test/min_cost_flow_test.cc
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 12 May 2009 11:49:13 +0100
changeset 665 e652b6f9a29f
parent 642 111698359429
child 669 4faca85d40e6
permissions -rw-r--r--
Update NEWS file
kpeter@601
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@601
     2
 *
kpeter@601
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@601
     4
 *
kpeter@601
     5
 * Copyright (C) 2003-2009
kpeter@601
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@601
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@601
     8
 *
kpeter@601
     9
 * Permission to use, modify and distribute this software is granted
kpeter@601
    10
 * provided that this copyright notice appears in all copies. For
kpeter@601
    11
 * precise terms see the accompanying LICENSE file.
kpeter@601
    12
 *
kpeter@601
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@601
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@601
    15
 * purpose.
kpeter@601
    16
 *
kpeter@601
    17
 */
kpeter@601
    18
kpeter@601
    19
#include <iostream>
kpeter@601
    20
#include <fstream>
kpeter@640
    21
#include <limits>
kpeter@601
    22
kpeter@601
    23
#include <lemon/list_graph.h>
kpeter@601
    24
#include <lemon/lgf_reader.h>
kpeter@601
    25
kpeter@601
    26
#include <lemon/network_simplex.h>
kpeter@601
    27
kpeter@601
    28
#include <lemon/concepts/digraph.h>
kpeter@601
    29
#include <lemon/concept_check.h>
kpeter@601
    30
kpeter@601
    31
#include "test_tools.h"
kpeter@601
    32
kpeter@601
    33
using namespace lemon;
kpeter@601
    34
kpeter@601
    35
char test_lgf[] =
kpeter@601
    36
  "@nodes\n"
kpeter@640
    37
  "label  sup1 sup2 sup3 sup4 sup5 sup6\n"
kpeter@640
    38
  "    1    20   27    0   30   20   30\n"
kpeter@640
    39
  "    2    -4    0    0    0   -8   -3\n"
kpeter@640
    40
  "    3     0    0    0    0    0    0\n"
kpeter@640
    41
  "    4     0    0    0    0    0    0\n"
kpeter@640
    42
  "    5     9    0    0    0    6   11\n"
kpeter@640
    43
  "    6    -6    0    0    0   -5   -6\n"
kpeter@640
    44
  "    7     0    0    0    0    0    0\n"
kpeter@640
    45
  "    8     0    0    0    0    0    3\n"
kpeter@640
    46
  "    9     3    0    0    0    0    0\n"
kpeter@640
    47
  "   10    -2    0    0    0   -7   -2\n"
kpeter@640
    48
  "   11     0    0    0    0  -10    0\n"
kpeter@640
    49
  "   12   -20  -27    0  -30  -30  -20\n"
kpeter@640
    50
  "\n"                
kpeter@601
    51
  "@arcs\n"
kpeter@640
    52
  "       cost  cap low1 low2 low3\n"
kpeter@640
    53
  " 1  2    70   11    0    8    8\n"
kpeter@640
    54
  " 1  3   150    3    0    1    0\n"
kpeter@640
    55
  " 1  4    80   15    0    2    2\n"
kpeter@640
    56
  " 2  8    80   12    0    0    0\n"
kpeter@640
    57
  " 3  5   140    5    0    3    1\n"
kpeter@640
    58
  " 4  6    60   10    0    1    0\n"
kpeter@640
    59
  " 4  7    80    2    0    0    0\n"
kpeter@640
    60
  " 4  8   110    3    0    0    0\n"
kpeter@640
    61
  " 5  7    60   14    0    0    0\n"
kpeter@640
    62
  " 5 11   120   12    0    0    0\n"
kpeter@640
    63
  " 6  3     0    3    0    0    0\n"
kpeter@640
    64
  " 6  9   140    4    0    0    0\n"
kpeter@640
    65
  " 6 10    90    8    0    0    0\n"
kpeter@640
    66
  " 7  1    30    5    0    0   -5\n"
kpeter@640
    67
  " 8 12    60   16    0    4    3\n"
kpeter@640
    68
  " 9 12    50    6    0    0    0\n"
kpeter@640
    69
  "10 12    70   13    0    5    2\n"
kpeter@640
    70
  "10  2   100    7    0    0    0\n"
kpeter@640
    71
  "10  7    60   10    0    0   -3\n"
kpeter@640
    72
  "11 10    20   14    0    6  -20\n"
kpeter@640
    73
  "12 11    30   10    0    0  -10\n"
kpeter@601
    74
  "\n"
kpeter@601
    75
  "@attributes\n"
kpeter@601
    76
  "source 1\n"
kpeter@601
    77
  "target 12\n";
kpeter@601
    78
kpeter@601
    79
kpeter@640
    80
enum SupplyType {
kpeter@609
    81
  EQ,
kpeter@609
    82
  GEQ,
kpeter@609
    83
  LEQ
kpeter@609
    84
};
kpeter@609
    85
kpeter@601
    86
// Check the interface of an MCF algorithm
kpeter@642
    87
template <typename GR, typename Value, typename Cost>
kpeter@601
    88
class McfClassConcept
kpeter@601
    89
{
kpeter@601
    90
public:
kpeter@601
    91
kpeter@601
    92
  template <typename MCF>
kpeter@601
    93
  struct Constraints {
kpeter@601
    94
    void constraints() {
kpeter@601
    95
      checkConcept<concepts::Digraph, GR>();
kpeter@601
    96
kpeter@605
    97
      MCF mcf(g);
kpeter@642
    98
      const MCF& const_mcf = mcf;
kpeter@601
    99
kpeter@606
   100
      b = mcf.reset()
kpeter@606
   101
             .lowerMap(lower)
kpeter@605
   102
             .upperMap(upper)
kpeter@605
   103
             .costMap(cost)
kpeter@605
   104
             .supplyMap(sup)
kpeter@605
   105
             .stSupply(n, n, k)
kpeter@605
   106
             .run();
kpeter@605
   107
kpeter@640
   108
      c = const_mcf.totalCost();
kpeter@642
   109
      x = const_mcf.template totalCost<double>();
kpeter@609
   110
      v = const_mcf.flow(a);
kpeter@640
   111
      c = const_mcf.potential(n);
kpeter@642
   112
      const_mcf.flowMap(fm);
kpeter@642
   113
      const_mcf.potentialMap(pm);
kpeter@601
   114
    }
kpeter@601
   115
kpeter@601
   116
    typedef typename GR::Node Node;
kpeter@601
   117
    typedef typename GR::Arc Arc;
kpeter@642
   118
    typedef concepts::ReadMap<Node, Value> NM;
kpeter@642
   119
    typedef concepts::ReadMap<Arc, Value> VAM;
kpeter@607
   120
    typedef concepts::ReadMap<Arc, Cost> CAM;
kpeter@642
   121
    typedef concepts::WriteMap<Arc, Value> FlowMap;
kpeter@642
   122
    typedef concepts::WriteMap<Node, Cost> PotMap;
kpeter@601
   123
kpeter@601
   124
    const GR &g;
kpeter@642
   125
    const VAM &lower;
kpeter@642
   126
    const VAM &upper;
kpeter@607
   127
    const CAM &cost;
kpeter@601
   128
    const NM &sup;
kpeter@601
   129
    const Node &n;
kpeter@601
   130
    const Arc &a;
kpeter@642
   131
    const Value &k;
kpeter@642
   132
    FlowMap fm;
kpeter@642
   133
    PotMap pm;
kpeter@605
   134
    bool b;
kpeter@642
   135
    double x;
kpeter@642
   136
    typename MCF::Value v;
kpeter@642
   137
    typename MCF::Cost c;
kpeter@601
   138
  };
kpeter@601
   139
kpeter@601
   140
};
kpeter@601
   141
kpeter@601
   142
kpeter@601
   143
// Check the feasibility of the given flow (primal soluiton)
kpeter@601
   144
template < typename GR, typename LM, typename UM,
kpeter@601
   145
           typename SM, typename FM >
kpeter@601
   146
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
kpeter@609
   147
                const SM& supply, const FM& flow,
kpeter@640
   148
                SupplyType type = EQ )
kpeter@601
   149
{
kpeter@601
   150
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@601
   151
kpeter@601
   152
  for (ArcIt e(gr); e != INVALID; ++e) {
kpeter@601
   153
    if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
kpeter@601
   154
  }
kpeter@601
   155
kpeter@601
   156
  for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@601
   157
    typename SM::Value sum = 0;
kpeter@601
   158
    for (OutArcIt e(gr, n); e != INVALID; ++e)
kpeter@601
   159
      sum += flow[e];
kpeter@601
   160
    for (InArcIt e(gr, n); e != INVALID; ++e)
kpeter@601
   161
      sum -= flow[e];
kpeter@609
   162
    bool b = (type ==  EQ && sum == supply[n]) ||
kpeter@609
   163
             (type == GEQ && sum >= supply[n]) ||
kpeter@609
   164
             (type == LEQ && sum <= supply[n]);
kpeter@609
   165
    if (!b) return false;
kpeter@601
   166
  }
kpeter@601
   167
kpeter@601
   168
  return true;
kpeter@601
   169
}
kpeter@601
   170
kpeter@601
   171
// Check the feasibility of the given potentials (dual soluiton)
kpeter@605
   172
// using the "Complementary Slackness" optimality condition
kpeter@601
   173
template < typename GR, typename LM, typename UM,
kpeter@609
   174
           typename CM, typename SM, typename FM, typename PM >
kpeter@601
   175
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
kpeter@609
   176
                     const CM& cost, const SM& supply, const FM& flow, 
kpeter@664
   177
                     const PM& pi, SupplyType type )
kpeter@601
   178
{
kpeter@601
   179
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@601
   180
kpeter@601
   181
  bool opt = true;
kpeter@601
   182
  for (ArcIt e(gr); opt && e != INVALID; ++e) {
kpeter@601
   183
    typename CM::Value red_cost =
kpeter@601
   184
      cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
kpeter@601
   185
    opt = red_cost == 0 ||
kpeter@601
   186
          (red_cost > 0 && flow[e] == lower[e]) ||
kpeter@601
   187
          (red_cost < 0 && flow[e] == upper[e]);
kpeter@601
   188
  }
kpeter@609
   189
  
kpeter@609
   190
  for (NodeIt n(gr); opt && n != INVALID; ++n) {
kpeter@609
   191
    typename SM::Value sum = 0;
kpeter@609
   192
    for (OutArcIt e(gr, n); e != INVALID; ++e)
kpeter@609
   193
      sum += flow[e];
kpeter@609
   194
    for (InArcIt e(gr, n); e != INVALID; ++e)
kpeter@609
   195
      sum -= flow[e];
kpeter@664
   196
    if (type != LEQ) {
kpeter@664
   197
      opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
kpeter@664
   198
    } else {
kpeter@664
   199
      opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
kpeter@664
   200
    }
kpeter@609
   201
  }
kpeter@609
   202
  
kpeter@601
   203
  return opt;
kpeter@601
   204
}
kpeter@601
   205
kpeter@664
   206
// Check whether the dual cost is equal to the primal cost
kpeter@664
   207
template < typename GR, typename LM, typename UM,
kpeter@664
   208
           typename CM, typename SM, typename PM >
kpeter@664
   209
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
kpeter@664
   210
                    const CM& cost, const SM& supply, const PM& pi,
kpeter@664
   211
                    typename CM::Value total )
kpeter@664
   212
{
kpeter@664
   213
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@664
   214
kpeter@664
   215
  typename CM::Value dual_cost = 0;
kpeter@664
   216
  SM red_supply(gr);
kpeter@664
   217
  for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@664
   218
    red_supply[n] = supply[n];
kpeter@664
   219
  }
kpeter@664
   220
  for (ArcIt a(gr); a != INVALID; ++a) {
kpeter@664
   221
    if (lower[a] != 0) {
kpeter@664
   222
      dual_cost += lower[a] * cost[a];
kpeter@664
   223
      red_supply[gr.source(a)] -= lower[a];
kpeter@664
   224
      red_supply[gr.target(a)] += lower[a];
kpeter@664
   225
    }
kpeter@664
   226
  }
kpeter@664
   227
  
kpeter@664
   228
  for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@664
   229
    dual_cost -= red_supply[n] * pi[n];
kpeter@664
   230
  }
kpeter@664
   231
  for (ArcIt a(gr); a != INVALID; ++a) {
kpeter@664
   232
    typename CM::Value red_cost =
kpeter@664
   233
      cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
kpeter@664
   234
    dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
kpeter@664
   235
  }
kpeter@664
   236
  
kpeter@664
   237
  return dual_cost == total;
kpeter@664
   238
}
kpeter@664
   239
kpeter@601
   240
// Run a minimum cost flow algorithm and check the results
kpeter@601
   241
template < typename MCF, typename GR,
kpeter@601
   242
           typename LM, typename UM,
kpeter@640
   243
           typename CM, typename SM,
kpeter@640
   244
           typename PT >
kpeter@640
   245
void checkMcf( const MCF& mcf, PT mcf_result,
kpeter@601
   246
               const GR& gr, const LM& lower, const UM& upper,
kpeter@601
   247
               const CM& cost, const SM& supply,
kpeter@640
   248
               PT result, bool optimal, typename CM::Value total,
kpeter@609
   249
               const std::string &test_id = "",
kpeter@640
   250
               SupplyType type = EQ )
kpeter@601
   251
{
kpeter@601
   252
  check(mcf_result == result, "Wrong result " + test_id);
kpeter@640
   253
  if (optimal) {
kpeter@642
   254
    typename GR::template ArcMap<typename SM::Value> flow(gr);
kpeter@642
   255
    typename GR::template NodeMap<typename CM::Value> pi(gr);
kpeter@642
   256
    mcf.flowMap(flow);
kpeter@642
   257
    mcf.potentialMap(pi);
kpeter@642
   258
    check(checkFlow(gr, lower, upper, supply, flow, type),
kpeter@601
   259
          "The flow is not feasible " + test_id);
kpeter@601
   260
    check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
kpeter@664
   261
    check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
kpeter@601
   262
          "Wrong potentials " + test_id);
kpeter@664
   263
    check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
kpeter@664
   264
          "Wrong dual cost " + test_id);
kpeter@601
   265
  }
kpeter@601
   266
}
kpeter@601
   267
kpeter@601
   268
int main()
kpeter@601
   269
{
kpeter@601
   270
  // Check the interfaces
kpeter@601
   271
  {
kpeter@615
   272
    typedef concepts::Digraph GR;
kpeter@642
   273
    checkConcept< McfClassConcept<GR, int, int>,
kpeter@642
   274
                  NetworkSimplex<GR> >();
kpeter@642
   275
    checkConcept< McfClassConcept<GR, double, double>,
kpeter@642
   276
                  NetworkSimplex<GR, double> >();
kpeter@642
   277
    checkConcept< McfClassConcept<GR, int, double>,
kpeter@642
   278
                  NetworkSimplex<GR, int, double> >();
kpeter@601
   279
  }
kpeter@601
   280
kpeter@601
   281
  // Run various MCF tests
kpeter@601
   282
  typedef ListDigraph Digraph;
kpeter@601
   283
  DIGRAPH_TYPEDEFS(ListDigraph);
kpeter@601
   284
kpeter@601
   285
  // Read the test digraph
kpeter@601
   286
  Digraph gr;
kpeter@640
   287
  Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
kpeter@640
   288
  Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
kpeter@605
   289
  ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
kpeter@601
   290
  Node v, w;
kpeter@601
   291
kpeter@601
   292
  std::istringstream input(test_lgf);
kpeter@601
   293
  DigraphReader<Digraph>(gr, input)
kpeter@601
   294
    .arcMap("cost", c)
kpeter@601
   295
    .arcMap("cap", u)
kpeter@601
   296
    .arcMap("low1", l1)
kpeter@601
   297
    .arcMap("low2", l2)
kpeter@640
   298
    .arcMap("low3", l3)
kpeter@601
   299
    .nodeMap("sup1", s1)
kpeter@601
   300
    .nodeMap("sup2", s2)
kpeter@601
   301
    .nodeMap("sup3", s3)
kpeter@609
   302
    .nodeMap("sup4", s4)
kpeter@609
   303
    .nodeMap("sup5", s5)
kpeter@640
   304
    .nodeMap("sup6", s6)
kpeter@601
   305
    .node("source", v)
kpeter@601
   306
    .node("target", w)
kpeter@601
   307
    .run();
kpeter@640
   308
  
kpeter@664
   309
  // Build test digraphs with negative costs
kpeter@664
   310
  Digraph neg_gr;
kpeter@664
   311
  Node n1 = neg_gr.addNode();
kpeter@664
   312
  Node n2 = neg_gr.addNode();
kpeter@664
   313
  Node n3 = neg_gr.addNode();
kpeter@664
   314
  Node n4 = neg_gr.addNode();
kpeter@664
   315
  Node n5 = neg_gr.addNode();
kpeter@664
   316
  Node n6 = neg_gr.addNode();
kpeter@664
   317
  Node n7 = neg_gr.addNode();
kpeter@640
   318
  
kpeter@664
   319
  Arc a1 = neg_gr.addArc(n1, n2);
kpeter@664
   320
  Arc a2 = neg_gr.addArc(n1, n3);
kpeter@664
   321
  Arc a3 = neg_gr.addArc(n2, n4);
kpeter@664
   322
  Arc a4 = neg_gr.addArc(n3, n4);
kpeter@664
   323
  Arc a5 = neg_gr.addArc(n3, n2);
kpeter@664
   324
  Arc a6 = neg_gr.addArc(n5, n3);
kpeter@664
   325
  Arc a7 = neg_gr.addArc(n5, n6);
kpeter@664
   326
  Arc a8 = neg_gr.addArc(n6, n7);
kpeter@664
   327
  Arc a9 = neg_gr.addArc(n7, n5);
kpeter@640
   328
  
kpeter@664
   329
  Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
kpeter@664
   330
  ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
kpeter@664
   331
  Digraph::NodeMap<int> neg_s(neg_gr, 0);
kpeter@640
   332
  
kpeter@664
   333
  neg_l2[a7] =  1000;
kpeter@664
   334
  neg_l2[a8] = -1000;
kpeter@640
   335
  
kpeter@664
   336
  neg_s[n1] =  100;
kpeter@664
   337
  neg_s[n4] = -100;
kpeter@640
   338
  
kpeter@664
   339
  neg_c[a1] =  100;
kpeter@664
   340
  neg_c[a2] =   30;
kpeter@664
   341
  neg_c[a3] =   20;
kpeter@664
   342
  neg_c[a4] =   80;
kpeter@664
   343
  neg_c[a5] =   50;
kpeter@664
   344
  neg_c[a6] =   10;
kpeter@664
   345
  neg_c[a7] =   80;
kpeter@664
   346
  neg_c[a8] =   30;
kpeter@664
   347
  neg_c[a9] = -120;
kpeter@664
   348
kpeter@664
   349
  Digraph negs_gr;
kpeter@664
   350
  Digraph::NodeMap<int> negs_s(negs_gr);
kpeter@664
   351
  Digraph::ArcMap<int> negs_c(negs_gr);
kpeter@664
   352
  ConstMap<Arc, int> negs_l(0), negs_u(1000);
kpeter@664
   353
  n1 = negs_gr.addNode();
kpeter@664
   354
  n2 = negs_gr.addNode();
kpeter@664
   355
  negs_s[n1] = 100;
kpeter@664
   356
  negs_s[n2] = -300;
kpeter@664
   357
  negs_c[negs_gr.addArc(n1, n2)] = -1;
kpeter@664
   358
kpeter@601
   359
kpeter@605
   360
  // A. Test NetworkSimplex with the default pivot rule
kpeter@601
   361
  {
kpeter@606
   362
    NetworkSimplex<Digraph> mcf(gr);
kpeter@601
   363
kpeter@609
   364
    // Check the equality form
kpeter@606
   365
    mcf.upperMap(u).costMap(c);
kpeter@606
   366
    checkMcf(mcf, mcf.supplyMap(s1).run(),
kpeter@640
   367
             gr, l1, u, c, s1, mcf.OPTIMAL, true,   5240, "#A1");
kpeter@606
   368
    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
kpeter@640
   369
             gr, l1, u, c, s2, mcf.OPTIMAL, true,   7620, "#A2");
kpeter@606
   370
    mcf.lowerMap(l2);
kpeter@606
   371
    checkMcf(mcf, mcf.supplyMap(s1).run(),
kpeter@640
   372
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#A3");
kpeter@606
   373
    checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
kpeter@640
   374
             gr, l2, u, c, s2, mcf.OPTIMAL, true,   8010, "#A4");
kpeter@606
   375
    mcf.reset();
kpeter@606
   376
    checkMcf(mcf, mcf.supplyMap(s1).run(),
kpeter@640
   377
             gr, l1, cu, cc, s1, mcf.OPTIMAL, true,   74, "#A5");
kpeter@606
   378
    checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
kpeter@640
   379
             gr, l2, cu, cc, s2, mcf.OPTIMAL, true,   94, "#A6");
kpeter@606
   380
    mcf.reset();
kpeter@606
   381
    checkMcf(mcf, mcf.run(),
kpeter@640
   382
             gr, l1, cu, cc, s3, mcf.OPTIMAL, true,    0, "#A7");
kpeter@640
   383
    checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
kpeter@640
   384
             gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
kpeter@640
   385
    mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
kpeter@640
   386
    checkMcf(mcf, mcf.run(),
kpeter@640
   387
             gr, l3, u, c, s4, mcf.OPTIMAL, true,   6360, "#A9");
kpeter@609
   388
kpeter@609
   389
    // Check the GEQ form
kpeter@640
   390
    mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
kpeter@609
   391
    checkMcf(mcf, mcf.run(),
kpeter@640
   392
             gr, l1, u, c, s5, mcf.OPTIMAL, true,   3530, "#A10", GEQ);
kpeter@640
   393
    mcf.supplyType(mcf.GEQ);
kpeter@609
   394
    checkMcf(mcf, mcf.lowerMap(l2).run(),
kpeter@640
   395
             gr, l2, u, c, s5, mcf.OPTIMAL, true,   4540, "#A11", GEQ);
kpeter@664
   396
    mcf.supplyMap(s6);
kpeter@609
   397
    checkMcf(mcf, mcf.run(),
kpeter@640
   398
             gr, l2, u, c, s6, mcf.INFEASIBLE, false,  0, "#A12", GEQ);
kpeter@609
   399
kpeter@609
   400
    // Check the LEQ form
kpeter@640
   401
    mcf.reset().supplyType(mcf.LEQ);
kpeter@640
   402
    mcf.upperMap(u).costMap(c).supplyMap(s6);
kpeter@609
   403
    checkMcf(mcf, mcf.run(),
kpeter@640
   404
             gr, l1, u, c, s6, mcf.OPTIMAL, true,   5080, "#A13", LEQ);
kpeter@609
   405
    checkMcf(mcf, mcf.lowerMap(l2).run(),
kpeter@640
   406
             gr, l2, u, c, s6, mcf.OPTIMAL, true,   5930, "#A14", LEQ);
kpeter@664
   407
    mcf.supplyMap(s5);
kpeter@609
   408
    checkMcf(mcf, mcf.run(),
kpeter@640
   409
             gr, l2, u, c, s5, mcf.INFEASIBLE, false,  0, "#A15", LEQ);
kpeter@640
   410
kpeter@640
   411
    // Check negative costs
kpeter@664
   412
    NetworkSimplex<Digraph> neg_mcf(neg_gr);
kpeter@664
   413
    neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
kpeter@664
   414
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
kpeter@664
   415
      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A16");
kpeter@664
   416
    neg_mcf.upperMap(neg_u2);
kpeter@664
   417
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
kpeter@664
   418
      neg_c, neg_s, neg_mcf.OPTIMAL, true,  -40000, "#A17");
kpeter@664
   419
    neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
kpeter@664
   420
    checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
kpeter@664
   421
      neg_c, neg_s, neg_mcf.UNBOUNDED, false,    0, "#A18");
kpeter@664
   422
      
kpeter@664
   423
    NetworkSimplex<Digraph> negs_mcf(negs_gr);
kpeter@664
   424
    negs_mcf.costMap(negs_c).supplyMap(negs_s);
kpeter@664
   425
    checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
kpeter@664
   426
      negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
kpeter@601
   427
  }
kpeter@601
   428
kpeter@605
   429
  // B. Test NetworkSimplex with each pivot rule
kpeter@601
   430
  {
kpeter@606
   431
    NetworkSimplex<Digraph> mcf(gr);
kpeter@640
   432
    mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
kpeter@601
   433
kpeter@606
   434
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
kpeter@640
   435
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B1");
kpeter@606
   436
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
kpeter@640
   437
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B2");
kpeter@606
   438
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
kpeter@640
   439
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B3");
kpeter@606
   440
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
kpeter@640
   441
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B4");
kpeter@606
   442
    checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
kpeter@640
   443
             gr, l2, u, c, s1, mcf.OPTIMAL, true,   5970, "#B5");
kpeter@601
   444
  }
kpeter@601
   445
kpeter@601
   446
  return 0;
kpeter@601
   447
}