lemon/nauty_reader.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 17 Apr 2009 18:04:36 +0200
changeset 609 e6927fe719e6
parent 359 0eec1736ff1d
permissions -rw-r--r--
Support >= and <= constraints in NetworkSimplex (#219, #234)

By default the same inequality constraints are supported as by
Circulation (the GEQ form), but the LEQ form can also be selected
using the problemType() function.

The documentation of the min. cost flow module is reworked and
extended with important notes and explanations about the different
variants of the problem and about the dual solution and optimality
conditions.
deba@348
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@348
     2
 *
deba@348
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@348
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
deba@348
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@348
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@348
     8
 *
deba@348
     9
 * Permission to use, modify and distribute this software is granted
deba@348
    10
 * provided that this copyright notice appears in all copies. For
deba@348
    11
 * precise terms see the accompanying LICENSE file.
deba@348
    12
 *
deba@348
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@348
    14
 * express or implied, and with no claim as to its suitability for any
deba@348
    15
 * purpose.
deba@348
    16
 *
deba@348
    17
 */
deba@348
    18
deba@348
    19
#ifndef LEMON_NAUTY_READER_H
deba@348
    20
#define LEMON_NAUTY_READER_H
deba@348
    21
deba@348
    22
#include <vector>
deba@348
    23
#include <iostream>
deba@348
    24
#include <string>
deba@348
    25
deba@348
    26
/// \ingroup nauty_group
deba@348
    27
/// \file
deba@348
    28
/// \brief Nauty file reader.
kpeter@351
    29
deba@348
    30
namespace lemon {
deba@348
    31
deba@348
    32
  /// \ingroup nauty_group
deba@348
    33
  ///
deba@348
    34
  /// \brief Nauty file reader
deba@348
    35
  ///
deba@348
    36
  /// The \e geng program is in the \e gtools suite of the nauty
deba@348
    37
  /// package. This tool can generate all non-isomorphic undirected
kpeter@352
    38
  /// graphs of several classes with given node number (e.g.
deba@348
    39
  /// general, connected, biconnected, triangle-free, 4-cycle-free,
deba@348
    40
  /// bipartite and graphs with given edge number and degree
kpeter@358
    41
  /// constraints). This function reads a \e nauty \e graph6 \e format
deba@348
    42
  /// line from the given stream and builds it in the given graph.
deba@348
    43
  ///
deba@348
    44
  /// The site of nauty package: http://cs.anu.edu.au/~bdm/nauty/
deba@348
    45
  ///
kpeter@352
    46
  /// For example, the number of all non-isomorphic planar graphs
kpeter@352
    47
  /// can be computed with the following code.
deba@348
    48
  ///\code
deba@348
    49
  /// int num = 0;
deba@348
    50
  /// SmartGraph graph;
kpeter@359
    51
  /// while (readNautyGraph(graph, std::cin)) {
deba@350
    52
  ///   PlanarityChecking<SmartGraph> pc(graph);
deba@348
    53
  ///   if (pc.run()) ++num;
deba@348
    54
  /// }
deba@348
    55
  /// std::cout << "Number of planar graphs: " << num << std::endl;
deba@348
    56
  ///\endcode
deba@348
    57
  ///
deba@348
    58
  /// The nauty files are quite huge, therefore instead of the direct
kpeter@352
    59
  /// file generation pipelining is recommended. For example,
deba@348
    60
  ///\code
kpeter@352
    61
  /// ./geng -c 10 | ./num_of_planar_graphs
deba@348
    62
  ///\endcode
deba@348
    63
  template <typename Graph>
kpeter@359
    64
  std::istream& readNautyGraph(Graph& graph, std::istream& is = std::cin) {
deba@348
    65
    graph.clear();
deba@348
    66
deba@348
    67
    std::string line;
deba@348
    68
    if (getline(is, line)) {
deba@348
    69
      int index = 0;
deba@348
    70
deba@348
    71
      int n;
deba@348
    72
deba@348
    73
      if (line[index] == '>') {
deba@348
    74
        index += 10;
deba@348
    75
      }
deba@348
    76
deba@348
    77
      char c = line[index++]; c -= 63;
deba@348
    78
      if (c != 63) {
deba@348
    79
        n = int(c);
deba@348
    80
      } else {
deba@348
    81
        c = line[index++]; c -= 63;
deba@348
    82
        n = (int(c) << 12);
deba@348
    83
        c = line[index++]; c -= 63;
deba@348
    84
        n |= (int(c) << 6);
deba@348
    85
        c = line[index++]; c -= 63;
deba@348
    86
        n |= int(c);
deba@348
    87
      }
deba@348
    88
deba@348
    89
      std::vector<typename Graph::Node> nodes;
deba@348
    90
      for (int i = 0; i < n; ++i) {
deba@348
    91
        nodes.push_back(graph.addNode());
deba@348
    92
      }
deba@348
    93
deba@348
    94
      int bit = -1;
deba@348
    95
      for (int j = 0; j < n; ++j) {
deba@348
    96
        for (int i = 0; i < j; ++i) {
deba@348
    97
          if (bit == -1) {
deba@348
    98
            c = line[index++]; c -= 63;
deba@348
    99
            bit = 5;
deba@348
   100
          }
deba@348
   101
          bool b = (c & (1 << (bit--))) != 0;
deba@348
   102
deba@348
   103
          if (b) {
deba@348
   104
            graph.addEdge(nodes[i], nodes[j]);
deba@348
   105
          }
deba@348
   106
        }
deba@348
   107
      }
deba@348
   108
    }
deba@348
   109
    return is;
deba@348
   110
  }
deba@348
   111
}
deba@348
   112
deba@348
   113
#endif