::Edge Edge;
deba@416
  1134
deba@416
  1135
    void first(Node& i) const {
deba@416
  1136
      Parent::first(i);
deba@488
  1137
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
  1138
    }
deba@416
  1139
deba@416
  1140
    void first(Arc& i) const {
deba@416
  1141
      Parent::first(i);
deba@488
  1142
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1143
    }
deba@416
  1144
deba@416
  1145
    void first(Edge& i) const {
deba@416
  1146
      Parent::first(i);
deba@488
  1147
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1148
    }
deba@416
  1149
deba@416
  1150
    void firstIn(Arc& i, const Node& n) const {
deba@416
  1151
      Parent::firstIn(i, n);
deba@488
  1152
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
deba@416
  1153
    }
deba@416
  1154
deba@416
  1155
    void firstOut(Arc& i, const Node& n) const {
deba@416
  1156
      Parent::firstOut(i, n);
deba@488
  1157
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
deba@416
  1158
    }
deba@416
  1159
deba@416
  1160
    void firstInc(Edge& i, bool& d, const Node& n) const {
deba@416
  1161
      Parent::firstInc(i, d, n);
deba@488
  1162
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
deba@416
  1163
    }
deba@416
  1164
deba@416
  1165
    void next(Node& i) const {
deba@416
  1166
      Parent::next(i);
deba@488
  1167
      while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
deba@416
  1168
    }
deba@416
  1169
    void next(Arc& i) const {
deba@416
  1170
      Parent::next(i);
deba@488
  1171
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1172
    }
deba@416
  1173
    void next(Edge& i) const {
deba@416
  1174
      Parent::next(i);
deba@488
  1175
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
deba@416
  1176
    }
deba@416
  1177
    void nextIn(Arc& i) const {
deba@416
  1178
      Parent::nextIn(i);
deba@488
  1179
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
deba@416
  1180
    }
deba@416
  1181
deba@416
  1182
    void nextOut(Arc& i) const {
deba@416
  1183
      Parent::nextOut(i);
deba@488
  1184
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
deba@416
  1185
    }
deba@416
  1186
    void nextInc(Edge& i, bool& d) const {
deba@416
  1187
      Parent::nextInc(i, d);
deba@488
  1188
      while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
deba@416
  1189
    }
deba@416
  1190
deba@488
  1191
    void status(const Node& n, bool v) const { _node_filter->set(n, v); }
deba@488
  1192
    void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
deba@488
  1193
deba@488
  1194
    bool status(const Node& n) const { return (*_node_filter)[n]; }
deba@488
  1195
    bool status(const Edge& e) const { return (*_edge_filter)[e]; }
deba@416
  1196
deba@416
  1197
    typedef False NodeNumTag;
kpeter@446
  1198
    typedef False ArcNumTag;
deba@416
  1199
    typedef False EdgeNumTag;
deba@416
  1200
kpeter@446
  1201
    typedef FindArcTagIndicator<Graph> FindArcTag;
deba@416
  1202
    Arc findArc(const Node& u, const Node& v,
kpeter@448
  1203
                const Arc& prev = INVALID) const {
deba@416
  1204
      Arc arc = Parent::findArc(u, v, prev);
deba@488
  1205
      while (arc != INVALID && !(*_edge_filter)[arc]) {
deba@416
  1206
        arc = Parent::findArc(u, v, arc);
deba@416
  1207
      }
deba@416
  1208
      return arc;
deba@416
  1209
    }
kpeter@446
  1210
kpeter@446
  1211
    typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
deba@416
  1212
    Edge findEdge(const Node& u, const Node& v,
kpeter@448
  1213
                  const Edge& prev = INVALID) const {
deba@416
  1214
      Edge edge = Parent::findEdge(u, v, prev);
deba@488
  1215
      while (edge != INVALID && !(*_edge_filter)[edge]) {
deba@416
  1216
        edge = Parent::findEdge(u, v, edge);
deba@416
  1217
      }
deba@416
  1218
      return edge;
deba@416
  1219
    }
deba@416
  1220
deba@488
  1221
    template <typename V>
alpar@877
  1222
    class NodeMap
deba@488
  1223
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
deba@488
  1224
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
alpar@877
  1225
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
kpeter@617
  1226
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
kpeter@617
  1227
deba@416
  1228
    public:
deba@488
  1229
      typedef V Value;
deba@488
  1230
deba@488
  1231
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
deba@488
  1232
        : Parent(adaptor) {}
deba@488
  1233
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
deba@488
  1234
        : Parent(adaptor, value) {}
deba@416
  1235
deba@416
  1236
    private:
deba@416
  1237
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  1238
        return operator=<NodeMap>(cmap);
deba@416
  1239
      }
deba@416
  1240
deba@416
  1241
      template <typename CMap>
deba@416
  1242
      NodeMap& operator=(const CMap& cmap) {
deba@488
  1243
        Parent::operator=(cmap);
deba@416
  1244
        return *this;
deba@416
  1245
      }
deba@416
  1246
    };
deba@416
  1247
deba@488
  1248
    template <typename V>
alpar@877
  1249
    class ArcMap
deba@488
  1250
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
deba@488
  1251
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
alpar@877
  1252
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
kpeter@617
  1253
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
kpeter@617
  1254
deba@416
  1255
    public:
deba@488
  1256
      typedef V Value;
deba@488
  1257
deba@488
  1258
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
deba@488
  1259
        : Parent(adaptor) {}
deba@488
  1260
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
deba@488
  1261
        : Parent(adaptor, value) {}
deba@416
  1262
deba@416
  1263
    private:
deba@416
  1264
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  1265
        return operator=<ArcMap>(cmap);
deba@416
  1266
      }
deba@416
  1267
deba@416
  1268
      template <typename CMap>
deba@416
  1269
      ArcMap& operator=(const CMap& cmap) {
deba@488
  1270
        Parent::operator=(cmap);
deba@416
  1271
        return *this;
deba@416
  1272
      }
deba@416
  1273
    };
deba@416
  1274
deba@488
  1275
    template <typename V>
alpar@877
  1276
    class EdgeMap
deba@488
  1277
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
deba@488
  1278
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
alpar@877
  1279
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
alpar@877
  1280
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
kpeter@617
  1281
deba@416
  1282
    public:
deba@488
  1283
      typedef V Value;
deba@488
  1284
deba@488
  1285
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
deba@488
  1286
        : Parent(adaptor) {}
deba@488
  1287
deba@488
  1288
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
deba@488
  1289
        : Parent(adaptor, value) {}
deba@416
  1290
deba@416
  1291
    private:
deba@416
  1292
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@416
  1293
        return operator=<EdgeMap>(cmap);
deba@416
  1294
      }
deba@416
  1295
deba@416
  1296
      template <typename CMap>
deba@416
  1297
      EdgeMap& operator=(const CMap& cmap) {
deba@488
  1298
        Parent::operator=(cmap);
deba@416
  1299
        return *this;
deba@416
  1300
      }
deba@416
  1301
    };
deba@416
  1302
deba@416
  1303
  };
deba@416
  1304
deba@416
  1305
  /// \ingroup graph_adaptors
deba@414
  1306
  ///
kpeter@451
  1307
  /// \brief Adaptor class for hiding nodes and edges in an undirected
kpeter@451
  1308
  /// graph.
deba@414
  1309
  ///
kpeter@451
  1310
  /// SubGraph can be used for hiding nodes and edges in a graph.
kpeter@451
  1311
  /// A \c bool node map and a \c bool edge map must be specified, which
kpeter@451
  1312
  /// define the filters for nodes and edges.
kpeter@451
  1313
  /// Only the nodes and edges with \c true filter value are
kpeter@453
  1314
  /// shown in the subgraph. The edges that are incident to hidden
kpeter@453
  1315
  /// nodes are also filtered out.
kpeter@453
  1316
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
deba@416
  1317
  ///
kpeter@451
  1318
  /// The adapted graph can also be modified through this adaptor
kpeter@453
  1319
  /// by adding or removing nodes or edges, unless the \c GR template
kpeter@451
  1320
  /// parameter is set to be \c const.
kpeter@451
  1321
  ///
kpeter@787
  1322
  /// This class provides only linear time counting for nodes, edges and arcs.
kpeter@787
  1323
  ///
kpeter@453
  1324
  /// \tparam GR The type of the adapted graph.
kpeter@451
  1325
  /// It must conform to the \ref concepts::Graph "Graph" concept.
kpeter@451
  1326
  /// It can also be specified to be \c const.
kpeter@453
  1327
  /// \tparam NF The type of the node filter map.
kpeter@453
  1328
  /// It must be a \c bool (or convertible) node map of the
kpeter@453
  1329
  /// adapted graph. The default type is
kpeter@453
  1330
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
kpeter@453
  1331
  /// \tparam EF The type of the edge filter map.
kpeter@453
  1332
  /// It must be a \c bool (or convertible) edge map of the
kpeter@453
  1333
  /// adapted graph. The default type is
kpeter@453
  1334
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
kpeter@451
  1335
  ///
kpeter@451
  1336
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
kpeter@451
  1337
  /// adapted graph are convertible to each other.
deba@416
  1338
  ///
deba@416
  1339
  /// \see FilterNodes
deba@416
  1340
  /// \see FilterEdges
kpeter@451
  1341
#ifdef DOXYGEN
kpeter@453
  1342
  template<typename GR, typename NF, typename EF>
kpeter@453
  1343
  class SubGraph {
kpeter@451
  1344
#else
kpeter@453
  1345
  template<typename GR,
kpeter@453
  1346
           typename NF = typename GR::template NodeMap<bool>,
kpeter@453
  1347
           typename EF = typename GR::template EdgeMap<bool> >
kpeter@453
  1348
  class SubGraph :
kpeter@453
  1349
    public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
kpeter@451
  1350
#endif
deba@414
  1351
  public:
kpeter@451
  1352
    /// The type of the adapted graph.
kpeter@453
  1353
    typedef GR Graph;
kpeter@451
  1354
    /// The type of the node filter map.
kpeter@453
  1355
    typedef NF NodeFilterMap;
kpeter@451
  1356
    /// The type of the edge filter map.
kpeter@453
  1357
    typedef EF EdgeFilterMap;
kpeter@453
  1358
deba@488
  1359
    typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
kpeter@453
  1360
      Parent;
deba@414
  1361
deba@415
  1362
    typedef typename Parent::Node Node;
deba@416
  1363
    typedef typename Parent::Edge Edge;
deba@415
  1364
deba@414
  1365
  protected:
deba@416
  1366
    SubGraph() { }
deba@414
  1367
  public:
deba@414
  1368
deba@415
  1369
    /// \brief Constructor
deba@415
  1370
    ///
kpeter@451
  1371
    /// Creates a subgraph for the given graph with the given node
kpeter@451
  1372
    /// and edge filter maps.
deba@488
  1373
    SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
deba@488
  1374
      initialize(graph, node_filter, edge_filter);
deba@414
  1375
    }
deba@414
  1376
kpeter@452
  1377
    /// \brief Sets the status of the given node
deba@415
  1378
    ///
kpeter@452
  1379
    /// This function sets the status of the given node.
kpeter@451
  1380
    /// It is done by simply setting the assigned value of \c n
kpeter@452
  1381
    /// to \c v in the node filter map.
kpeter@452
  1382
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
  1383
kpeter@452
  1384
    /// \brief Sets the status of the given edge
deba@416
  1385
    ///
kpeter@452
  1386
    /// This function sets the status of the given edge.
kpeter@451
  1387
    /// It is done by simply setting the assigned value of \c e
kpeter@452
  1388
    /// to \c v in the edge filter map.
kpeter@452
  1389
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
kpeter@452
  1390
kpeter@452
  1391
    /// \brief Returns the status of the given node
deba@415
  1392
    ///
kpeter@452
  1393
    /// This function returns the status of the given node.
kpeter@452
  1394
    /// It is \c true if the given node is enabled (i.e. not hidden).
kpeter@452
  1395
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
  1396
kpeter@452
  1397
    /// \brief Returns the status of the given edge
deba@416
  1398
    ///
kpeter@452
  1399
    /// This function returns the status of the given edge.
kpeter@452
  1400
    /// It is \c true if the given edge is enabled (i.e. not hidden).
kpeter@452
  1401
    bool status(const Edge& e) const { return Parent::status(e); }
kpeter@452
  1402
kpeter@452
  1403
    /// \brief Disables the given node
deba@415
  1404
    ///
kpeter@452
  1405
    /// This function disables the given node in the subdigraph,
kpeter@452
  1406
    /// so the iteration jumps over it.
kpeter@452
  1407
    /// It is the same as \ref status() "status(n, false)".
kpeter@452
  1408
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
  1409
kpeter@452
  1410
    /// \brief Disables the given edge
deba@415
  1411
    ///
kpeter@452
  1412
    /// This function disables the given edge in the subgraph,
kpeter@452
  1413
    /// so the iteration jumps over it.
kpeter@452
  1414
    /// It is the same as \ref status() "status(e, false)".
kpeter@452
  1415
    void disable(const Edge& e) const { Parent::status(e, false); }
kpeter@452
  1416
kpeter@452
  1417
    /// \brief Enables the given node
kpeter@452
  1418
    ///
kpeter@452
  1419
    /// This function enables the given node in the subdigraph.
kpeter@452
  1420
    /// It is the same as \ref status() "status(n, true)".
kpeter@452
  1421
    void enable(const Node& n) const { Parent::status(n, true); }
kpeter@452
  1422
kpeter@452
  1423
    /// \brief Enables the given edge
kpeter@452
  1424
    ///
kpeter@452
  1425
    /// This function enables the given edge in the subgraph.
kpeter@452
  1426
    /// It is the same as \ref status() "status(e, true)".
kpeter@452
  1427
    void enable(const Edge& e) const { Parent::status(e, true); }
kpeter@452
  1428
deba@414
  1429
  };
deba@414
  1430
kpeter@451
  1431
  /// \brief Returns a read-only SubGraph adaptor
deba@414
  1432
  ///
kpeter@451
  1433
  /// This function just returns a read-only \ref SubGraph adaptor.
kpeter@451
  1434
  /// \ingroup graph_adaptors
kpeter@451
  1435
  /// \relates SubGraph
kpeter@453
  1436
  template<typename GR, typename NF, typename EF>
kpeter@453
  1437
  SubGraph<const GR, NF, EF>
deba@488
  1438
  subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
kpeter@453
  1439
    return SubGraph<const GR, NF, EF>
deba@488
  1440
      (graph, node_filter, edge_filter);
deba@416
  1441
  }
deba@416
  1442
kpeter@453
  1443
  template<typename GR, typename NF, typename EF>
kpeter@453
  1444
  SubGraph<const GR, const NF, EF>
deba@488
  1445
  subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
kpeter@453
  1446
    return SubGraph<const GR, const NF, EF>
deba@488
  1447
      (graph, node_filter, edge_filter);
deba@416
  1448
  }
deba@416
  1449
kpeter@453
  1450
  template<typename GR, typename NF, typename EF>
kpeter@453
  1451
  SubGraph<const GR, NF, const EF>
deba@488
  1452
  subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
kpeter@453
  1453
    return SubGraph<const GR, NF, const EF>
deba@488
  1454
      (graph, node_filter, edge_filter);
deba@416
  1455
  }
deba@416
  1456
kpeter@453
  1457
  template<typename GR, typename NF, typename EF>
kpeter@453
  1458
  SubGraph<const GR, const NF, const EF>
deba@488
  1459
  subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
kpeter@453
  1460
    return SubGraph<const GR, const NF, const EF>
deba@488
  1461
      (graph, node_filter, edge_filter);
deba@416
  1462
  }
deba@416
  1463
kpeter@451
  1464
deba@416
  1465
  /// \ingroup graph_adaptors
deba@416
  1466
  ///
kpeter@451
  1467
  /// \brief Adaptor class for hiding nodes in a digraph or a graph.
deba@416
  1468
  ///
kpeter@451
  1469
  /// FilterNodes adaptor can be used for hiding nodes in a digraph or a
kpeter@451
  1470
  /// graph. A \c bool node map must be specified, which defines the filter
kpeter@451
  1471
  /// for the nodes. Only the nodes with \c true filter value and the
kpeter@451
  1472
  /// arcs/edges incident to nodes both with \c true filter value are shown
kpeter@451
  1473
  /// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
kpeter@451
  1474
  /// "Digraph" concept or the \ref concepts::Graph "Graph" concept
kpeter@453
  1475
  /// depending on the \c GR template parameter.
deba@416
  1476
  ///
kpeter@451
  1477
  /// The adapted (di)graph can also be modified through this adaptor
kpeter@453
  1478
  /// by adding or removing nodes or arcs/edges, unless the \c GR template
kpeter@451
  1479
  /// parameter is set to be \c const.
kpeter@451
  1480
  ///
kpeter@787
  1481
  /// This class provides only linear time item counting.
kpeter@787
  1482
  ///
kpeter@453
  1483
  /// \tparam GR The type of the adapted digraph or graph.
kpeter@451
  1484
  /// It must conform to the \ref concepts::Digraph "Digraph" concept
kpeter@451
  1485
  /// or the \ref concepts::Graph "Graph" concept.
kpeter@451
  1486
  /// It can also be specified to be \c const.
kpeter@453
  1487
  /// \tparam NF The type of the node filter map.
kpeter@453
  1488
  /// It must be a \c bool (or convertible) node map of the
kpeter@453
  1489
  /// adapted (di)graph. The default type is
kpeter@453
  1490
  /// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
kpeter@451
  1491
  ///
kpeter@451
  1492
  /// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
kpeter@451
  1493
  /// adapted (di)graph are convertible to each other.
deba@416
  1494
#ifdef DOXYGEN
kpeter@453
  1495
  template<typename GR, typename NF>
kpeter@453
  1496
  class FilterNodes {
deba@416
  1497
#else
kpeter@453
  1498
  template<typename GR,
kpeter@453
  1499
           typename NF = typename GR::template NodeMap<bool>,
deba@416
  1500
           typename Enable = void>
kpeter@453
  1501
  class FilterNodes :
kpeter@453
  1502
    public DigraphAdaptorExtender<
deba@488
  1503
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
deba@488
  1504
                     true> > {
deba@416
  1505
#endif
kpeter@453
  1506
    typedef DigraphAdaptorExtender<
alpar@877
  1507
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
deba@488
  1508
                     true> > Parent;
deba@416
  1509
kpeter@617
  1510
  public:
kpeter@617
  1511
kpeter@617
  1512
    typedef GR Digraph;
kpeter@617
  1513
    typedef NF NodeFilterMap;
kpeter@617
  1514
deba@416
  1515
    typedef typename Parent::Node Node;
deba@416
  1516
deba@416
  1517
  protected:
deba@488
  1518
    ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
deba@488
  1519
deba@488
  1520
    FilterNodes() : const_true_map() {}
deba@416
  1521
deba@416
  1522
  public:
deba@416
  1523
deba@416
  1524
    /// \brief Constructor
deba@416
  1525
    ///
kpeter@451
  1526
    /// Creates a subgraph for the given digraph or graph with the
deba@416
  1527
    /// given node filter map.
alpar@877
  1528
    FilterNodes(GR& graph, NF& node_filter)
deba@488
  1529
      : Parent(), const_true_map()
kpeter@453
  1530
    {
deba@488
  1531
      Parent::initialize(graph, node_filter, const_true_map);
deba@416
  1532
    }
deba@416
  1533
kpeter@452
  1534
    /// \brief Sets the status of the given node
deba@416
  1535
    ///
kpeter@452
  1536
    /// This function sets the status of the given node.
kpeter@451
  1537
    /// It is done by simply setting the assigned value of \c n
kpeter@452
  1538
    /// to \c v in the node filter map.
kpeter@452
  1539
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
  1540
kpeter@452
  1541
    /// \brief Returns the status of the given node
deba@416
  1542
    ///
kpeter@452
  1543
    /// This function returns the status of the given node.
kpeter@452
  1544
    /// It is \c true if the given node is enabled (i.e. not hidden).
kpeter@452
  1545
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
  1546
kpeter@452
  1547
    /// \brief Disables the given node
deba@416
  1548
    ///
kpeter@452
  1549
    /// This function disables the given node, so the iteration
kpeter@452
  1550
    /// jumps over it.
kpeter@452
  1551
    /// It is the same as \ref status() "status(n, false)".
kpeter@452
  1552
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
  1553
kpeter@452
  1554
    /// \brief Enables the given node
kpeter@452
  1555
    ///
kpeter@452
  1556
    /// This function enables the given node.
kpeter@452
  1557
    /// It is the same as \ref status() "status(n, true)".
kpeter@452
  1558
    void enable(const Node& n) const { Parent::status(n, true); }
deba@416
  1559
deba@416
  1560
  };
deba@416
  1561
kpeter@453
  1562
  template<typename GR, typename NF>
kpeter@453
  1563
  class FilterNodes<GR, NF,
kpeter@453
  1564
                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
kpeter@453
  1565
    public GraphAdaptorExtender<
alpar@877
  1566
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
deba@488
  1567
                   true> > {
kpeter@453
  1568
kpeter@453
  1569
    typedef GraphAdaptorExtender<
alpar@877
  1570
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
deba@488
  1571
                   true> > Parent;
deba@416
  1572
kpeter@617
  1573
  public:
kpeter@617
  1574
kpeter@617
  1575
    typedef GR Graph;
kpeter@617
  1576
    typedef NF NodeFilterMap;
kpeter@617
  1577
deba@416
  1578
    typedef typename Parent::Node Node;
kpeter@617
  1579
deba@416
  1580
  protected:
deba@488
  1581
    ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
deba@488
  1582
deba@488
  1583
    FilterNodes() : const_true_map() {}
deba@416
  1584
deba@416
  1585
  public:
deba@416
  1586
deba@488
  1587
    FilterNodes(GR& graph, NodeFilterMap& node_filter) :
deba@488
  1588
      Parent(), const_true_map() {
deba@488
  1589
      Parent::initialize(graph, node_filter, const_true_map);
deba@416
  1590
    }
deba@416
  1591
kpeter@452
  1592
    void status(const Node& n, bool v) const { Parent::status(n, v); }
kpeter@452
  1593
    bool status(const Node& n) const { return Parent::status(n); }
kpeter@452
  1594
    void disable(const Node& n) const { Parent::status(n, false); }
kpeter@452
  1595
    void enable(const Node& n) const { Parent::status(n, true); }
deba@416
  1596
deba@416
  1597
  };
deba@416
  1598
deba@416
  1599
kpeter@451
  1600
  /// \brief Returns a read-only FilterNodes adaptor
deba@416
  1601
  ///
kpeter@451
  1602
  /// This function just returns a read-only \ref FilterNodes adaptor.
kpeter@451
  1603
  /// \ingroup graph_adaptors
kpeter@451
  1604
  /// \relates FilterNodes
kpeter@453
  1605
  template<typename GR, typename NF>
kpeter@453
  1606
  FilterNodes<const GR, NF>
deba@488
  1607
  filterNodes(const GR& graph, NF& node_filter) {
deba@488
  1608
    return FilterNodes<const GR, NF>(graph, node_filter);
deba@414
  1609
  }
deba@414
  1610
kpeter@453
  1611
  template<typename GR, typename NF>
kpeter@453
  1612
  FilterNodes<const GR, const NF>
deba@488
  1613
  filterNodes(const GR& graph, const NF& node_filter) {
deba@488
  1614
    return FilterNodes<const GR, const NF>(graph, node_filter);
deba@414
  1615
  }
deba@414
  1616
deba@416
  1617
  /// \ingroup graph_adaptors
deba@414
  1618
  ///
kpeter@451
  1619
  /// \brief Adaptor class for hiding arcs in a digraph.
deba@414
  1620
  ///
kpeter@451
  1621
  /// FilterArcs adaptor can be used for hiding arcs in a digraph.
kpeter@451
  1622
  /// A \c bool arc map must be specified, which defines the filter for
kpeter@451
  1623
  /// the arcs. Only the arcs with \c true filter value are shown in the
kpeter@451
  1624
  /// subdigraph. This adaptor conforms to the \ref concepts::Digraph
kpeter@451
  1625
  /// "Digraph" concept.
deba@414
  1626
  ///
kpeter@451
  1627
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
  1628
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
  1629
  /// parameter is set to be \c const.
kpeter@451
  1630
  ///
kpeter@787
  1631
  /// This class provides only linear time counting for nodes and arcs.
kpeter@787
  1632
  ///
deba@488
  1633
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  1634
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  1635
  /// It can also be specified to be \c const.
kpeter@453
  1636
  /// \tparam AF The type of the arc filter map.
kpeter@453
  1637
  /// It must be a \c bool (or convertible) arc map of the
kpeter@453
  1638
  /// adapted digraph. The default type is
deba@488
  1639
  /// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
kpeter@451
  1640
  ///
kpeter@451
  1641
  /// \note The \c Node and \c Arc types of this adaptor and the adapted
kpeter@451
  1642
  /// digraph are convertible to each other.
kpeter@451
  1643
#ifdef DOXYGEN
deba@488
  1644
  template<typename DGR,
kpeter@453
  1645
           typename AF>
kpeter@453
  1646
  class FilterArcs {
kpeter@451
  1647
#else
deba@488
  1648
  template<typename DGR,
deba@488
  1649
           typename AF = typename DGR::template ArcMap<bool> >
kpeter@453
  1650
  class FilterArcs :
kpeter@453
  1651
    public DigraphAdaptorExtender<
deba@488
  1652
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
deba@488
  1653
                     AF, false> > {
kpeter@451
  1654
#endif
kpeter@617
  1655
    typedef DigraphAdaptorExtender<
alpar@877
  1656
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
kpeter@617
  1657
                     AF, false> > Parent;
kpeter@617
  1658
deba@414
  1659
  public:
kpeter@617
  1660
kpeter@453
  1661
    /// The type of the adapted digraph.
deba@488
  1662
    typedef DGR Digraph;
kpeter@453
  1663
    /// The type of the arc filter map.
kpeter@453
  1664
    typedef AF ArcFilterMap;
kpeter@453
  1665
deba@415
  1666
    typedef typename Parent::Arc Arc;
deba@415
  1667
deba@414
  1668
  protected:
deba@488
  1669
    ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
deba@488
  1670
deba@488
  1671
    FilterArcs() : const_true_map() {}
deba@414
  1672
deba@414
  1673
  public:
deba@414
  1674
deba@415
  1675
    /// \brief Constructor
deba@415
  1676
    ///
kpeter@451
  1677
    /// Creates a subdigraph for the given digraph with the given arc
kpeter@451
  1678
    /// filter map.
deba@488
  1679
    FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
deba@488
  1680
      : Parent(), const_true_map() {
deba@488
  1681
      Parent::initialize(digraph, const_true_map, arc_filter);
deba@414
  1682
    }
deba@414
  1683
kpeter@452
  1684
    /// \brief Sets the status of the given arc
deba@415
  1685
    ///
kpeter@452
  1686
    /// This function sets the status of the given arc.
kpeter@451
  1687
    /// It is done by simply setting the assigned value of \c a
kpeter@452
  1688
    /// to \c v in the arc filter map.
kpeter@452
  1689
    void status(const Arc& a, bool v) const { Parent::status(a, v); }
kpeter@452
  1690
kpeter@452
  1691
    /// \brief Returns the status of the given arc
deba@415
  1692
    ///
kpeter@452
  1693
    /// This function returns the status of the given arc.
kpeter@452
  1694
    /// It is \c true if the given arc is enabled (i.e. not hidden).
kpeter@452
  1695
    bool status(const Arc& a) const { return Parent::status(a); }
kpeter@452
  1696
kpeter@452
  1697
    /// \brief Disables the given arc
deba@415
  1698
    ///
kpeter@452
  1699
    /// This function disables the given arc in the subdigraph,
kpeter@452
  1700
    /// so the iteration jumps over it.
kpeter@452
  1701
    /// It is the same as \ref status() "status(a, false)".
kpeter@452
  1702
    void disable(const Arc& a) const { Parent::status(a, false); }
kpeter@452
  1703
kpeter@452
  1704
    /// \brief Enables the given arc
kpeter@452
  1705
    ///
kpeter@452
  1706
    /// This function enables the given arc in the subdigraph.
kpeter@452
  1707
    /// It is the same as \ref status() "status(a, true)".
kpeter@452
  1708
    void enable(const Arc& a) const { Parent::status(a, true); }
deba@415
  1709
deba@414
  1710
  };
deba@414
  1711
kpeter@451
  1712
  /// \brief Returns a read-only FilterArcs adaptor
deba@414
  1713
  ///
kpeter@451
  1714
  /// This function just returns a read-only \ref FilterArcs adaptor.
kpeter@451
  1715
  /// \ingroup graph_adaptors
kpeter@451
  1716
  /// \relates FilterArcs
deba@488
  1717
  template<typename DGR, typename AF>
deba@488
  1718
  FilterArcs<const DGR, AF>
deba@488
  1719
  filterArcs(const DGR& digraph, AF& arc_filter) {
deba@488
  1720
    return FilterArcs<const DGR, AF>(digraph, arc_filter);
deba@414
  1721
  }
deba@414
  1722
deba@488
  1723
  template<typename DGR, typename AF>
deba@488
  1724
  FilterArcs<const DGR, const AF>
deba@488
  1725
  filterArcs(const DGR& digraph, const AF& arc_filter) {
deba@488
  1726
    return FilterArcs<const DGR, const AF>(digraph, arc_filter);
deba@414
  1727
  }
deba@414
  1728
deba@416
  1729
  /// \ingroup graph_adaptors
deba@416
  1730
  ///
kpeter@451
  1731
  /// \brief Adaptor class for hiding edges in a graph.
deba@416
  1732
  ///
kpeter@451
  1733
  /// FilterEdges adaptor can be used for hiding edges in a graph.
kpeter@451
  1734
  /// A \c bool edge map must be specified, which defines the filter for
kpeter@451
  1735
  /// the edges. Only the edges with \c true filter value are shown in the
kpeter@451
  1736
  /// subgraph. This adaptor conforms to the \ref concepts::Graph
kpeter@451
  1737
  /// "Graph" concept.
deba@416
  1738
  ///
kpeter@451
  1739
  /// The adapted graph can also be modified through this adaptor
kpeter@453
  1740
  /// by adding or removing nodes or edges, unless the \c GR template
kpeter@451
  1741
  /// parameter is set to be \c const.
kpeter@451
  1742
  ///
kpeter@787
  1743
  /// This class provides only linear time counting for nodes, edges and arcs.
kpeter@787
  1744
  ///
kpeter@453
  1745
  /// \tparam GR The type of the adapted graph.
kpeter@451
  1746
  /// It must conform to the \ref concepts::Graph "Graph" concept.
kpeter@451
  1747
  /// It can also be specified to be \c const.
kpeter@453
  1748
  /// \tparam EF The type of the edge filter map.
kpeter@453
  1749
  /// It must be a \c bool (or convertible) edge map of the
kpeter@453
  1750
  /// adapted graph. The default type is
kpeter@453
  1751
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
kpeter@451
  1752
  ///
kpeter@451
  1753
  /// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
kpeter@451
  1754
  /// adapted graph are convertible to each other.
kpeter@451
  1755
#ifdef DOXYGEN
kpeter@453
  1756
  template<typename GR,
kpeter@453
  1757
           typename EF>
kpeter@453
  1758
  class FilterEdges {
kpeter@451
  1759
#else
kpeter@453
  1760
  template<typename GR,
kpeter@453
  1761
           typename EF = typename GR::template EdgeMap<bool> >
kpeter@453
  1762
  class FilterEdges :
kpeter@453
  1763
    public GraphAdaptorExtender<
alpar@877
  1764
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
deba@488
  1765
                   EF, false> > {
kpeter@451
  1766
#endif
kpeter@617
  1767
    typedef GraphAdaptorExtender<
alpar@877
  1768
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
kpeter@617
  1769
                   EF, false> > Parent;
kpeter@617
  1770
deba@416
  1771
  public:
kpeter@617
  1772
kpeter@453
  1773
    /// The type of the adapted graph.
kpeter@453
  1774
    typedef GR Graph;
kpeter@453
  1775
    /// The type of the edge filter map.
kpeter@453
  1776
    typedef EF EdgeFilterMap;
kpeter@453
  1777
deba@416
  1778
    typedef typename Parent::Edge Edge;
kpeter@453
  1779
deba@416
  1780
  protected:
deba@488
  1781
    ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
deba@416
  1782
deba@416
  1783
    FilterEdges() : const_true_map(true) {
deba@416
  1784
      Parent::setNodeFilterMap(const_true_map);
deba@416
  1785
    }
deba@416
  1786
deba@416
  1787
  public:
deba@416
  1788
deba@416
  1789
    /// \brief Constructor
deba@416
  1790
    ///
kpeter@451
  1791
    /// Creates a subgraph for the given graph with the given edge
kpeter@451
  1792
    /// filter map.
alpar@877
  1793
    FilterEdges(GR& graph, EF& edge_filter)
deba@488
  1794
      : Parent(), const_true_map() {
deba@488
  1795
      Parent::initialize(graph, const_true_map, edge_filter);
deba@416
  1796
    }
deba@416
  1797
kpeter@452
  1798
    /// \brief Sets the status of the given edge
deba@416
  1799
    ///
kpeter@452
  1800
    /// This function sets the status of the given edge.
kpeter@451
  1801
    /// It is done by simply setting the assigned value of \c e
kpeter@452
  1802
    /// to \c v in the edge filter map.
kpeter@452
  1803
    void status(const Edge& e, bool v) const { Parent::status(e, v); }
kpeter@452
  1804
kpeter@452
  1805
    /// \brief Returns the status of the given edge
deba@416
  1806
    ///
kpeter@452
  1807
    /// This function returns the status of the given edge.
kpeter@452
  1808
    /// It is \c true if the given edge is enabled (i.e. not hidden).
kpeter@452
  1809
    bool status(const Edge& e) const { return Parent::status(e); }
kpeter@452
  1810
kpeter@452
  1811
    /// \brief Disables the given edge
deba@416
  1812
    ///
kpeter@452
  1813
    /// This function disables the given edge in the subgraph,
kpeter@452
  1814
    /// so the iteration jumps over it.
kpeter@452
  1815
    /// It is the same as \ref status() "status(e, false)".
kpeter@452
  1816
    void disable(const Edge& e) const { Parent::status(e, false); }
kpeter@452
  1817
kpeter@452
  1818
    /// \brief Enables the given edge
kpeter@452
  1819
    ///
kpeter@452
  1820
    /// This function enables the given edge in the subgraph.
kpeter@452
  1821
    /// It is the same as \ref status() "status(e, true)".
kpeter@452
  1822
    void enable(const Edge& e) const { Parent::status(e, true); }
deba@416
  1823
deba@416
  1824
  };
deba@416
  1825
kpeter@451
  1826
  /// \brief Returns a read-only FilterEdges adaptor
deba@416
  1827
  ///
kpeter@451
  1828
  /// This function just returns a read-only \ref FilterEdges adaptor.
kpeter@451
  1829
  /// \ingroup graph_adaptors
kpeter@451
  1830
  /// \relates FilterEdges
kpeter@453
  1831
  template<typename GR, typename EF>
kpeter@453
  1832
  FilterEdges<const GR, EF>
deba@488
  1833
  filterEdges(const GR& graph, EF& edge_filter) {
deba@488
  1834
    return FilterEdges<const GR, EF>(graph, edge_filter);
deba@416
  1835
  }
deba@416
  1836
kpeter@453
  1837
  template<typename GR, typename EF>
kpeter@453
  1838
  FilterEdges<const GR, const EF>
deba@488
  1839
  filterEdges(const GR& graph, const EF& edge_filter) {
deba@488
  1840
    return FilterEdges<const GR, const EF>(graph, edge_filter);
deba@416
  1841
  }
deba@416
  1842
kpeter@451
  1843
deba@488
  1844
  template <typename DGR>
deba@416
  1845
  class UndirectorBase {
deba@414
  1846
  public:
deba@488
  1847
    typedef DGR Digraph;
deba@416
  1848
    typedef UndirectorBase Adaptor;
deba@414
  1849
deba@414
  1850
    typedef True UndirectedTag;
deba@414
  1851
deba@414
  1852
    typedef typename Digraph::Arc Edge;
deba@414
  1853
    typedef typename Digraph::Node Node;
deba@414
  1854
deba@656
  1855
    class Arc {
deba@416
  1856
      friend class UndirectorBase;
deba@414
  1857
    protected:
deba@656
  1858
      Edge _edge;
deba@414
  1859
      bool _forward;
deba@414
  1860
alpar@877
  1861
      Arc(const Edge& edge, bool forward)
deba@656
  1862
        : _edge(edge), _forward(forward) {}
deba@414
  1863
deba@414
  1864
    public:
deba@414
  1865
      Arc() {}
deba@414
  1866
deba@656
  1867
      Arc(Invalid) : _edge(INVALID), _forward(true) {}
deba@656
  1868
deba@656
  1869
      operator const Edge&() const { return _edge; }
deba@414
  1870
deba@414
  1871
      bool operator==(const Arc &other) const {
deba@656
  1872
        return _forward == other._forward && _edge == other._edge;
deba@414
  1873
      }
deba@414
  1874
      bool operator!=(const Arc &other) const {
deba@656
  1875
        return _forward != other._forward || _edge != other._edge;
deba@414
  1876
      }
deba@414
  1877
      bool operator<(const Arc &other) const {
deba@416
  1878
        return _forward < other._forward ||
deba@656
  1879
          (_forward == other._forward && _edge < other._edge);
deba@414
  1880
      }
deba@414
  1881
    };
deba@414
  1882
deba@414
  1883
    void first(Node& n) const {
deba@414
  1884
      _digraph->first(n);
deba@414
  1885
    }
deba@414
  1886
deba@414
  1887
    void next(Node& n) const {
deba@414
  1888
      _digraph->next(n);
deba@414
  1889
    }
deba@414
  1890
deba@414
  1891
    void first(Arc& a) const {
deba@656
  1892
      _digraph->first(a._edge);
deba@414
  1893
      a._forward = true;
deba@414
  1894
    }
deba@414
  1895
deba@414
  1896
    void next(Arc& a) const {
deba@414
  1897
      if (a._forward) {
deba@416
  1898
        a._forward = false;
deba@414
  1899
      } else {
deba@656
  1900
        _digraph->next(a._edge);
deba@416
  1901
        a._forward = true;
deba@414
  1902
      }
deba@414
  1903
    }
deba@414
  1904
deba@414
  1905
    void first(Edge& e) const {
deba@414
  1906
      _digraph->first(e);
deba@414
  1907
    }
deba@414
  1908
deba@414
  1909
    void next(Edge& e) const {
deba@414
  1910
      _digraph->next(e);
deba@414
  1911
    }
deba@414
  1912
deba@414
  1913
    void firstOut(Arc& a, const Node& n) const {
deba@656
  1914
      _digraph->firstIn(a._edge, n);
deba@656
  1915
      if (a._edge != INVALID ) {
deba@416
  1916
        a._forward = false;
deba@414
  1917
      } else {
deba@656
  1918
        _digraph->firstOut(a._edge, n);
deba@416
  1919
        a._forward = true;
deba@414
  1920
      }
deba@414
  1921
    }
deba@414
  1922
    void nextOut(Arc &a) const {
deba@414
  1923
      if (!a._forward) {
deba@656
  1924
        Node n = _digraph->target(a._edge);
deba@656
  1925
        _digraph->nextIn(a._edge);
deba@656
  1926
        if (a._edge == INVALID) {
deba@656
  1927
          _digraph->firstOut(a._edge, n);
deba@416
  1928
          a._forward = true;
deba@416
  1929
        }
deba@414
  1930
      }
deba@414
  1931
      else {
deba@656
  1932
        _digraph->nextOut(a._edge);
deba@414
  1933
      }
deba@414
  1934
    }
deba@414
  1935
deba@414
  1936
    void firstIn(Arc &a, const Node &n) const {
deba@656
  1937
      _digraph->firstOut(a._edge, n);
deba@656
  1938
      if (a._edge != INVALID ) {
deba@416
  1939
        a._forward = false;
deba@414
  1940
      } else {
deba@656
  1941
        _digraph->firstIn(a._edge, n);
deba@416
  1942
        a._forward = true;
deba@414
  1943
      }
deba@414
  1944
    }
deba@414
  1945
    void nextIn(Arc &a) const {
deba@414
  1946
      if (!a._forward) {
deba@656
  1947
        Node n = _digraph->source(a._edge);
deba@656
  1948
        _digraph->nextOut(a._edge);
deba@656
  1949
        if (a._edge == INVALID ) {
deba@656
  1950
          _digraph->firstIn(a._edge, n);
deba@416
  1951
          a._forward = true;
deba@416
  1952
        }
deba@414
  1953
      }
deba@414
  1954
      else {
deba@656
  1955
        _digraph->nextIn(a._edge);
deba@414
  1956
      }
deba@414
  1957
    }
deba@414
  1958
deba@414
  1959
    void firstInc(Edge &e, bool &d, const Node &n) const {
deba@414
  1960
      d = true;
deba@414
  1961
      _digraph->firstOut(e, n);
deba@414
  1962
      if (e != INVALID) return;
deba@414
  1963
      d = false;
deba@414
  1964
      _digraph->firstIn(e, n);
deba@414
  1965
    }
deba@414
  1966
deba@414
  1967
    void nextInc(Edge &e, bool &d) const {
deba@414
  1968
      if (d) {
deba@416
  1969
        Node s = _digraph->source(e);
deba@416
  1970
        _digraph->nextOut(e);
deba@416
  1971
        if (e != INVALID) return;
deba@416
  1972
        d = false;
deba@416
  1973
        _digraph->firstIn(e, s);
deba@414
  1974
      } else {
deba@416
  1975
        _digraph->nextIn(e);
deba@414
  1976
      }
deba@414
  1977
    }
deba@414
  1978
deba@414
  1979
    Node u(const Edge& e) const {
deba@414
  1980
      return _digraph->source(e);
deba@414
  1981
    }
deba@414
  1982
deba@414
  1983
    Node v(const Edge& e) const {
deba@414
  1984
      return _digraph->target(e);
deba@414
  1985
    }
deba@414
  1986
deba@414
  1987
    Node source(const Arc &a) const {
deba@656
  1988
      return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
deba@414
  1989
    }
deba@414
  1990
deba@414
  1991
    Node target(const Arc &a) const {
deba@656
  1992
      return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
deba@414
  1993
    }
deba@414
  1994
deba@414
  1995
    static Arc direct(const Edge &e, bool d) {
deba@414
  1996
      return Arc(e, d);
deba@414
  1997
    }
deba@414
  1998
deba@414
  1999
    static bool direction(const Arc &a) { return a._forward; }
deba@414
  2000
deba@414
  2001
    Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
deba@414
  2002
    Arc arcFromId(int ix) const {
deba@414
  2003
      return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
deba@414
  2004
    }
deba@414
  2005
    Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
deba@414
  2006
deba@414
  2007
    int id(const Node &n) const { return _digraph->id(n); }
deba@414
  2008
    int id(const Arc &a) const {
deba@414
  2009
      return  (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
deba@414
  2010
    }
deba@414
  2011
    int id(const Edge &e) const { return _digraph->id(e); }
deba@414
  2012
deba@414
  2013
    int maxNodeId() const { return _digraph->maxNodeId(); }
deba@414
  2014
    int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
deba@414
  2015
    int maxEdgeId() const { return _digraph->maxArcId(); }
deba@414
  2016
deba@414
  2017
    Node addNode() { return _digraph->addNode(); }
deba@416
  2018
    Edge addEdge(const Node& u, const Node& v) {
deba@416
  2019
      return _digraph->addArc(u, v);
deba@414
  2020
    }
deba@414
  2021
deba@414
  2022
    void erase(const Node& i) { _digraph->erase(i); }
deba@414
  2023
    void erase(const Edge& i) { _digraph->erase(i); }
deba@416
  2024
deba@414
  2025
    void clear() { _digraph->clear(); }
deba@414
  2026
deba@414
  2027
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
kpeter@449
  2028
    int nodeNum() const { return _digraph->nodeNum(); }
kpeter@446
  2029
kpeter@446
  2030
    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
deba@414
  2031
    int arcNum() const { return 2 * _digraph->arcNum(); }
kpeter@446
  2032
kpeter@446
  2033
    typedef ArcNumTag EdgeNumTag;
deba@414
  2034
    int edgeNum() const { return _digraph->arcNum(); }
deba@414
  2035
kpeter@446
  2036
    typedef FindArcTagIndicator<Digraph> FindArcTag;
deba@414
  2037
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
deba@414
  2038
      if (p == INVALID) {
deba@416
  2039
        Edge arc = _digraph->findArc(s, t);
deba@416
  2040
        if (arc != INVALID) return direct(arc, true);
deba@416
  2041
        arc = _digraph->findArc(t, s);
deba@416
  2042
        if (arc != INVALID) return direct(arc, false);
deba@414
  2043
      } else if (direction(p)) {
deba@416
  2044
        Edge arc = _digraph->findArc(s, t, p);
deba@416
  2045
        if (arc != INVALID) return direct(arc, true);
deba@416
  2046
        arc = _digraph->findArc(t, s);
deba@416
  2047
        if (arc != INVALID) return direct(arc, false);
deba@414
  2048
      } else {
deba@416
  2049
        Edge arc = _digraph->findArc(t, s, p);
deba@416
  2050
        if (arc != INVALID) return direct(arc, false);
deba@414
  2051
      }
deba@414
  2052
      return INVALID;
deba@414
  2053
    }
deba@414
  2054
kpeter@446
  2055
    typedef FindArcTag FindEdgeTag;
deba@414
  2056
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
deba@414
  2057
      if (s != t) {
deba@414
  2058
        if (p == INVALID) {
deba@414
  2059
          Edge arc = _digraph->findArc(s, t);
deba@414
  2060
          if (arc != INVALID) return arc;
deba@414
  2061
          arc = _digraph->findArc(t, s);
deba@414
  2062
          if (arc != INVALID) return arc;
kpeter@449
  2063
        } else if (_digraph->source(p) == s) {
deba@414
  2064
          Edge arc = _digraph->findArc(s, t, p);
deba@414
  2065
          if (arc != INVALID) return arc;
deba@414
  2066
          arc = _digraph->findArc(t, s);
deba@416
  2067
          if (arc != INVALID) return arc;
deba@414
  2068
        } else {
deba@414
  2069
          Edge arc = _digraph->findArc(t, s, p);
deba@416
  2070
          if (arc != INVALID) return arc;
deba@414
  2071
        }
deba@414
  2072
      } else {
deba@414
  2073
        return _digraph->findArc(s, t, p);
deba@414
  2074
      }
deba@414
  2075
      return INVALID;
deba@414
  2076
    }
deba@414
  2077
deba@414
  2078
  private:
deba@416
  2079
deba@488
  2080
    template <typename V>
deba@414
  2081
    class ArcMapBase {
deba@414
  2082
    private:
deba@416
  2083
deba@488
  2084
      typedef typename DGR::template ArcMap<V> MapImpl;
deba@416
  2085
deba@414
  2086
    public:
deba@414
  2087
deba@414
  2088
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
deba@414
  2089
deba@488
  2090
      typedef V Value;
deba@414
  2091
      typedef Arc Key;
kpeter@449
  2092
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
kpeter@449
  2093
      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
kpeter@449
  2094
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
kpeter@449
  2095
      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
deba@416
  2096
deba@488
  2097
      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
deba@416
  2098
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
deba@416
  2099
deba@488
  2100
      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
alpar@877
  2101
        : _forward(*adaptor._digraph, value),
deba@488
  2102
          _backward(*adaptor._digraph, value) {}
deba@488
  2103
deba@488
  2104
      void set(const Arc& a, const V& value) {
deba@416
  2105
        if (direction(a)) {
deba@488
  2106
          _forward.set(a, value);
deba@416
  2107
        } else {
deba@488
  2108
          _backward.set(a, value);
deba@414
  2109
        }
deba@414
  2110
      }
deba@414
  2111
kpeter@449
  2112
      ConstReturnValue operator[](const Arc& a) const {
deba@416
  2113
        if (direction(a)) {
deba@416
  2114
          return _forward[a];
deba@416
  2115
        } else {
deba@416
  2116
          return _backward[a];
deba@414
  2117
        }
deba@414
  2118
      }
deba@414
  2119
kpeter@449
  2120
      ReturnValue operator[](const Arc& a) {
deba@416
  2121
        if (direction(a)) {
deba@416
  2122
          return _forward[a];
deba@416
  2123
        } else {
deba@416
  2124
          return _backward[a];
deba@416
  2125
        }
deba@416
  2126
      }
deba@416
  2127
deba@414
  2128
    protected:
deba@414
  2129
deba@416
  2130
      MapImpl _forward, _backward;
deba@414
  2131
deba@414
  2132
    };
deba@414
  2133
deba@414
  2134
  public:
deba@414
  2135
deba@488
  2136
    template <typename V>
deba@488
  2137
    class NodeMap : public DGR::template NodeMap<V> {
kpeter@617
  2138
      typedef typename DGR::template NodeMap<V> Parent;
kpeter@617
  2139
deba@414
  2140
    public:
deba@488
  2141
      typedef V Value;
deba@488
  2142
deba@488
  2143
      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
deba@416
  2144
        : Parent(*adaptor._digraph) {}
deba@414
  2145
deba@488
  2146
      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
deba@416
  2147
        : Parent(*adaptor._digraph, value) { }
deba@414
  2148
deba@414
  2149
    private:
deba@414
  2150
      NodeMap& operator=(const NodeMap& cmap) {
deba@414
  2151
        return operator=<NodeMap>(cmap);
deba@414
  2152
      }
deba@414
  2153
deba@414
  2154
      template <typename CMap>
deba@414
  2155
      NodeMap& operator=(const CMap& cmap) {
deba@414
  2156
        Parent::operator=(cmap);
deba@414
  2157
        return *this;
deba@414
  2158
      }
deba@416
  2159
deba@414
  2160
    };
deba@414
  2161
deba@488
  2162
    template <typename V>
deba@416
  2163
    class ArcMap
kpeter@617
  2164
      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
kpeter@617
  2165
      typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
kpeter@617
  2166
deba@414
  2167
    public:
deba@488
  2168
      typedef V Value;
deba@488
  2169
deba@488
  2170
      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
deba@416
  2171
        : Parent(adaptor) {}
deba@416
  2172
deba@488
  2173
      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
deba@416
  2174
        : Parent(adaptor, value) {}
deba@416
  2175
deba@414
  2176
    private:
deba@414
  2177
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  2178
        return operator=<ArcMap>(cmap);
deba@414
  2179
      }
deba@416
  2180
deba@414
  2181
      template <typename CMap>
deba@414
  2182
      ArcMap& operator=(const CMap& cmap) {
deba@414
  2183
        Parent::operator=(cmap);
deba@416
  2184
        return *this;
deba@414
  2185
      }
deba@414
  2186
    };
deba@416
  2187
deba@488
  2188
    template <typename V>
deba@488
  2189
    class EdgeMap : public Digraph::template ArcMap<V> {
kpeter@617
  2190
      typedef typename Digraph::template ArcMap<V> Parent;
kpeter@617
  2191
deba@414
  2192
    public:
deba@488
  2193
      typedef V Value;
deba@488
  2194
deba@488
  2195
      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
deba@416
  2196
        : Parent(*adaptor._digraph) {}
deba@414
  2197
deba@488
  2198
      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
deba@416
  2199
        : Parent(*adaptor._digraph, value) {}
deba@414
  2200
deba@414
  2201
    private:
deba@414
  2202
      EdgeMap& operator=(const EdgeMap& cmap) {
deba@414
  2203
        return operator=<EdgeMap>(cmap);
deba@414
  2204
      }
deba@414
  2205
deba@414
  2206
      template <typename CMap>
deba@414
  2207
      EdgeMap& operator=(const CMap& cmap) {
deba@414
  2208
        Parent::operator=(cmap);
deba@414
  2209
        return *this;
deba@414
  2210
      }
deba@414
  2211
deba@414
  2212
    };
deba@414
  2213
deba@488
  2214
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
deba@416
  2215
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
deba@414
  2216
deba@488
  2217
    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
kpeter@449
  2218
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
alpar@877
  2219
kpeter@579
  2220
    typedef EdgeNotifier ArcNotifier;
kpeter@579
  2221
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
kpeter@449
  2222
deba@414
  2223
  protected:
deba@414
  2224
deba@416
  2225
    UndirectorBase() : _digraph(0) {}
deba@414
  2226
deba@488
  2227
    DGR* _digraph;
deba@488
  2228
deba@488
  2229
    void initialize(DGR& digraph) {
deba@414
  2230
      _digraph = &digraph;
deba@414
  2231
    }
deba@416
  2232
deba@414
  2233
  };
deba@414
  2234
deba@416
  2235
  /// \ingroup graph_adaptors
deba@414
  2236
  ///
kpeter@451
  2237
  /// \brief Adaptor class for viewing a digraph as an undirected graph.
deba@414
  2238
  ///
kpeter@451
  2239
  /// Undirector adaptor can be used for viewing a digraph as an undirected
kpeter@451
  2240
  /// graph. All arcs of the underlying digraph are showed in the
kpeter@451
  2241
  /// adaptor as an edge (and also as a pair of arcs, of course).
kpeter@451
  2242
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
deba@414
  2243
  ///
kpeter@451
  2244
  /// The adapted digraph can also be modified through this adaptor
kpeter@453
  2245
  /// by adding or removing nodes or edges, unless the \c GR template
kpeter@451
  2246
  /// parameter is set to be \c const.
kpeter@451
  2247
  ///
kpeter@787
  2248
  /// This class provides item counting in the same time as the adapted
kpeter@787
  2249
  /// digraph structure.
kpeter@787
  2250
  ///
deba@488
  2251
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  2252
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  2253
  /// It can also be specified to be \c const.
kpeter@451
  2254
  ///
kpeter@451
  2255
  /// \note The \c Node type of this adaptor and the adapted digraph are
kpeter@451
  2256
  /// convertible to each other, moreover the \c Edge type of the adaptor
kpeter@451
  2257
  /// and the \c Arc type of the adapted digraph are also convertible to
kpeter@451
  2258
  /// each other.
kpeter@451
  2259
  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
kpeter@451
  2260
  /// of the adapted digraph.)
deba@488
  2261
  template<typename DGR>
kpeter@453
  2262
#ifdef DOXYGEN
kpeter@453
  2263
  class Undirector {
kpeter@453
  2264
#else
kpeter@453
  2265
  class Undirector :
deba@488
  2266
    public GraphAdaptorExtender<UndirectorBase<DGR> > {
kpeter@453
  2267
#endif
kpeter@617
  2268
    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
deba@414
  2269
  public:
kpeter@453
  2270
    /// The type of the adapted digraph.
deba@488
  2271
    typedef DGR Digraph;
deba@414
  2272
  protected:
deba@416
  2273
    Undirector() { }
deba@414
  2274
  public:
deba@414
  2275
deba@414
  2276
    /// \brief Constructor
deba@414
  2277
    ///
kpeter@451
  2278
    /// Creates an undirected graph from the given digraph.
deba@488
  2279
    Undirector(DGR& digraph) {
deba@488
  2280
      initialize(digraph);
deba@414
  2281
    }
deba@414
  2282
kpeter@451
  2283
    /// \brief Arc map combined from two original arc maps
deba@414
  2284
    ///
kpeter@451
  2285
    /// This map adaptor class adapts two arc maps of the underlying
kpeter@451
  2286
    /// digraph to get an arc map of the undirected graph.
kpeter@559
  2287
    /// Its value type is inherited from the first arc map type (\c FW).
kpeter@559
  2288
    /// \tparam FW The type of the "foward" arc map.
kpeter@559
  2289
    /// \tparam BK The type of the "backward" arc map.
kpeter@559
  2290
    template <typename FW, typename BK>
deba@414
  2291
    class CombinedArcMap {
deba@414
  2292
    public:
deba@416
  2293
kpeter@451
  2294
      /// The key type of the map
kpeter@451
  2295
      typedef typename Parent::Arc Key;
kpeter@451
  2296
      /// The value type of the map
kpeter@559
  2297
      typedef typename FW::Value Value;
kpeter@559
  2298
kpeter@559
  2299
      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
kpeter@559
  2300
kpeter@559
  2301
      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
kpeter@559
  2302
      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
kpeter@559
  2303
      typedef typename MapTraits<FW>::ReturnValue Reference;
kpeter@559
  2304
      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
kpeter@449
  2305
deba@416
  2306
      /// Constructor
kpeter@559
  2307
      CombinedArcMap(FW& forward, BK& backward)
deba@414
  2308
        : _forward(&forward), _backward(&backward) {}
deba@416
  2309
kpeter@451
  2310
      /// Sets the value associated with the given key.
deba@416
  2311
      void set(const Key& e, const Value& a) {
deba@416
  2312
        if (Parent::direction(e)) {
deba@416
  2313
          _forward->set(e, a);
deba@416
  2314
        } else {
deba@416
  2315
          _backward->set(e, a);
deba@416
  2316
        }
deba@414
  2317
      }
deba@414
  2318
kpeter@451
  2319
      /// Returns the value associated with the given key.
kpeter@449
  2320
      ConstReturnValue operator[](const Key& e) const {
deba@416
  2321
        if (Parent::direction(e)) {
deba@416
  2322
          return (*_forward)[e];
deba@416
  2323
        } else {
deba@416
  2324
          return (*_backward)[e];
deba@414
  2325
        }
deba@414
  2326
      }
deba@414
  2327
kpeter@451
  2328
      /// Returns a reference to the value associated with the given key.
kpeter@449
  2329
      ReturnValue operator[](const Key& e) {
deba@416
  2330
        if (Parent::direction(e)) {
deba@416
  2331
          return (*_forward)[e];
deba@416
  2332
        } else {
deba@416
  2333
          return (*_backward)[e];
deba@414
  2334
        }
deba@414
  2335
      }
deba@414
  2336
deba@416
  2337
    protected:
deba@416
  2338
kpeter@559
  2339
      FW* _forward;
kpeter@559
  2340
      BK* _backward;
deba@416
  2341
deba@416
  2342
    };
deba@416
  2343
kpeter@451
  2344
    /// \brief Returns a combined arc map
deba@416
  2345
    ///
kpeter@451
  2346
    /// This function just returns a combined arc map.
kpeter@559
  2347
    template <typename FW, typename BK>
kpeter@559
  2348
    static CombinedArcMap<FW, BK>
kpeter@559
  2349
    combinedArcMap(FW& forward, BK& backward) {
kpeter@559
  2350
      return CombinedArcMap<FW, BK>(forward, backward);
deba@416
  2351
    }
deba@416
  2352
kpeter@559
  2353
    template <typename FW, typename BK>
kpeter@559
  2354
    static CombinedArcMap<const FW, BK>
kpeter@559
  2355
    combinedArcMap(const FW& forward, BK& backward) {
kpeter@559
  2356
      return CombinedArcMap<const FW, BK>(forward, backward);
deba@416
  2357
    }
deba@416
  2358
kpeter@559
  2359
    template <typename FW, typename BK>
kpeter@559
  2360
    static CombinedArcMap<FW, const BK>
kpeter@559
  2361
    combinedArcMap(FW& forward, const BK& backward) {
kpeter@559
  2362
      return CombinedArcMap<FW, const BK>(forward, backward);
deba@416
  2363
    }
deba@416
  2364
kpeter@559
  2365
    template <typename FW, typename BK>
kpeter@559
  2366
    static CombinedArcMap<const FW, const BK>
kpeter@559
  2367
    combinedArcMap(const FW& forward, const BK& backward) {
kpeter@559
  2368
      return CombinedArcMap<const FW, const BK>(forward, backward);
deba@416
  2369
    }
deba@416
  2370
deba@416
  2371
  };
deba@416
  2372
kpeter@451
  2373
  /// \brief Returns a read-only Undirector adaptor
deba@416
  2374
  ///
kpeter@451
  2375
  /// This function just returns a read-only \ref Undirector adaptor.
kpeter@451
  2376
  /// \ingroup graph_adaptors
kpeter@451
  2377
  /// \relates Undirector
deba@488
  2378
  template<typename DGR>
deba@488
  2379
  Undirector<const DGR> undirector(const DGR& digraph) {
deba@488
  2380
    return Undirector<const DGR>(digraph);
deba@416
  2381
  }
deba@416
  2382
kpeter@451
  2383
deba@488
  2384
  template <typename GR, typename DM>
deba@416
  2385
  class OrienterBase {
deba@416
  2386
  public:
deba@416
  2387
deba@488
  2388
    typedef GR Graph;
deba@488
  2389
    typedef DM DirectionMap;
deba@488
  2390
deba@488
  2391
    typedef typename GR::Node Node;
deba@488
  2392
    typedef typename GR::Edge Arc;
deba@416
  2393
deba@416
  2394
    void reverseArc(const Arc& arc) {
deba@416
  2395
      _direction->set(arc, !(*_direction)[arc]);
deba@416
  2396
    }
deba@416
  2397
deba@416
  2398
    void first(Node& i) const { _graph->first(i); }
deba@416
  2399
    void first(Arc& i) const { _graph->first(i); }
deba@416
  2400
    void firstIn(Arc& i, const Node& n) const {
kpeter@447
  2401
      bool d = true;
deba@416
  2402
      _graph->firstInc(i, d, n);
deba@416
  2403
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2404
    }
deba@416
  2405
    void firstOut(Arc& i, const Node& n ) const {
kpeter@447
  2406
      bool d = true;
deba@416
  2407
      _graph->firstInc(i, d, n);
deba@416
  2408
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2409
    }
deba@416
  2410
deba@416
  2411
    void next(Node& i) const { _graph->next(i); }
deba@416
  2412
    void next(Arc& i) const { _graph->next(i); }
deba@416
  2413
    void nextIn(Arc& i) const {
deba@416
  2414
      bool d = !(*_direction)[i];
deba@416
  2415
      _graph->nextInc(i, d);
deba@416
  2416
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2417
    }
deba@416
  2418
    void nextOut(Arc& i) const {
deba@416
  2419
      bool d = (*_direction)[i];
deba@416
  2420
      _graph->nextInc(i, d);
deba@416
  2421
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
deba@416
  2422
    }
deba@416
  2423
deba@416
  2424
    Node source(const Arc& e) const {
deba@416
  2425
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
deba@416
  2426
    }
deba@416
  2427
    Node target(const Arc& e) const {
deba@416
  2428
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
deba@416
  2429
    }
deba@416
  2430
deba@416
  2431
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
deba@416
  2432
    int nodeNum() const { return _graph->nodeNum(); }
deba@416
  2433
kpeter@446
  2434
    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
deba@416
  2435
    int arcNum() const { return _graph->edgeNum(); }
deba@416
  2436
kpeter@446
  2437
    typedef FindEdgeTagIndicator<Graph> FindArcTag;
deba@416
  2438
    Arc findArc(const Node& u, const Node& v,
kpeter@448
  2439
                const Arc& prev = INVALID) const {
kpeter@449
  2440
      Arc arc = _graph->findEdge(u, v, prev);
kpeter@449
  2441
      while (arc != INVALID && source(arc) != u) {
deba@416
  2442
        arc = _graph->findEdge(u, v, arc);
deba@414
  2443
      }
deba@416
  2444
      return arc;
deba@416
  2445
    }
deba@416
  2446
deba@416
  2447
    Node addNode() {
deba@416
  2448
      return Node(_graph->addNode());
deba@416
  2449
    }
deba@416
  2450
deba@416
  2451
    Arc addArc(const Node& u, const Node& v) {
kpeter@449
  2452
      Arc arc = _graph->addEdge(u, v);
kpeter@449
  2453
      _direction->set(arc, _graph->u(arc) == u);
deba@416
  2454
      return arc;
deba@416
  2455
    }
deba@416
  2456
deba@416
  2457
    void erase(const Node& i) { _graph->erase(i); }
deba@416
  2458
    void erase(const Arc& i) { _graph->erase(i); }
deba@416
  2459
deba@416
  2460
    void clear() { _graph->clear(); }
deba@416
  2461
deba@416
  2462
    int id(const Node& v) const { return _graph->id(v); }
deba@416
  2463
    int id(const Arc& e) const { return _graph->id(e); }
deba@416
  2464
deba@416
  2465
    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
deba@416
  2466
    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
deba@416
  2467
deba@416
  2468
    int maxNodeId() const { return _graph->maxNodeId(); }
deba@416
  2469
    int maxArcId() const { return _graph->maxEdgeId(); }
deba@416
  2470
deba@488
  2471
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
deba@416
  2472
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
deba@416
  2473
deba@488
  2474
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
deba@416
  2475
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
deba@416
  2476
deba@488
  2477
    template <typename V>
deba@488
  2478
    class NodeMap : public GR::template NodeMap<V> {
kpeter@617
  2479
      typedef typename GR::template NodeMap<V> Parent;
kpeter@617
  2480
deba@416
  2481
    public:
deba@416
  2482
deba@488
  2483
      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
deba@416
  2484
        : Parent(*adapter._graph) {}
deba@416
  2485
deba@488
  2486
      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
deba@416
  2487
        : Parent(*adapter._graph, value) {}
deba@416
  2488
deba@416
  2489
    private:
deba@416
  2490
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  2491
        return operator=<NodeMap>(cmap);
deba@416
  2492
      }
deba@416
  2493
deba@416
  2494
      template <typename CMap>
deba@416
  2495
      NodeMap& operator=(const CMap& cmap) {
deba@416
  2496
        Parent::operator=(cmap);
deba@416
  2497
        return *this;
deba@416
  2498
      }
deba@414
  2499
deba@414
  2500
    };
deba@414
  2501
deba@488
  2502
    template <typename V>
deba@488
  2503
    class ArcMap : public GR::template EdgeMap<V> {
kpeter@617
  2504
      typedef typename Graph::template EdgeMap<V> Parent;
kpeter@617
  2505
deba@416
  2506
    public:
deba@416
  2507
deba@488
  2508
      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
deba@416
  2509
        : Parent(*adapter._graph) { }
deba@416
  2510
deba@488
  2511
      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
deba@416
  2512
        : Parent(*adapter._graph, value) { }
deba@416
  2513
deba@416
  2514
    private:
deba@416
  2515
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  2516
        return operator=<ArcMap>(cmap);
deba@416
  2517
      }
deba@416
  2518
deba@416
  2519
      template <typename CMap>
deba@416
  2520
      ArcMap& operator=(const CMap& cmap) {
deba@416
  2521
        Parent::operator=(cmap);
deba@416
  2522
        return *this;
deba@416
  2523
      }
deba@416
  2524
    };
deba@416
  2525
deba@416
  2526
deba@416
  2527
deba@416
  2528
  protected:
deba@416
  2529
    Graph* _graph;
deba@488
  2530
    DM* _direction;
deba@488
  2531
deba@488
  2532
    void initialize(GR& graph, DM& direction) {
deba@488
  2533
      _graph = &graph;
deba@416
  2534
      _direction = &direction;
deba@416
  2535
    }
deba@416
  2536
deba@414
  2537
  };
deba@414
  2538
deba@416
  2539
  /// \ingroup graph_adaptors
deba@414
  2540
  ///
kpeter@451
  2541
  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
deba@416
  2542
  ///
kpeter@451
  2543
  /// Orienter adaptor can be used for orienting the edges of a graph to
kpeter@451
  2544
  /// get a digraph. A \c bool edge map of the underlying graph must be
kpeter@451
  2545
  /// specified, which define the direction of the arcs in the adaptor.
kpeter@451
  2546
  /// The arcs can be easily reversed by the \c reverseArc() member function
kpeter@451
  2547
  /// of the adaptor.
kpeter@451
  2548
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
deba@416
  2549
  ///
kpeter@451
  2550
  /// The adapted graph can also be modified through this adaptor
kpeter@453
  2551
  /// by adding or removing nodes or arcs, unless the \c GR template
kpeter@451
  2552
  /// parameter is set to be \c const.
deba@416
  2553
  ///
kpeter@787
  2554
  /// This class provides item counting in the same time as the adapted
kpeter@787
  2555
  /// graph structure.
kpeter@787
  2556
  ///
kpeter@453
  2557
  /// \tparam GR The type of the adapted graph.
kpeter@451
  2558
  /// It must conform to the \ref concepts::Graph "Graph" concept.
kpeter@451
  2559
  /// It can also be specified to be \c const.
kpeter@453
  2560
  /// \tparam DM The type of the direction map.
kpeter@453
  2561
  /// It must be a \c bool (or convertible) edge map of the
kpeter@453
  2562
  /// adapted graph. The default type is
kpeter@453
  2563
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
kpeter@451
  2564
  ///
kpeter@451
  2565
  /// \note The \c Node type of this adaptor and the adapted graph are
kpeter@451
  2566
  /// convertible to each other, moreover the \c Arc type of the adaptor
kpeter@451
  2567
  /// and the \c Edge type of the adapted graph are also convertible to
kpeter@451
  2568
  /// each other.
kpeter@451
  2569
#ifdef DOXYGEN
kpeter@453
  2570
  template<typename GR,
kpeter@453
  2571
           typename DM>
kpeter@453
  2572
  class Orienter {
kpeter@451
  2573
#else
kpeter@453
  2574
  template<typename GR,
kpeter@453
  2575
           typename DM = typename GR::template EdgeMap<bool> >
kpeter@453
  2576
  class Orienter :
kpeter@453
  2577
    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
kpeter@451
  2578
#endif
kpeter@617
  2579
    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
deba@416
  2580
  public:
kpeter@451
  2581
kpeter@451
  2582
    /// The type of the adapted graph.
kpeter@453
  2583
    typedef GR Graph;
kpeter@451
  2584
    /// The type of the direction edge map.
kpeter@453
  2585
    typedef DM DirectionMap;
kpeter@453
  2586
deba@416
  2587
    typedef typename Parent::Arc Arc;
kpeter@617
  2588
deba@416
  2589
  protected:
deba@416
  2590
    Orienter() { }
kpeter@617
  2591
deba@416
  2592
  public:
deba@416
  2593
kpeter@451
  2594
    /// \brief Constructor
deba@416
  2595
    ///
kpeter@451
  2596
    /// Constructor of the adaptor.
deba@488
  2597
    Orienter(GR& graph, DM& direction) {
deba@488
  2598
      Parent::initialize(graph, direction);
deba@416
  2599
    }
deba@416
  2600
kpeter@451
  2601
    /// \brief Reverses the given arc
deba@416
  2602
    ///
kpeter@451
  2603
    /// This function reverses the given arc.
kpeter@451
  2604
    /// It is done by simply negate the assigned value of \c a
kpeter@451
  2605
    /// in the direction map.
deba@416
  2606
    void reverseArc(const Arc& a) {
deba@416
  2607
      Parent::reverseArc(a);
deba@416
  2608
    }
deba@416
  2609
  };
deba@416
  2610
kpeter@451
  2611
  /// \brief Returns a read-only Orienter adaptor
deba@416
  2612
  ///
kpeter@451
  2613
  /// This function just returns a read-only \ref Orienter adaptor.
kpeter@451
  2614
  /// \ingroup graph_adaptors
kpeter@451
  2615
  /// \relates Orienter
kpeter@453
  2616
  template<typename GR, typename DM>
kpeter@453
  2617
  Orienter<const GR, DM>
deba@488
  2618
  orienter(const GR& graph, DM& direction) {
deba@488
  2619
    return Orienter<const GR, DM>(graph, direction);
deba@414
  2620
  }
deba@414
  2621
kpeter@453
  2622
  template<typename GR, typename DM>
kpeter@453
  2623
  Orienter<const GR, const DM>
deba@488
  2624
  orienter(const GR& graph, const DM& direction) {
deba@488
  2625
    return Orienter<const GR, const DM>(graph, direction);
deba@416
  2626
  }
deba@416
  2627
deba@416
  2628
  namespace _adaptor_bits {
deba@416
  2629
deba@488
  2630
    template <typename DGR, typename CM, typename FM, typename TL>
deba@416
  2631
    class ResForwardFilter {
deba@416
  2632
    public:
deba@416
  2633
deba@488
  2634
      typedef typename DGR::Arc Key;
deba@416
  2635
      typedef bool Value;
deba@416
  2636
deba@416
  2637
    private:
deba@416
  2638
deba@488
  2639
      const CM* _capacity;
deba@488
  2640
      const FM* _flow;
deba@488
  2641
      TL _tolerance;
deba@488
  2642
deba@416
  2643
    public:
deba@416
  2644
deba@488
  2645
      ResForwardFilter(const CM& capacity, const FM& flow,
deba@488
  2646
                       const TL& tolerance = TL())
deba@416
  2647
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
deba@416
  2648
deba@488
  2649
      bool operator[](const typename DGR::Arc& a) const {
deba@416
  2650
        return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
deba@416
  2651
      }
deba@416
  2652
    };
deba@416
  2653
deba@488
  2654
    template<typename DGR,typename CM, typename FM, typename TL>
deba@416
  2655
    class ResBackwardFilter {
deba@416
  2656
    public:
deba@416
  2657
deba@488
  2658
      typedef typename DGR::Arc Key;
deba@416
  2659
      typedef bool Value;
deba@416
  2660
deba@416
  2661
    private:
deba@416
  2662
deba@488
  2663
      const CM* _capacity;
deba@488
  2664
      const FM* _flow;
deba@488
  2665
      TL _tolerance;
deba@416
  2666
deba@416
  2667
    public:
deba@416
  2668
deba@488
  2669
      ResBackwardFilter(const CM& capacity, const FM& flow,
deba@488
  2670
                        const TL& tolerance = TL())
deba@416
  2671
        : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
deba@416
  2672
deba@488
  2673
      bool operator[](const typename DGR::Arc& a) const {
deba@416
  2674
        return _tolerance.positive((*_flow)[a]);
deba@416
  2675
      }
deba@416
  2676
    };
deba@416
  2677
deba@416
  2678
  }
deba@416
  2679
deba@416
  2680
  /// \ingroup graph_adaptors
deba@416
  2681
  ///
kpeter@451
  2682
  /// \brief Adaptor class for composing the residual digraph for directed
deba@416
  2683
  /// flow and circulation problems.
deba@416
  2684
  ///
kpeter@464
  2685
  /// ResidualDigraph can be used for composing the \e residual digraph
kpeter@464
  2686
  /// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
kpeter@464
  2687
  /// be a directed graph and let \f$ F \f$ be a number type.
kpeter@464
  2688
  /// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
kpeter@451
  2689
  /// This adaptor implements a digraph structure with node set \f$ V \f$
kpeter@451
  2690
  /// and arc set \f$ A_{forward}\cup A_{backward} \f$,
kpeter@451
  2691
  /// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
kpeter@451
  2692
  /// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
kpeter@451
  2693
  /// called residual digraph.
kpeter@451
  2694
  /// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
kpeter@451
  2695
  /// multiplicities are counted, i.e. the adaptor has exactly
kpeter@451
  2696
  /// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
kpeter@451
  2697
  /// arcs).
kpeter@451
  2698
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
deba@416
  2699
  ///
kpeter@787
  2700
  /// This class provides only linear time counting for nodes and arcs.
kpeter@787
  2701
  ///
deba@488
  2702
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  2703
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  2704
  /// It is implicitly \c const.
kpeter@453
  2705
  /// \tparam CM The type of the capacity map.
kpeter@453
  2706
  /// It must be an arc map of some numerical type, which defines
kpeter@451
  2707
  /// the capacities in the flow problem. It is implicitly \c const.
kpeter@453
  2708
  /// The default type is
kpeter@453
  2709
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
kpeter@453
  2710
  /// \tparam FM The type of the flow map.
kpeter@453
  2711
  /// It must be an arc map of some numerical type, which defines
kpeter@453
  2712
  /// the flow values in the flow problem. The default type is \c CM.
kpeter@453
  2713
  /// \tparam TL The tolerance type for handling inexact computation.
kpeter@451
  2714
  /// The default tolerance type depends on the value type of the
kpeter@451
  2715
  /// capacity map.
deba@416
  2716
  ///
kpeter@451
  2717
  /// \note This adaptor is implemented using Undirector and FilterArcs
kpeter@451
  2718
  /// adaptors.
kpeter@451
  2719
  ///
kpeter@451
  2720
  /// \note The \c Node type of this adaptor and the adapted digraph are
kpeter@451
  2721
  /// convertible to each other, moreover the \c Arc type of the adaptor
kpeter@451
  2722
  /// is convertible to the \c Arc type of the adapted digraph.
kpeter@451
  2723
#ifdef DOXYGEN
deba@488
  2724
  template<typename DGR, typename CM, typename FM, typename TL>
kpeter@464
  2725
  class ResidualDigraph
kpeter@451
  2726
#else
deba@488
  2727
  template<typename DGR,
deba@488
  2728
           typename CM = typename DGR::template ArcMap<int>,
kpeter@453
  2729
           typename FM = CM,
kpeter@453
  2730
           typename TL = Tolerance<typename CM::Value> >
alpar@877
  2731
  class ResidualDigraph
deba@488
  2732
    : public SubDigraph<
deba@488
  2733
        Undirector<const DGR>,
deba@488
  2734
        ConstMap<typename DGR::Node, Const<bool, true> >,
deba@488
  2735
        typename Undirector<const DGR>::template CombinedArcMap<
deba@488
  2736
          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
deba@488
  2737
          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
kpeter@451
  2738
#endif
deba@416
  2739
  {
deba@414
  2740
  public:
deba@414
  2741
kpeter@451
  2742
    /// The type of the underlying digraph.
deba@488
  2743
    typedef DGR Digraph;
kpeter@451
  2744
    /// The type of the capacity map.
kpeter@453
  2745
    typedef CM CapacityMap;
kpeter@451
  2746
    /// The type of the flow map.
kpeter@453
  2747
    typedef FM FlowMap;
kpeter@453
  2748
    /// The tolerance type.
kpeter@453
  2749
    typedef TL Tolerance;
deba@414
  2750
deba@414
  2751
    typedef typename CapacityMap::Value Value;
kpeter@464
  2752
    typedef ResidualDigraph Adaptor;
deba@414
  2753
deba@414
  2754
  protected:
deba@414
  2755
deba@416
  2756
    typedef Undirector<const Digraph> Undirected;
deba@416
  2757
deba@488
  2758
    typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
deba@488
  2759
deba@488
  2760
    typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
deba@488
  2761
                                            FM, TL> ForwardFilter;
deba@488
  2762
deba@488
  2763
    typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
deba@488
  2764
                                             FM, TL> BackwardFilter;
deba@416
  2765
deba@416
  2766
    typedef typename Undirected::
kpeter@453
  2767
      template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
deba@414
  2768
deba@488
  2769
    typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
deba@414
  2770
deba@414
  2771
    const CapacityMap* _capacity;
deba@414
  2772
    FlowMap* _flow;
deba@414
  2773
deba@416
  2774
    Undirected _graph;
deba@488
  2775
    NodeFilter _node_filter;
deba@414
  2776
    ForwardFilter _forward_filter;
deba@414
  2777
    BackwardFilter _backward_filter;
deba@414
  2778
    ArcFilter _arc_filter;
deba@414
  2779
deba@414
  2780
  public:
deba@414
  2781
kpeter@451
  2782
    /// \brief Constructor
deba@414
  2783
    ///
kpeter@451
  2784
    /// Constructor of the residual digraph adaptor. The parameters are the
kpeter@451
  2785
    /// digraph, the capacity map, the flow map, and a tolerance object.
deba@488
  2786
    ResidualDigraph(const DGR& digraph, const CM& capacity,
deba@488
  2787
                    FM& flow, const TL& tolerance = Tolerance())
alpar@877
  2788
      : Parent(), _capacity(&capacity), _flow(&flow),
deba@488
  2789
        _graph(digraph), _node_filter(),
deba@416
  2790
        _forward_filter(capacity, flow, tolerance),
deba@414
  2791
        _backward_filter(capacity, flow, tolerance),
deba@414
  2792
        _arc_filter(_forward_filter, _backward_filter)
deba@414
  2793
    {
deba@488
  2794
      Parent::initialize(_graph, _node_filter, _arc_filter);
deba@414
  2795
    }
deba@414
  2796
deba@414
  2797
    typedef typename Parent::Arc Arc;
deba@414
  2798
kpeter@451
  2799
    /// \brief Returns the residual capacity of the given arc.
deba@414
  2800
    ///
kpeter@451
  2801
    /// Returns the residual capacity of the given arc.
deba@416
  2802
    Value residualCapacity(const Arc& a) const {
deba@416
  2803
      if (Undirected::direction(a)) {
deba@416
  2804
        return (*_capacity)[a] - (*_flow)[a];
deba@414
  2805
      } else {
deba@416
  2806
        return (*_flow)[a];
deba@414
  2807
      }
deba@416
  2808
    }
deba@416
  2809
kpeter@452
  2810
    /// \brief Augments on the given arc in the residual digraph.
deba@414
  2811
    ///
kpeter@452
  2812
    /// Augments on the given arc in the residual digraph. It increases
kpeter@451
  2813
    /// or decreases the flow value on the original arc according to the
kpeter@451
  2814
    /// direction of the residual arc.
deba@416
  2815
    void augment(const Arc& a, const Value& v) const {
deba@416
  2816
      if (Undirected::direction(a)) {
deba@416
  2817
        _flow->set(a, (*_flow)[a] + v);
deba@416
  2818
      } else {
deba@416
  2819
        _flow->set(a, (*_flow)[a] - v);
deba@414
  2820
      }
deba@414
  2821
    }
deba@414
  2822
kpeter@451
  2823
    /// \brief Returns \c true if the given residual arc is a forward arc.
deba@414
  2824
    ///
kpeter@451
  2825
    /// Returns \c true if the given residual arc has the same orientation
kpeter@451
  2826
    /// as the original arc, i.e. it is a so called forward arc.
deba@416
  2827
    static bool forward(const Arc& a) {
deba@416
  2828
      return Undirected::direction(a);
deba@414
  2829
    }
deba@414
  2830
kpeter@451
  2831
    /// \brief Returns \c true if the given residual arc is a backward arc.
deba@414
  2832
    ///
kpeter@451
  2833
    /// Returns \c true if the given residual arc has the opposite orientation
kpeter@451
  2834
    /// than the original arc, i.e. it is a so called backward arc.
deba@416
  2835
    static bool backward(const Arc& a) {
deba@416
  2836
      return !Undirected::direction(a);
deba@414
  2837
    }
deba@414
  2838
kpeter@451
  2839
    /// \brief Returns the forward oriented residual arc.
deba@414
  2840
    ///
kpeter@451
  2841
    /// Returns the forward oriented residual arc related to the given
kpeter@451
  2842
    /// arc of the underlying digraph.
deba@416
  2843
    static Arc forward(const typename Digraph::Arc& a) {
deba@416
  2844
      return Undirected::direct(a, true);
deba@414
  2845
    }
deba@414
  2846
kpeter@451
  2847
    /// \brief Returns the backward oriented residual arc.
deba@414
  2848
    ///
kpeter@451
  2849
    /// Returns the backward oriented residual arc related to the given
kpeter@451
  2850
    /// arc of the underlying digraph.
deba@416
  2851
    static Arc backward(const typename Digraph::Arc& a) {
deba@416
  2852
      return Undirected::direct(a, false);
deba@414
  2853
    }
deba@414
  2854
deba@414
  2855
    /// \brief Residual capacity map.
deba@414
  2856
    ///
kpeter@451
  2857
    /// This map adaptor class can be used for obtaining the residual
kpeter@451
  2858
    /// capacities as an arc map of the residual digraph.
kpeter@451
  2859
    /// Its value type is inherited from the capacity map.
deba@416
  2860
    class ResidualCapacity {
deba@414
  2861
    protected:
deba@414
  2862
      const Adaptor* _adaptor;
deba@414
  2863
    public:
kpeter@451
  2864
      /// The key type of the map
deba@414
  2865
      typedef Arc Key;
kpeter@451
  2866
      /// The value type of the map
kpeter@453
  2867
      typedef typename CapacityMap::Value Value;
deba@414
  2868
deba@416
  2869
      /// Constructor
alpar@877
  2870
      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
deba@488
  2871
        : _adaptor(&adaptor) {}
deba@416
  2872
kpeter@451
  2873
      /// Returns the value associated with the given residual arc
deba@416
  2874
      Value operator[](const Arc& a) const {
deba@416
  2875
        return _adaptor->residualCapacity(a);
deba@414
  2876
      }
deba@416
  2877
deba@414
  2878
    };
deba@414
  2879
kpeter@450
  2880
    /// \brief Returns a residual capacity map
kpeter@450
  2881
    ///
kpeter@450
  2882
    /// This function just returns a residual capacity map.
kpeter@450
  2883
    ResidualCapacity residualCapacity() const {
kpeter@450
  2884
      return ResidualCapacity(*this);
kpeter@450
  2885
    }
kpeter@450
  2886
deba@414
  2887
  };
deba@414
  2888
kpeter@450
  2889
  /// \brief Returns a (read-only) Residual adaptor
kpeter@450
  2890
  ///
deba@488
  2891
  /// This function just returns a (read-only) \ref ResidualDigraph adaptor.
kpeter@450
  2892
  /// \ingroup graph_adaptors
deba@488
  2893
  /// \relates ResidualDigraph
deba@488
  2894
    template<typename DGR, typename CM, typename FM>
deba@488
  2895
  ResidualDigraph<DGR, CM, FM>
deba@488
  2896
  residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
deba@488
  2897
    return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
kpeter@450
  2898
  }
kpeter@450
  2899
kpeter@450
  2900
deba@488
  2901
  template <typename DGR>
deba@416
  2902
  class SplitNodesBase {
kpeter@617
  2903
    typedef DigraphAdaptorBase<const DGR> Parent;
kpeter@617
  2904
deba@414
  2905
  public:
deba@414
  2906
deba@488
  2907
    typedef DGR Digraph;
deba@416
  2908
    typedef SplitNodesBase Adaptor;
deba@414
  2909
deba@488
  2910
    typedef typename DGR::Node DigraphNode;
deba@488
  2911
    typedef typename DGR::Arc DigraphArc;
deba@414
  2912
deba@414
  2913
    class Node;
deba@414
  2914
    class Arc;
deba@414
  2915
deba@414
  2916
  private:
deba@414
  2917
deba@414
  2918
    template <typename T> class NodeMapBase;
deba@414
  2919
    template <typename T> class ArcMapBase;
deba@414
  2920
deba@414
  2921
  public:
deba@416
  2922
deba@414
  2923
    class Node : public DigraphNode {
deba@416
  2924
      friend class SplitNodesBase;
deba@414
  2925
      template <typename T> friend class NodeMapBase;
deba@414
  2926
    private:
deba@414
  2927
deba@414
  2928
      bool _in;
deba@414
  2929
      Node(DigraphNode node, bool in)
deba@416
  2930
        : DigraphNode(node), _in(in) {}
deba@416
  2931
deba@414
  2932
    public:
deba@414
  2933
deba@414
  2934
      Node() {}
deba@414
  2935
      Node(Invalid) : DigraphNode(INVALID), _in(true) {}
deba@414
  2936
deba@414
  2937
      bool operator==(const Node& node) const {
deba@416
  2938
        return DigraphNode::operator==(node) && _in == node._in;
deba@414
  2939
      }
deba@416
  2940
deba@414
  2941
      bool operator!=(const Node& node) const {
deba@416
  2942
        return !(*this == node);
deba@414
  2943
      }
deba@416
  2944
deba@414
  2945
      bool operator<(const Node& node) const {
deba@416
  2946
        return DigraphNode::operator<(node) ||
deba@416
  2947
          (DigraphNode::operator==(node) && _in < node._in);
deba@414
  2948
      }
deba@414
  2949
    };
deba@414
  2950
deba@414
  2951
    class Arc {
deba@416
  2952
      friend class SplitNodesBase;
deba@414
  2953
      template <typename T> friend class ArcMapBase;
deba@414
  2954
    private:
deba@414
  2955
      typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
deba@414
  2956
deba@414
  2957
      explicit Arc(const DigraphArc& arc) : _item(arc) {}
deba@414
  2958
      explicit Arc(const DigraphNode& node) : _item(node) {}
deba@416
  2959
deba@414
  2960
      ArcImpl _item;
deba@414
  2961
deba@414
  2962
    public:
deba@414
  2963
      Arc() {}
deba@414
  2964
      Arc(Invalid) : _item(DigraphArc(INVALID)) {}
deba@414
  2965
deba@414
  2966
      bool operator==(const Arc& arc) const {
deba@414
  2967
        if (_item.firstState()) {
deba@414
  2968
          if (arc._item.firstState()) {
deba@414
  2969
            return _item.first() == arc._item.first();
deba@414
  2970
          }
deba@414
  2971
        } else {
deba@414
  2972
          if (arc._item.secondState()) {
deba@414
  2973
            return _item.second() == arc._item.second();
deba@414
  2974
          }
deba@414
  2975
        }
deba@414
  2976
        return false;
deba@414
  2977
      }
deba@416
  2978
deba@414
  2979
      bool operator!=(const Arc& arc) const {
deba@416
  2980
        return !(*this == arc);
deba@414
  2981
      }
deba@416
  2982
deba@414
  2983
      bool operator<(const Arc& arc) const {
deba@414
  2984
        if (_item.firstState()) {
deba@414
  2985
          if (arc._item.firstState()) {
deba@414
  2986
            return _item.first() < arc._item.first();
deba@414
  2987
          }
deba@414
  2988
          return false;
deba@414
  2989
        } else {
deba@414
  2990
          if (arc._item.secondState()) {
deba@414
  2991
            return _item.second() < arc._item.second();
deba@414
  2992
          }
deba@414
  2993
          return true;
deba@414
  2994
        }
deba@414
  2995
      }
deba@414
  2996
deba@414
  2997
      operator DigraphArc() const { return _item.first(); }
deba@414
  2998
      operator DigraphNode() const { return _item.second(); }
deba@414
  2999
deba@414
  3000
    };
deba@414
  3001
deba@414
  3002
    void first(Node& n) const {
deba@414
  3003
      _digraph->first(n);
deba@414
  3004
      n._in = true;
deba@414
  3005
    }
deba@414
  3006
deba@414
  3007
    void next(Node& n) const {
deba@414
  3008
      if (n._in) {
deba@416
  3009
        n._in = false;
deba@414
  3010
      } else {
deba@416
  3011
        n._in = true;
deba@416
  3012
        _digraph->next(n);
deba@414
  3013
      }
deba@414
  3014
    }
deba@414
  3015
deba@414
  3016
    void first(Arc& e) const {
deba@414
  3017
      e._item.setSecond();
deba@414
  3018
      _digraph->first(e._item.second());
deba@414
  3019
      if (e._item.second() == INVALID) {
deba@414
  3020
        e._item.setFirst();
deba@416
  3021
        _digraph->first(e._item.first());
deba@414
  3022
      }
deba@414
  3023
    }
deba@414
  3024
deba@414
  3025
    void next(Arc& e) const {
deba@414
  3026
      if (e._item.secondState()) {
deba@416
  3027
        _digraph->next(e._item.second());
deba@414
  3028
        if (e._item.second() == INVALID) {
deba@414
  3029
          e._item.setFirst();
deba@414
  3030
          _digraph->first(e._item.first());
deba@414
  3031
        }
deba@414
  3032
      } else {
deba@416
  3033
        _digraph->next(e._item.first());
deba@416
  3034
      }
deba@414
  3035
    }
deba@414
  3036
deba@414
  3037
    void firstOut(Arc& e, const Node& n) const {
deba@414
  3038
      if (n._in) {
deba@414
  3039
        e._item.setSecond(n);
deba@414
  3040
      } else {
deba@414
  3041
        e._item.setFirst();
deba@416
  3042
        _digraph->firstOut(e._item.first(), n);
deba@414
  3043
      }
deba@414
  3044
    }
deba@414
  3045
deba@414
  3046
    void nextOut(Arc& e) const {
deba@414
  3047
      if (!e._item.firstState()) {
deba@416
  3048
        e._item.setFirst(INVALID);
deba@414
  3049
      } else {
deba@416
  3050
        _digraph->nextOut(e._item.first());
deba@416
  3051
      }
deba@414
  3052
    }
deba@414
  3053
deba@414
  3054
    void firstIn(Arc& e, const Node& n) const {
deba@414
  3055
      if (!n._in) {
deba@416
  3056
        e._item.setSecond(n);
deba@414
  3057
      } else {
deba@414
  3058
        e._item.setFirst();
deba@416
  3059
        _digraph->firstIn(e._item.first(), n);
deba@414
  3060
      }
deba@414
  3061
    }
deba@414
  3062
deba@414
  3063
    void nextIn(Arc& e) const {
deba@414
  3064
      if (!e._item.firstState()) {
deba@416
  3065
        e._item.setFirst(INVALID);
deba@414
  3066
      } else {
deba@416
  3067
        _digraph->nextIn(e._item.first());
deba@414
  3068
      }
deba@414
  3069
    }
deba@414
  3070
deba@414
  3071
    Node source(const Arc& e) const {
deba@414
  3072
      if (e._item.firstState()) {
deba@416
  3073
        return Node(_digraph->source(e._item.first()), false);
deba@414
  3074
      } else {
deba@416
  3075
        return Node(e._item.second(), true);
deba@414
  3076
      }
deba@414
  3077
    }
deba@414
  3078
deba@414
  3079
    Node target(const Arc& e) const {
deba@414
  3080
      if (e._item.firstState()) {
deba@416
  3081
        return Node(_digraph->target(e._item.first()), true);
deba@414
  3082
      } else {
deba@416
  3083
        return Node(e._item.second(), false);
deba@414
  3084
      }
deba@414
  3085
    }
deba@414
  3086
deba@414
  3087
    int id(const Node& n) const {
deba@414
  3088
      return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
deba@414
  3089
    }
deba@414
  3090
    Node nodeFromId(int ix) const {
deba@414
  3091
      return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
deba@414
  3092
    }
deba@414
  3093
    int maxNodeId() const {
deba@414
  3094
      return 2 * _digraph->maxNodeId() + 1;
deba@414
  3095
    }
deba@414
  3096
deba@414
  3097
    int id(const Arc& e) const {
deba@414
  3098
      if (e._item.firstState()) {
deba@414
  3099
        return _digraph->id(e._item.first()) << 1;
deba@414
  3100
      } else {
deba@414
  3101
        return (_digraph->id(e._item.second()) << 1) | 1;
deba@414
  3102
      }
deba@414
  3103
    }
deba@414
  3104
    Arc arcFromId(int ix) const {
deba@414
  3105
      if ((ix & 1) == 0) {
deba@414
  3106
        return Arc(_digraph->arcFromId(ix >> 1));
deba@414
  3107
      } else {
deba@414
  3108
        return Arc(_digraph->nodeFromId(ix >> 1));
deba@414
  3109
      }
deba@414
  3110
    }
deba@414
  3111
    int maxArcId() const {
deba@416
  3112
      return std::max(_digraph->maxNodeId() << 1,
deba@414
  3113
                      (_digraph->maxArcId() << 1) | 1);
deba@414
  3114
    }
deba@414
  3115
deba@414
  3116
    static bool inNode(const Node& n) {
deba@414
  3117
      return n._in;
deba@414
  3118
    }
deba@414
  3119
deba@414
  3120
    static bool outNode(const Node& n) {
deba@414
  3121
      return !n._in;
deba@414
  3122
    }
deba@414
  3123
deba@414
  3124
    static bool origArc(const Arc& e) {
deba@414
  3125
      return e._item.firstState();
deba@414
  3126
    }
deba@414
  3127
deba@414
  3128
    static bool bindArc(const Arc& e) {
deba@414
  3129
      return e._item.secondState();
deba@414
  3130
    }
deba@414
  3131
deba@414
  3132
    static Node inNode(const DigraphNode& n) {
deba@414
  3133
      return Node(n, true);
deba@414
  3134
    }
deba@414
  3135
deba@414
  3136
    static Node outNode(const DigraphNode& n) {
deba@414
  3137
      return Node(n, false);
deba@414
  3138
    }
deba@414
  3139
deba@414
  3140
    static Arc arc(const DigraphNode& n) {
deba@414
  3141
      return Arc(n);
deba@414
  3142
    }
deba@414
  3143
deba@414
  3144
    static Arc arc(const DigraphArc& e) {
deba@414
  3145
      return Arc(e);
deba@414
  3146
    }
deba@414
  3147
deba@414
  3148
    typedef True NodeNumTag;
deba@414
  3149
    int nodeNum() const {
deba@414
  3150
      return  2 * countNodes(*_digraph);
deba@414
  3151
    }
deba@414
  3152
kpeter@446
  3153
    typedef True ArcNumTag;
deba@414
  3154
    int arcNum() const {
deba@414
  3155
      return countArcs(*_digraph) + countNodes(*_digraph);
deba@414
  3156
    }
deba@414
  3157
kpeter@446
  3158
    typedef True FindArcTag;
deba@416
  3159
    Arc findArc(const Node& u, const Node& v,
deba@416
  3160
                const Arc& prev = INVALID) const {
kpeter@449
  3161
      if (inNode(u) && outNode(v)) {
kpeter@449
  3162
        if (static_cast<const DigraphNode&>(u) ==
kpeter@449
  3163
            static_cast<const DigraphNode&>(v) && prev == INVALID) {
kpeter@449
  3164
          return Arc(u);
deba@414
  3165
        }
kpeter@449
  3166
      }
kpeter@449
  3167
      else if (outNode(u) && inNode(v)) {
kpeter@449
  3168
        return Arc(::lemon::findArc(*_digraph, u, v, prev));
deba@414
  3169
      }
deba@414
  3170
      return INVALID;
deba@414
  3171
    }
deba@414
  3172
deba@414
  3173
  private:
deba@416
  3174
deba@488
  3175
    template <typename V>
deba@416
  3176
    class NodeMapBase
deba@488
  3177
      : public MapTraits<typename Parent::template NodeMap<V> > {
deba@488
  3178
      typedef typename Parent::template NodeMap<V> NodeImpl;
deba@414
  3179
    public:
deba@414
  3180
      typedef Node Key;
deba@488
  3181
      typedef V Value;
kpeter@449
  3182
      typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
kpeter@449
  3183
      typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
kpeter@449
  3184
      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
kpeter@449
  3185
      typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
kpeter@449
  3186
      typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
deba@416
  3187
deba@488
  3188
      NodeMapBase(const SplitNodesBase<DGR>& adaptor)
deba@416
  3189
        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
deba@488
  3190
      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3191
        : _in_map(*adaptor._digraph, value),
deba@416
  3192
          _out_map(*adaptor._digraph, value) {}
deba@414
  3193
deba@488
  3194
      void set(const Node& key, const V& val) {
deba@488
  3195
        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
deba@416
  3196
        else {_out_map.set(key, val); }
deba@414
  3197
      }
deba@416
  3198
kpeter@449
  3199
      ReturnValue operator[](const Node& key) {
deba@488
  3200
        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
deba@416
  3201
        else { return _out_map[key]; }
deba@414
  3202
      }
deba@414
  3203
kpeter@449
  3204
      ConstReturnValue operator[](const Node& key) const {
deba@416
  3205
        if (Adaptor::inNode(key)) { return _in_map[key]; }
deba@416
  3206
        else { return _out_map[key]; }
deba@414
  3207
      }
deba@414
  3208
deba@414
  3209
    private:
deba@414
  3210
      NodeImpl _in_map, _out_map;
deba@414
  3211
    };
deba@414
  3212
deba@488
  3213
    template <typename V>
deba@416
  3214
    class ArcMapBase
deba@488
  3215
      : public MapTraits<typename Parent::template ArcMap<V> > {
deba@488
  3216
      typedef typename Parent::template ArcMap<V> ArcImpl;
deba@488
  3217
      typedef typename Parent::template NodeMap<V> NodeImpl;
deba@414
  3218
    public:
deba@414
  3219
      typedef Arc Key;
deba@488
  3220
      typedef V Value;
kpeter@449
  3221
      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
kpeter@449
  3222
      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
kpeter@449
  3223
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
kpeter@449
  3224
      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
kpeter@449
  3225
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
deba@414
  3226
deba@488
  3227
      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
deba@416
  3228
        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
deba@488
  3229
      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3230
        : _arc_map(*adaptor._digraph, value),
deba@416
  3231
          _node_map(*adaptor._digraph, value) {}
deba@414
  3232
deba@488
  3233
      void set(const Arc& key, const V& val) {
deba@488
  3234
        if (SplitNodesBase<DGR>::origArc(key)) {
kpeter@495
  3235
          _arc_map.set(static_cast<const DigraphArc&>(key), val);
deba@414
  3236
        } else {
kpeter@495
  3237
          _node_map.set(static_cast<const DigraphNode&>(key), val);
deba@414
  3238
        }
deba@414
  3239
      }
deba@416
  3240
kpeter@449
  3241
      ReturnValue operator[](const Arc& key) {
deba@488
  3242
        if (SplitNodesBase<DGR>::origArc(key)) {
kpeter@495
  3243
          return _arc_map[static_cast<const DigraphArc&>(key)];
deba@414
  3244
        } else {
kpeter@495
  3245
          return _node_map[static_cast<const DigraphNode&>(key)];
deba@414
  3246
        }
deba@414
  3247
      }
deba@414
  3248
kpeter@449
  3249
      ConstReturnValue operator[](const Arc& key) const {
deba@488
  3250
        if (SplitNodesBase<DGR>::origArc(key)) {
kpeter@495
  3251
          return _arc_map[static_cast<const DigraphArc&>(key)];
deba@414
  3252
        } else {
kpeter@495
  3253
          return _node_map[static_cast<const DigraphNode&>(key)];
deba@414
  3254
        }
deba@414
  3255
      }
deba@414
  3256
deba@414
  3257
    private:
deba@414
  3258
      ArcImpl _arc_map;
deba@414
  3259
      NodeImpl _node_map;
deba@414
  3260
    };
deba@414
  3261
deba@414
  3262
  public:
deba@414
  3263
deba@488
  3264
    template <typename V>
deba@416
  3265
    class NodeMap
kpeter@617
  3266
      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
kpeter@617
  3267
      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
kpeter@617
  3268
deba@414
  3269
    public:
deba@488
  3270
      typedef V Value;
deba@488
  3271
deba@488
  3272
      NodeMap(const SplitNodesBase<DGR>& adaptor)
deba@416
  3273
        : Parent(adaptor) {}
deba@416
  3274
deba@488
  3275
      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3276
        : Parent(adaptor, value) {}
deba@416
  3277
deba@414
  3278
    private:
deba@414
  3279
      NodeMap& operator=(const NodeMap& cmap) {
deba@416
  3280
        return operator=<NodeMap>(cmap);
deba@414
  3281
      }
deba@416
  3282
deba@414
  3283
      template <typename CMap>
deba@414
  3284
      NodeMap& operator=(const CMap& cmap) {
deba@414
  3285
        Parent::operator=(cmap);
deba@416
  3286
        return *this;
deba@414
  3287
      }
deba@414
  3288
    };
deba@414
  3289
deba@488
  3290
    template <typename V>
deba@416
  3291
    class ArcMap
kpeter@617
  3292
      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
kpeter@617
  3293
      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
kpeter@617
  3294
deba@414
  3295
    public:
deba@488
  3296
      typedef V Value;
deba@488
  3297
deba@488
  3298
      ArcMap(const SplitNodesBase<DGR>& adaptor)
deba@416
  3299
        : Parent(adaptor) {}
deba@416
  3300
deba@488
  3301
      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
deba@416
  3302
        : Parent(adaptor, value) {}
deba@416
  3303
deba@414
  3304
    private:
deba@414
  3305
      ArcMap& operator=(const ArcMap& cmap) {
deba@416
  3306
        return operator=<ArcMap>(cmap);
deba@414
  3307
      }
deba@416
  3308
deba@414
  3309
      template <typename CMap>
deba@414
  3310
      ArcMap& operator=(const CMap& cmap) {
deba@414
  3311
        Parent::operator=(cmap);
deba@416
  3312
        return *this;
deba@414
  3313
      }
deba@414
  3314
    };
deba@414
  3315
deba@414
  3316
  protected:
deba@414
  3317
deba@416
  3318
    SplitNodesBase() : _digraph(0) {}
deba@414
  3319
deba@488
  3320
    DGR* _digraph;
deba@488
  3321
deba@488
  3322
    void initialize(Digraph& digraph) {
deba@414
  3323
      _digraph = &digraph;
deba@414
  3324
    }
deba@416
  3325
deba@414
  3326
  };
deba@414
  3327
deba@414
  3328
  /// \ingroup graph_adaptors
deba@414
  3329
  ///
kpeter@451
  3330
  /// \brief Adaptor class for splitting the nodes of a digraph.
deba@416
  3331
  ///
kpeter@451
  3332
  /// SplitNodes adaptor can be used for splitting each node into an
kpeter@451
  3333
  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
kpeter@451
  3334
  /// replaces each node \f$ u \f$ in the digraph with two nodes,
kpeter@451
  3335
  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
kpeter@451
  3336
  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
kpeter@451
  3337
  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
kpeter@451
  3338
  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
kpeter@451
  3339
  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
kpeter@451
  3340
  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
deba@414
  3341
  ///
kpeter@451
  3342
  /// The aim of this class is running an algorithm with respect to node
kpeter@451
  3343
  /// costs or capacities if the algorithm considers only arc costs or
kpeter@451
  3344
  /// capacities directly.
kpeter@451
  3345
  /// In this case you can use \c SplitNodes adaptor, and set the node
kpeter@451
  3346
  /// costs/capacities of the original digraph to the \e bind \e arcs
kpeter@451
  3347
  /// in the adaptor.
deba@414
  3348
  ///
kpeter@787
  3349
  /// This class provides item counting in the same time as the adapted
kpeter@787
  3350
  /// digraph structure.
kpeter@787
  3351
  ///
deba@488
  3352
  /// \tparam DGR The type of the adapted digraph.
kpeter@451
  3353
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
kpeter@451
  3354
  /// It is implicitly \c const.
kpeter@451
  3355
  ///
kpeter@451
  3356
  /// \note The \c Node type of this adaptor is converible to the \c Node
kpeter@451
  3357
  /// type of the adapted digraph.
deba@488
  3358
  template <typename DGR>
kpeter@453
  3359
#ifdef DOXYGEN
kpeter@453
  3360
  class SplitNodes {
kpeter@453
  3361
#else
deba@416
  3362
  class SplitNodes
deba@488
  3363
    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
kpeter@453
  3364
#endif
kpeter@617
  3365
    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
kpeter@617
  3366
deba@414
  3367
  public:
deba@488
  3368
    typedef DGR Digraph;
deba@488
  3369
deba@488
  3370
    typedef typename DGR::Node DigraphNode;
deba@488
  3371
    typedef typename DGR::Arc DigraphArc;
deba@415
  3372
deba@414
  3373
    typedef typename Parent::Node Node;
deba@414
  3374
    typedef typename Parent::Arc Arc;
deba@414
  3375
kpeter@451
  3376
    /// \brief Constructor
deba@414
  3377
    ///
deba@414
  3378
    /// Constructor of the adaptor.
deba@488
  3379
    SplitNodes(const DGR& g) {
deba@488
  3380
      Parent::initialize(g);
deba@414
  3381
    }
deba@414
  3382
kpeter@451
  3383
    /// \brief Returns \c true if the given node is an in-node.
deba@415
  3384
    ///
kpeter@451
  3385
    /// Returns \c true if the given node is an in-node.
deba@415
  3386
    static bool inNode(const Node& n) {
deba@415
  3387
      return Parent::inNode(n);
deba@415
  3388
    }
deba@415
  3389
kpeter@451
  3390
    /// \brief Returns \c true if the given node is an out-node.
deba@415
  3391
    ///
kpeter@451
  3392
    /// Returns \c true if the given node is an out-node.
deba@415
  3393
    static bool outNode(const Node& n) {
deba@415
  3394
      return Parent::outNode(n);
deba@415
  3395
    }
deba@415
  3396
kpeter@451
  3397
    /// \brief Returns \c true if the given arc is an original arc.
deba@415
  3398
    ///
kpeter@451
  3399
    /// Returns \c true if the given arc is one of the arcs in the
kpeter@451
  3400
    /// original digraph.
deba@415
  3401
    static bool origArc(const Arc& a) {
deba@415
  3402
      return Parent::origArc(a);
deba@415
  3403
    }
deba@415
  3404
kpeter@451
  3405
    /// \brief Returns \c true if the given arc is a bind arc.
deba@415
  3406
    ///
kpeter@451
  3407
    /// Returns \c true if the given arc is a bind arc, i.e. it connects
kpeter@451
  3408
    /// an in-node and an out-node.
deba@415
  3409
    static bool bindArc(const Arc& a) {
deba@415
  3410
      return Parent::bindArc(a);
deba@415
  3411
    }
deba@415
  3412
kpeter@451
  3413
    /// \brief Returns the in-node created from the given original node.
deba@415
  3414
    ///
kpeter@451
  3415
    /// Returns the in-node created from the given original node.
deba@415
  3416
    static Node inNode(const DigraphNode& n) {
deba@415
  3417
      return Parent::inNode(n);
deba@415
  3418
    }
deba@415
  3419
kpeter@451
  3420
    /// \brief Returns the out-node created from the given original node.
deba@415
  3421
    ///
kpeter@451
  3422
    /// Returns the out-node created from the given original node.
deba@415
  3423
    static Node outNode(const DigraphNode& n) {
deba@415
  3424
      return Parent::outNode(n);
deba@415
  3425
    }
deba@415
  3426
kpeter@451
  3427
    /// \brief Returns the bind arc that corresponds to the given
kpeter@451
  3428
    /// original node.
deba@416
  3429
    ///
kpeter@451
  3430
    /// Returns the bind arc in the adaptor that corresponds to the given
kpeter@451
  3431
    /// original node, i.e. the arc connecting the in-node and out-node
kpeter@451
  3432
    /// of \c n.
deba@415
  3433
    static Arc arc(const DigraphNode& n) {
deba@415
  3434
      return Parent::arc(n);
deba@415
  3435
    }
deba@415
  3436
kpeter@451
  3437
    /// \brief Returns the arc that corresponds to the given original arc.
deba@416
  3438
    ///
kpeter@451
  3439
    /// Returns the arc in the adaptor that corresponds to the given
kpeter@451
  3440
    /// original arc.
deba@415
  3441
    static Arc arc(const DigraphArc& a) {
deba@415
  3442
      return Parent::arc(a);
deba@415
  3443
    }
deba@415
  3444
kpeter@451
  3445
    /// \brief Node map combined from two original node maps
deba@414
  3446
    ///
kpeter@451
  3447
    /// This map adaptor class adapts two node maps of the original digraph
kpeter@451
  3448
    /// to get a node map of the split digraph.
kpeter@559
  3449
    /// Its value type is inherited from the first node map type (\c IN).
alpar@877
  3450
    /// \tparam IN The type of the node map for the in-nodes.
kpeter@559
  3451
    /// \tparam OUT The type of the node map for the out-nodes.
kpeter@559
  3452
    template <typename IN, typename OUT>
deba@414
  3453
    class CombinedNodeMap {
deba@414
  3454
    public:
deba@414
  3455
kpeter@451
  3456
      /// The key type of the map
deba@414
  3457
      typedef Node Key;
kpeter@451
  3458
      /// The value type of the map
kpeter@559
  3459
      typedef typename IN::Value Value;
kpeter@559
  3460
kpeter@559
  3461
      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
kpeter@559
  3462
      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
kpeter@559
  3463
      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
kpeter@559
  3464
      typedef typename MapTraits<IN>::ReturnValue Reference;
kpeter@559
  3465
      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
kpeter@449
  3466
kpeter@451
  3467
      /// Constructor
kpeter@559
  3468
      CombinedNodeMap(IN& in_map, OUT& out_map)
deba@416
  3469
        : _in_map(in_map), _out_map(out_map) {}
deba@414
  3470
kpeter@451
  3471
      /// Returns the value associated with the given key.
kpeter@451
  3472
      Value operator[](const Key& key) const {
deba@488
  3473
        if (SplitNodesBase<const DGR>::inNode(key)) {
kpeter@451
  3474
          return _in_map[key];
kpeter@451
  3475
        } else {
kpeter@451
  3476
          return _out_map[key];
kpeter@451
  3477
        }
kpeter@451
  3478
      }
kpeter@451
  3479
kpeter@451
  3480
      /// Returns a reference to the value associated with the given key.
deba@414
  3481
      Value& operator[](const Key& key) {
deba@488
  3482
        if (SplitNodesBase<const DGR>::inNode(key)) {
deba@416
  3483
          return _in_map[key];
deba@416
  3484
        } else {
deba@416
  3485
          return _out_map[key];
deba@416
  3486
        }
deba@414
  3487
      }
deba@414
  3488
kpeter@451
  3489
      /// Sets the value associated with the given key.
deba@414
  3490
      void set(const Key& key, const Value& value) {
deba@488
  3491
        if (SplitNodesBase<const DGR>::inNode(key)) {
deba@416
  3492
          _in_map.set(key, value);
deba@416
  3493
        } else {
deba@416
  3494
          _out_map.set(key, value);
deba@416
  3495
        }
deba@414
  3496
      }
deba@416
  3497
deba@414
  3498
    private:
deba@416
  3499
kpeter@559
  3500
      IN& _in_map;
kpeter@559
  3501
      OUT& _out_map;
deba@416
  3502
deba@414
  3503
    };
deba@414
  3504
deba@414
  3505
kpeter@451
  3506
    /// \brief Returns a combined node map
deba@416
  3507
    ///
kpeter@451
  3508
    /// This function just returns a combined node map.
kpeter@559
  3509
    template <typename IN, typename OUT>
kpeter@559
  3510
    static CombinedNodeMap<IN, OUT>
kpeter@559
  3511
    combinedNodeMap(IN& in_map, OUT& out_map) {
kpeter@559
  3512
      return CombinedNodeMap<IN, OUT>(in_map, out_map);
deba@414
  3513
    }
deba@414
  3514
kpeter@559
  3515
    template <typename IN, typename OUT>
kpeter@559
  3516
    static CombinedNodeMap<const IN, OUT>
kpeter@559
  3517
    combinedNodeMap(const IN& in_map, OUT& out_map) {
kpeter@559
  3518
      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
deba@414
  3519
    }
deba@414
  3520
kpeter@559
  3521
    template <typename IN, typename OUT>
kpeter@559
  3522
    static CombinedNodeMap<IN, const OUT>
kpeter@559
  3523
    combinedNodeMap(IN& in_map, const OUT& out_map) {
kpeter@559
  3524
      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
deba@414
  3525
    }
deba@414
  3526
kpeter@559
  3527
    template <typename IN, typename OUT>
kpeter@559
  3528
    static CombinedNodeMap<const IN, const OUT>
kpeter@559
  3529
    combinedNodeMap(const IN& in_map, const OUT& out_map) {
kpeter@559
  3530
      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
deba@414
  3531
    }
deba@414
  3532
kpeter@451
  3533
    /// \brief Arc map combined from an arc map and a node map of the
kpeter@451
  3534
    /// original digraph.
deba@414
  3535
    ///
kpeter@451
  3536
    /// This map adaptor class adapts an arc map and a node map of the
kpeter@451
  3537
    /// original digraph to get an arc map of the split digraph.
kpeter@559
  3538
    /// Its value type is inherited from the original arc map type (\c AM).
kpeter@559
  3539
    /// \tparam AM The type of the arc map.
kpeter@559
  3540
    /// \tparam NM the type of the node map.
kpeter@559
  3541
    template <typename AM, typename NM>
deba@414
  3542
    class CombinedArcMap {
deba@414
  3543
    public:
deba@416
  3544
kpeter@451
  3545
      /// The key type of the map
deba@414
  3546
      typedef Arc Key;
kpeter@451
  3547
      /// The value type of the map
kpeter@559
  3548
      typedef typename AM::Value Value;
kpeter@559
  3549
kpeter@559
  3550
      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
kpeter@559
  3551
      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
kpeter@559
  3552
      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
kpeter@559
  3553
      typedef typename MapTraits<AM>::ReturnValue Reference;
kpeter@559
  3554
      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
kpeter@449
  3555
kpeter@451
  3556
      /// Constructor
kpeter@559
  3557
      CombinedArcMap(AM& arc_map, NM& node_map)
deba@416
  3558
        : _arc_map(arc_map), _node_map(node_map) {}
deba@414
  3559
kpeter@451
  3560
      /// Returns the value associated with the given key.
kpeter@451
  3561
      Value operator[](const Key& arc) const {
deba@488
  3562
        if (SplitNodesBase<const DGR>::origArc(arc)) {
kpeter@451
  3563
          return _arc_map[arc];
kpeter@451
  3564
        } else {
kpeter@451
  3565
          return _node_map[arc];
kpeter@451
  3566
        }
kpeter@451
  3567
      }
kpeter@451
  3568
kpeter@451
  3569
      /// Returns a reference to the value associated with the given key.
kpeter@451
  3570
      Value& operator[](const Key& arc) {
deba@488
  3571
        if (SplitNodesBase<const DGR>::origArc(arc)) {
kpeter@451
  3572
          return _arc_map[arc];
kpeter@451
  3573
        } else {
kpeter@451
  3574
          return _node_map[arc];
kpeter@451
  3575
        }
kpeter@451
  3576
      }
kpeter@451
  3577
kpeter@451
  3578
      /// Sets the value associated with the given key.
deba@414
  3579
      void set(const Arc& arc, const Value& val) {
deba@488
  3580
        if (SplitNodesBase<const DGR>::origArc(arc)) {
deba@416
  3581
          _arc_map.set(arc, val);
deba@416
  3582
        } else {
deba@416
  3583
          _node_map.set(arc, val);
deba@416
  3584
        }
deba@414
  3585
      }
deba@414
  3586
deba@414
  3587
    private:
kpeter@559
  3588
kpeter@559
  3589
      AM& _arc_map;
kpeter@559
  3590
      NM& _node_map;
kpeter@559
  3591
deba@414
  3592
    };
deba@416
  3593
kpeter@451
  3594
    /// \brief Returns a combined arc map
deba@416
  3595
    ///
kpeter@451
  3596
    /// This function just returns a combined arc map.
kpeter@453
  3597
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3598
    static CombinedArcMap<ArcMap, NodeMap>
kpeter@453
  3599
    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
kpeter@453
  3600
      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
deba@414
  3601
    }
deba@414
  3602
kpeter@453
  3603
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3604
    static CombinedArcMap<const ArcMap, NodeMap>
kpeter@453
  3605
    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
kpeter@453
  3606
      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
deba@414
  3607
    }
deba@414
  3608
kpeter@453
  3609
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3610
    static CombinedArcMap<ArcMap, const NodeMap>
kpeter@453
  3611
    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
kpeter@453
  3612
      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
deba@414
  3613
    }
deba@414
  3614
kpeter@453
  3615
    template <typename ArcMap, typename NodeMap>
kpeter@453
  3616
    static CombinedArcMap<const ArcMap, const NodeMap>
kpeter@453
  3617
    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
kpeter@453
  3618
      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
deba@414
  3619
    }
deba@414
  3620
deba@414
  3621
  };
deba@414
  3622
kpeter@451
  3623
  /// \brief Returns a (read-only) SplitNodes adaptor
deba@414
  3624
  ///
kpeter@451
  3625
  /// This function just returns a (read-only) \ref SplitNodes adaptor.
kpeter@451
  3626
  /// \ingroup graph_adaptors
kpeter@451
  3627
  /// \relates SplitNodes
deba@488
  3628
  template<typename DGR>
deba@488
  3629
  SplitNodes<DGR>
deba@488
  3630
  splitNodes(const DGR& digraph) {
deba@488
  3631
    return SplitNodes<DGR>(digraph);
deba@414
  3632
  }
deba@414
  3633
deba@488
  3634
#undef LEMON_SCOPE_FIX
deba@488
  3635
deba@414
  3636
} //namespace lemon
deba@414
  3637
deba@416
  3638
#endif //LEMON_ADAPTORS_H