doc/groups.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:26:13 +0100
changeset 806 fa6f37d7a25b
parent 770 432c54cec63c
child 813 25804ef35064
permissions -rw-r--r--
Entirely rework CapacityScaling (#180)

- Use the new interface similarly to NetworkSimplex.
- Rework the implementation using an efficient internal structure
for handling the residual network. This improvement made the
code much faster (up to 2-5 times faster on large graphs).
- Handle GEQ supply type (LEQ is not supported).
- Handle negative costs for arcs of finite capacity.
(Note that this algorithm cannot handle arcs of negative cost
and infinite upper bound, thus it returns UNBOUNDED if such
an arc exists.)
- Extend the documentation.
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@40
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@40
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
kpeter@406
    19
namespace lemon {
kpeter@406
    20
alpar@40
    21
/**
alpar@40
    22
@defgroup datas Data Structures
kpeter@559
    23
This group contains the several data structures implemented in LEMON.
alpar@40
    24
*/
alpar@40
    25
alpar@40
    26
/**
alpar@40
    27
@defgroup graphs Graph Structures
alpar@40
    28
@ingroup datas
alpar@40
    29
\brief Graph structures implemented in LEMON.
alpar@40
    30
alpar@209
    31
The implementation of combinatorial algorithms heavily relies on
alpar@209
    32
efficient graph implementations. LEMON offers data structures which are
alpar@209
    33
planned to be easily used in an experimental phase of implementation studies,
alpar@209
    34
and thereafter the program code can be made efficient by small modifications.
alpar@40
    35
alpar@40
    36
The most efficient implementation of diverse applications require the
alpar@40
    37
usage of different physical graph implementations. These differences
alpar@40
    38
appear in the size of graph we require to handle, memory or time usage
alpar@40
    39
limitations or in the set of operations through which the graph can be
alpar@40
    40
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    41
the diverging requirements of the possible users.  In order to save on
alpar@40
    42
running time or on memory usage, some structures may fail to provide
kpeter@83
    43
some graph features like arc/edge or node deletion.
alpar@40
    44
alpar@209
    45
Alteration of standard containers need a very limited number of
alpar@209
    46
operations, these together satisfy the everyday requirements.
alpar@209
    47
In the case of graph structures, different operations are needed which do
alpar@209
    48
not alter the physical graph, but gives another view. If some nodes or
kpeter@83
    49
arcs have to be hidden or the reverse oriented graph have to be used, then
alpar@209
    50
this is the case. It also may happen that in a flow implementation
alpar@209
    51
the residual graph can be accessed by another algorithm, or a node-set
alpar@209
    52
is to be shrunk for another algorithm.
alpar@209
    53
LEMON also provides a variety of graphs for these requirements called
alpar@209
    54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
alpar@209
    55
in conjunction with other graph representations.
alpar@40
    56
alpar@40
    57
You are free to use the graph structure that fit your requirements
alpar@40
    58
the best, most graph algorithms and auxiliary data structures can be used
kpeter@314
    59
with any graph structure.
kpeter@314
    60
kpeter@314
    61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
alpar@40
    62
*/
alpar@40
    63
alpar@40
    64
/**
kpeter@451
    65
@defgroup graph_adaptors Adaptor Classes for Graphs
deba@416
    66
@ingroup graphs
kpeter@451
    67
\brief Adaptor classes for digraphs and graphs
kpeter@451
    68
kpeter@451
    69
This group contains several useful adaptor classes for digraphs and graphs.
deba@416
    70
deba@416
    71
The main parts of LEMON are the different graph structures, generic
kpeter@451
    72
graph algorithms, graph concepts, which couple them, and graph
deba@416
    73
adaptors. While the previous notions are more or less clear, the
deba@416
    74
latter one needs further explanation. Graph adaptors are graph classes
deba@416
    75
which serve for considering graph structures in different ways.
deba@416
    76
deba@416
    77
A short example makes this much clearer.  Suppose that we have an
kpeter@451
    78
instance \c g of a directed graph type, say ListDigraph and an algorithm
deba@416
    79
\code
deba@416
    80
template <typename Digraph>
deba@416
    81
int algorithm(const Digraph&);
deba@416
    82
\endcode
deba@416
    83
is needed to run on the reverse oriented graph.  It may be expensive
deba@416
    84
(in time or in memory usage) to copy \c g with the reversed
deba@416
    85
arcs.  In this case, an adaptor class is used, which (according
kpeter@451
    86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
kpeter@451
    87
The adaptor uses the original digraph structure and digraph operations when
kpeter@451
    88
methods of the reversed oriented graph are called.  This means that the adaptor
kpeter@451
    89
have minor memory usage, and do not perform sophisticated algorithmic
deba@416
    90
actions.  The purpose of it is to give a tool for the cases when a
deba@416
    91
graph have to be used in a specific alteration.  If this alteration is
kpeter@451
    92
obtained by a usual construction like filtering the node or the arc set or
deba@416
    93
considering a new orientation, then an adaptor is worthwhile to use.
deba@416
    94
To come back to the reverse oriented graph, in this situation
deba@416
    95
\code
deba@416
    96
template<typename Digraph> class ReverseDigraph;
deba@416
    97
\endcode
deba@416
    98
template class can be used. The code looks as follows
deba@416
    99
\code
deba@416
   100
ListDigraph g;
kpeter@451
   101
ReverseDigraph<ListDigraph> rg(g);
deba@416
   102
int result = algorithm(rg);
deba@416
   103
\endcode
kpeter@451
   104
During running the algorithm, the original digraph \c g is untouched.
kpeter@451
   105
This techniques give rise to an elegant code, and based on stable
deba@416
   106
graph adaptors, complex algorithms can be implemented easily.
deba@416
   107
kpeter@451
   108
In flow, circulation and matching problems, the residual
deba@416
   109
graph is of particular importance. Combining an adaptor implementing
kpeter@451
   110
this with shortest path algorithms or minimum mean cycle algorithms,
deba@416
   111
a range of weighted and cardinality optimization algorithms can be
deba@416
   112
obtained. For other examples, the interested user is referred to the
deba@416
   113
detailed documentation of particular adaptors.
deba@416
   114
deba@416
   115
The behavior of graph adaptors can be very different. Some of them keep
deba@416
   116
capabilities of the original graph while in other cases this would be
kpeter@451
   117
meaningless. This means that the concepts that they meet depend
kpeter@451
   118
on the graph adaptor, and the wrapped graph.
kpeter@451
   119
For example, if an arc of a reversed digraph is deleted, this is carried
kpeter@451
   120
out by deleting the corresponding arc of the original digraph, thus the
kpeter@451
   121
adaptor modifies the original digraph.
kpeter@451
   122
However in case of a residual digraph, this operation has no sense.
deba@416
   123
deba@416
   124
Let us stand one more example here to simplify your work.
kpeter@451
   125
ReverseDigraph has constructor
deba@416
   126
\code
deba@416
   127
ReverseDigraph(Digraph& digraph);
deba@416
   128
\endcode
kpeter@451
   129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
deba@416
   130
reference to a graph is given, then it have to be instantiated with
kpeter@451
   131
<tt>Digraph=const %ListDigraph</tt>.
deba@416
   132
\code
deba@416
   133
int algorithm1(const ListDigraph& g) {
kpeter@451
   134
  ReverseDigraph<const ListDigraph> rg(g);
deba@416
   135
  return algorithm2(rg);
deba@416
   136
}
deba@416
   137
\endcode
deba@416
   138
*/
deba@416
   139
deba@416
   140
/**
alpar@209
   141
@defgroup maps Maps
alpar@40
   142
@ingroup datas
kpeter@50
   143
\brief Map structures implemented in LEMON.
alpar@40
   144
kpeter@559
   145
This group contains the map structures implemented in LEMON.
kpeter@50
   146
kpeter@314
   147
LEMON provides several special purpose maps and map adaptors that e.g. combine
alpar@40
   148
new maps from existing ones.
kpeter@314
   149
kpeter@314
   150
<b>See also:</b> \ref map_concepts "Map Concepts".
alpar@40
   151
*/
alpar@40
   152
alpar@40
   153
/**
alpar@209
   154
@defgroup graph_maps Graph Maps
alpar@40
   155
@ingroup maps
kpeter@83
   156
\brief Special graph-related maps.
alpar@40
   157
kpeter@559
   158
This group contains maps that are specifically designed to assign
kpeter@406
   159
values to the nodes and arcs/edges of graphs.
kpeter@406
   160
kpeter@406
   161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
kpeter@406
   162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
alpar@40
   163
*/
alpar@40
   164
alpar@40
   165
/**
alpar@40
   166
\defgroup map_adaptors Map Adaptors
alpar@40
   167
\ingroup maps
alpar@40
   168
\brief Tools to create new maps from existing ones
alpar@40
   169
kpeter@559
   170
This group contains map adaptors that are used to create "implicit"
kpeter@50
   171
maps from other maps.
alpar@40
   172
kpeter@406
   173
Most of them are \ref concepts::ReadMap "read-only maps".
kpeter@83
   174
They can make arithmetic and logical operations between one or two maps
kpeter@83
   175
(negation, shifting, addition, multiplication, logical 'and', 'or',
kpeter@83
   176
'not' etc.) or e.g. convert a map to another one of different Value type.
alpar@40
   177
kpeter@50
   178
The typical usage of this classes is passing implicit maps to
alpar@40
   179
algorithms.  If a function type algorithm is called then the function
alpar@40
   180
type map adaptors can be used comfortable. For example let's see the
kpeter@314
   181
usage of map adaptors with the \c graphToEps() function.
alpar@40
   182
\code
alpar@40
   183
  Color nodeColor(int deg) {
alpar@40
   184
    if (deg >= 2) {
alpar@40
   185
      return Color(0.5, 0.0, 0.5);
alpar@40
   186
    } else if (deg == 1) {
alpar@40
   187
      return Color(1.0, 0.5, 1.0);
alpar@40
   188
    } else {
alpar@40
   189
      return Color(0.0, 0.0, 0.0);
alpar@40
   190
    }
alpar@40
   191
  }
alpar@209
   192
kpeter@83
   193
  Digraph::NodeMap<int> degree_map(graph);
alpar@209
   194
kpeter@314
   195
  graphToEps(graph, "graph.eps")
alpar@40
   196
    .coords(coords).scaleToA4().undirected()
kpeter@83
   197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
alpar@40
   198
    .run();
alpar@209
   199
\endcode
kpeter@83
   200
The \c functorToMap() function makes an \c int to \c Color map from the
kpeter@314
   201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
kpeter@83
   202
and the previously created map. The composed map is a proper function to
kpeter@83
   203
get the color of each node.
alpar@40
   204
alpar@40
   205
The usage with class type algorithms is little bit harder. In this
alpar@40
   206
case the function type map adaptors can not be used, because the
kpeter@50
   207
function map adaptors give back temporary objects.
alpar@40
   208
\code
kpeter@83
   209
  Digraph graph;
kpeter@83
   210
kpeter@83
   211
  typedef Digraph::ArcMap<double> DoubleArcMap;
kpeter@83
   212
  DoubleArcMap length(graph);
kpeter@83
   213
  DoubleArcMap speed(graph);
kpeter@83
   214
kpeter@83
   215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
alpar@40
   216
  TimeMap time(length, speed);
alpar@209
   217
kpeter@83
   218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
alpar@40
   219
  dijkstra.run(source, target);
alpar@40
   220
\endcode
kpeter@83
   221
We have a length map and a maximum speed map on the arcs of a digraph.
kpeter@83
   222
The minimum time to pass the arc can be calculated as the division of
kpeter@83
   223
the two maps which can be done implicitly with the \c DivMap template
alpar@40
   224
class. We use the implicit minimum time map as the length map of the
alpar@40
   225
\c Dijkstra algorithm.
alpar@40
   226
*/
alpar@40
   227
alpar@40
   228
/**
alpar@40
   229
@defgroup paths Path Structures
alpar@40
   230
@ingroup datas
kpeter@318
   231
\brief %Path structures implemented in LEMON.
alpar@40
   232
kpeter@559
   233
This group contains the path structures implemented in LEMON.
alpar@40
   234
kpeter@50
   235
LEMON provides flexible data structures to work with paths.
kpeter@50
   236
All of them have similar interfaces and they can be copied easily with
kpeter@50
   237
assignment operators and copy constructors. This makes it easy and
alpar@40
   238
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   239
any kind of path structure.
alpar@40
   240
kpeter@710
   241
\sa \ref concepts::Path "Path concept"
kpeter@710
   242
*/
kpeter@710
   243
kpeter@710
   244
/**
kpeter@710
   245
@defgroup heaps Heap Structures
kpeter@710
   246
@ingroup datas
kpeter@710
   247
\brief %Heap structures implemented in LEMON.
kpeter@710
   248
kpeter@710
   249
This group contains the heap structures implemented in LEMON.
kpeter@710
   250
kpeter@710
   251
LEMON provides several heap classes. They are efficient implementations
kpeter@710
   252
of the abstract data type \e priority \e queue. They store items with
kpeter@710
   253
specified values called \e priorities in such a way that finding and
kpeter@710
   254
removing the item with minimum priority are efficient.
kpeter@710
   255
The basic operations are adding and erasing items, changing the priority
kpeter@710
   256
of an item, etc.
kpeter@710
   257
kpeter@710
   258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
kpeter@710
   259
The heap implementations have the same interface, thus any of them can be
kpeter@710
   260
used easily in such algorithms.
kpeter@710
   261
kpeter@710
   262
\sa \ref concepts::Heap "Heap concept"
kpeter@710
   263
*/
kpeter@710
   264
kpeter@710
   265
/**
kpeter@710
   266
@defgroup matrices Matrices
kpeter@710
   267
@ingroup datas
kpeter@710
   268
\brief Two dimensional data storages implemented in LEMON.
kpeter@710
   269
kpeter@710
   270
This group contains two dimensional data storages implemented in LEMON.
alpar@40
   271
*/
alpar@40
   272
alpar@40
   273
/**
alpar@40
   274
@defgroup auxdat Auxiliary Data Structures
alpar@40
   275
@ingroup datas
kpeter@50
   276
\brief Auxiliary data structures implemented in LEMON.
alpar@40
   277
kpeter@559
   278
This group contains some data structures implemented in LEMON in
alpar@40
   279
order to make it easier to implement combinatorial algorithms.
alpar@40
   280
*/
alpar@40
   281
alpar@40
   282
/**
kpeter@714
   283
@defgroup geomdat Geometric Data Structures
kpeter@714
   284
@ingroup auxdat
kpeter@714
   285
\brief Geometric data structures implemented in LEMON.
kpeter@714
   286
kpeter@714
   287
This group contains geometric data structures implemented in LEMON.
kpeter@714
   288
kpeter@714
   289
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
kpeter@714
   290
   vector with the usual operations.
kpeter@714
   291
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
kpeter@714
   292
   rectangular bounding box of a set of \ref lemon::dim2::Point
kpeter@714
   293
   "dim2::Point"'s.
kpeter@714
   294
*/
kpeter@714
   295
kpeter@714
   296
/**
kpeter@714
   297
@defgroup matrices Matrices
kpeter@714
   298
@ingroup auxdat
kpeter@714
   299
\brief Two dimensional data storages implemented in LEMON.
kpeter@714
   300
kpeter@714
   301
This group contains two dimensional data storages implemented in LEMON.
kpeter@714
   302
*/
kpeter@714
   303
kpeter@714
   304
/**
alpar@40
   305
@defgroup algs Algorithms
kpeter@559
   306
\brief This group contains the several algorithms
alpar@40
   307
implemented in LEMON.
alpar@40
   308
kpeter@559
   309
This group contains the several algorithms
alpar@40
   310
implemented in LEMON.
alpar@40
   311
*/
alpar@40
   312
alpar@40
   313
/**
alpar@40
   314
@defgroup search Graph Search
alpar@40
   315
@ingroup algs
kpeter@50
   316
\brief Common graph search algorithms.
alpar@40
   317
kpeter@559
   318
This group contains the common graph search algorithms, namely
kpeter@755
   319
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
kpeter@755
   320
\ref clrs01algorithms.
alpar@40
   321
*/
alpar@40
   322
alpar@40
   323
/**
kpeter@314
   324
@defgroup shortest_path Shortest Path Algorithms
alpar@40
   325
@ingroup algs
kpeter@50
   326
\brief Algorithms for finding shortest paths.
alpar@40
   327
kpeter@755
   328
This group contains the algorithms for finding shortest paths in digraphs
kpeter@755
   329
\ref clrs01algorithms.
kpeter@406
   330
kpeter@406
   331
 - \ref Dijkstra algorithm for finding shortest paths from a source node
kpeter@406
   332
   when all arc lengths are non-negative.
kpeter@406
   333
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
kpeter@406
   334
   from a source node when arc lenghts can be either positive or negative,
kpeter@406
   335
   but the digraph should not contain directed cycles with negative total
kpeter@406
   336
   length.
kpeter@406
   337
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
kpeter@406
   338
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
kpeter@406
   339
   lenghts can be either positive or negative, but the digraph should
kpeter@406
   340
   not contain directed cycles with negative total length.
kpeter@406
   341
 - \ref Suurballe A successive shortest path algorithm for finding
kpeter@406
   342
   arc-disjoint paths between two nodes having minimum total length.
alpar@40
   343
*/
alpar@40
   344
alpar@209
   345
/**
kpeter@714
   346
@defgroup spantree Minimum Spanning Tree Algorithms
kpeter@714
   347
@ingroup algs
kpeter@714
   348
\brief Algorithms for finding minimum cost spanning trees and arborescences.
kpeter@714
   349
kpeter@714
   350
This group contains the algorithms for finding minimum cost spanning
kpeter@755
   351
trees and arborescences \ref clrs01algorithms.
kpeter@714
   352
*/
kpeter@714
   353
kpeter@714
   354
/**
kpeter@314
   355
@defgroup max_flow Maximum Flow Algorithms
alpar@209
   356
@ingroup algs
kpeter@50
   357
\brief Algorithms for finding maximum flows.
alpar@40
   358
kpeter@559
   359
This group contains the algorithms for finding maximum flows and
kpeter@755
   360
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
alpar@40
   361
kpeter@406
   362
The \e maximum \e flow \e problem is to find a flow of maximum value between
kpeter@406
   363
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
kpeter@609
   364
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
kpeter@406
   365
\f$s, t \in V\f$ source and target nodes.
kpeter@609
   366
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
kpeter@406
   367
following optimization problem.
alpar@40
   368
kpeter@609
   369
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
kpeter@609
   370
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
kpeter@609
   371
    \quad \forall u\in V\setminus\{s,t\} \f]
kpeter@609
   372
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
alpar@40
   373
kpeter@50
   374
LEMON contains several algorithms for solving maximum flow problems:
kpeter@755
   375
- \ref EdmondsKarp Edmonds-Karp algorithm
kpeter@755
   376
  \ref edmondskarp72theoretical.
kpeter@755
   377
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
kpeter@755
   378
  \ref goldberg88newapproach.
kpeter@755
   379
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
kpeter@755
   380
  \ref dinic70algorithm, \ref sleator83dynamic.
kpeter@755
   381
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
kpeter@755
   382
  \ref goldberg88newapproach, \ref sleator83dynamic.
alpar@40
   383
kpeter@755
   384
In most cases the \ref Preflow algorithm provides the
kpeter@406
   385
fastest method for computing a maximum flow. All implementations
kpeter@651
   386
also provide functions to query the minimum cut, which is the dual
kpeter@651
   387
problem of maximum flow.
kpeter@651
   388
kpeter@651
   389
\ref Circulation is a preflow push-relabel algorithm implemented directly 
kpeter@651
   390
for finding feasible circulations, which is a somewhat different problem,
kpeter@651
   391
but it is strongly related to maximum flow.
kpeter@651
   392
For more information, see \ref Circulation.
alpar@40
   393
*/
alpar@40
   394
alpar@40
   395
/**
kpeter@663
   396
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
alpar@40
   397
@ingroup algs
alpar@40
   398
kpeter@50
   399
\brief Algorithms for finding minimum cost flows and circulations.
alpar@40
   400
kpeter@609
   401
This group contains the algorithms for finding minimum cost flows and
kpeter@755
   402
circulations \ref amo93networkflows. For more information about this
kpeter@755
   403
problem and its dual solution, see \ref min_cost_flow
kpeter@755
   404
"Minimum Cost Flow Problem".
kpeter@406
   405
kpeter@663
   406
LEMON contains several algorithms for this problem.
kpeter@609
   407
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
kpeter@755
   408
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
kpeter@609
   409
 - \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on
kpeter@755
   410
   cost scaling \ref goldberg90approximation, \ref goldberg97efficient,
kpeter@755
   411
   \ref bunnagel98efficient.
kpeter@609
   412
 - \ref CapacityScaling Successive Shortest %Path algorithm with optional
kpeter@755
   413
   capacity scaling \ref edmondskarp72theoretical.
kpeter@755
   414
 - \ref CancelAndTighten The Cancel and Tighten algorithm
kpeter@755
   415
   \ref goldberg89cyclecanceling.
kpeter@755
   416
 - \ref CycleCanceling Cycle-Canceling algorithms
kpeter@755
   417
   \ref klein67primal, \ref goldberg89cyclecanceling.
kpeter@609
   418
kpeter@609
   419
In general NetworkSimplex is the most efficient implementation,
kpeter@609
   420
but in special cases other algorithms could be faster.
kpeter@609
   421
For example, if the total supply and/or capacities are rather small,
kpeter@609
   422
CapacityScaling is usually the fastest algorithm (without effective scaling).
alpar@40
   423
*/
alpar@40
   424
alpar@40
   425
/**
kpeter@314
   426
@defgroup min_cut Minimum Cut Algorithms
alpar@209
   427
@ingroup algs
alpar@40
   428
kpeter@50
   429
\brief Algorithms for finding minimum cut in graphs.
alpar@40
   430
kpeter@559
   431
This group contains the algorithms for finding minimum cut in graphs.
alpar@40
   432
kpeter@406
   433
The \e minimum \e cut \e problem is to find a non-empty and non-complete
kpeter@406
   434
\f$X\f$ subset of the nodes with minimum overall capacity on
kpeter@406
   435
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
kpeter@406
   436
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
kpeter@50
   437
cut is the \f$X\f$ solution of the next optimization problem:
alpar@40
   438
alpar@210
   439
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
kpeter@713
   440
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
alpar@40
   441
kpeter@50
   442
LEMON contains several algorithms related to minimum cut problems:
alpar@40
   443
kpeter@406
   444
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
kpeter@406
   445
  in directed graphs.
kpeter@406
   446
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
kpeter@406
   447
  calculating minimum cut in undirected graphs.
kpeter@559
   448
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
kpeter@406
   449
  all-pairs minimum cut in undirected graphs.
alpar@40
   450
alpar@40
   451
If you want to find minimum cut just between two distinict nodes,
kpeter@406
   452
see the \ref max_flow "maximum flow problem".
alpar@40
   453
*/
alpar@40
   454
alpar@40
   455
/**
kpeter@768
   456
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
kpeter@768
   457
@ingroup algs
kpeter@768
   458
\brief Algorithms for finding minimum mean cycles.
kpeter@768
   459
kpeter@771
   460
This group contains the algorithms for finding minimum mean cycles
kpeter@771
   461
\ref clrs01algorithms, \ref amo93networkflows.
kpeter@768
   462
kpeter@768
   463
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
kpeter@768
   464
of minimum mean length (cost) in a digraph.
kpeter@768
   465
The mean length of a cycle is the average length of its arcs, i.e. the
kpeter@768
   466
ratio between the total length of the cycle and the number of arcs on it.
kpeter@768
   467
kpeter@768
   468
This problem has an important connection to \e conservative \e length
kpeter@768
   469
\e functions, too. A length function on the arcs of a digraph is called
kpeter@768
   470
conservative if and only if there is no directed cycle of negative total
kpeter@768
   471
length. For an arbitrary length function, the negative of the minimum
kpeter@768
   472
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
kpeter@768
   473
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
kpeter@768
   474
function.
kpeter@768
   475
kpeter@768
   476
LEMON contains three algorithms for solving the minimum mean cycle problem:
kpeter@771
   477
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
kpeter@771
   478
  \ref dasdan98minmeancycle.
kpeter@768
   479
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
kpeter@771
   480
  version of Karp's algorithm \ref dasdan98minmeancycle.
kpeter@771
   481
- \ref Howard "Howard"'s policy iteration algorithm
kpeter@771
   482
  \ref dasdan98minmeancycle.
kpeter@768
   483
kpeter@768
   484
In practice, the Howard algorithm proved to be by far the most efficient
kpeter@768
   485
one, though the best known theoretical bound on its running time is
kpeter@768
   486
exponential.
kpeter@768
   487
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
kpeter@768
   488
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
kpeter@768
   489
applied early termination scheme.
kpeter@768
   490
*/
kpeter@768
   491
kpeter@768
   492
/**
kpeter@314
   493
@defgroup matching Matching Algorithms
alpar@40
   494
@ingroup algs
kpeter@50
   495
\brief Algorithms for finding matchings in graphs and bipartite graphs.
alpar@40
   496
kpeter@590
   497
This group contains the algorithms for calculating
alpar@40
   498
matchings in graphs and bipartite graphs. The general matching problem is
kpeter@590
   499
finding a subset of the edges for which each node has at most one incident
kpeter@590
   500
edge.
alpar@209
   501
alpar@40
   502
There are several different algorithms for calculate matchings in
alpar@40
   503
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   504
easier than in general graphs. The goal of the matching optimization
kpeter@406
   505
can be finding maximum cardinality, maximum weight or minimum cost
alpar@40
   506
matching. The search can be constrained to find perfect or
alpar@40
   507
maximum cardinality matching.
alpar@40
   508
kpeter@406
   509
The matching algorithms implemented in LEMON:
kpeter@406
   510
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
kpeter@406
   511
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@406
   512
- \ref PrBipartiteMatching Push-relabel algorithm
kpeter@406
   513
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@406
   514
- \ref MaxWeightedBipartiteMatching
kpeter@406
   515
  Successive shortest path algorithm for calculating maximum weighted
kpeter@406
   516
  matching and maximum weighted bipartite matching in bipartite graphs.
kpeter@406
   517
- \ref MinCostMaxBipartiteMatching
kpeter@406
   518
  Successive shortest path algorithm for calculating minimum cost maximum
kpeter@406
   519
  matching in bipartite graphs.
kpeter@406
   520
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
kpeter@406
   521
  maximum cardinality matching in general graphs.
kpeter@406
   522
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
kpeter@406
   523
  maximum weighted matching in general graphs.
kpeter@406
   524
- \ref MaxWeightedPerfectMatching
kpeter@406
   525
  Edmond's blossom shrinking algorithm for calculating maximum weighted
kpeter@406
   526
  perfect matching in general graphs.
alpar@40
   527
alpar@40
   528
\image html bipartite_matching.png
alpar@40
   529
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   530
*/
alpar@40
   531
alpar@40
   532
/**
kpeter@714
   533
@defgroup graph_properties Connectivity and Other Graph Properties
alpar@40
   534
@ingroup algs
kpeter@714
   535
\brief Algorithms for discovering the graph properties
alpar@40
   536
kpeter@714
   537
This group contains the algorithms for discovering the graph properties
kpeter@714
   538
like connectivity, bipartiteness, euler property, simplicity etc.
kpeter@714
   539
kpeter@714
   540
\image html connected_components.png
kpeter@714
   541
\image latex connected_components.eps "Connected components" width=\textwidth
kpeter@714
   542
*/
kpeter@714
   543
kpeter@714
   544
/**
kpeter@714
   545
@defgroup planar Planarity Embedding and Drawing
kpeter@714
   546
@ingroup algs
kpeter@714
   547
\brief Algorithms for planarity checking, embedding and drawing
kpeter@714
   548
kpeter@714
   549
This group contains the algorithms for planarity checking,
kpeter@714
   550
embedding and drawing.
kpeter@714
   551
kpeter@714
   552
\image html planar.png
kpeter@714
   553
\image latex planar.eps "Plane graph" width=\textwidth
kpeter@714
   554
*/
kpeter@714
   555
kpeter@714
   556
/**
kpeter@714
   557
@defgroup approx Approximation Algorithms
kpeter@714
   558
@ingroup algs
kpeter@714
   559
\brief Approximation algorithms.
kpeter@714
   560
kpeter@714
   561
This group contains the approximation and heuristic algorithms
kpeter@714
   562
implemented in LEMON.
alpar@40
   563
*/
alpar@40
   564
alpar@40
   565
/**
kpeter@314
   566
@defgroup auxalg Auxiliary Algorithms
alpar@40
   567
@ingroup algs
kpeter@50
   568
\brief Auxiliary algorithms implemented in LEMON.
alpar@40
   569
kpeter@559
   570
This group contains some algorithms implemented in LEMON
kpeter@50
   571
in order to make it easier to implement complex algorithms.
alpar@40
   572
*/
alpar@40
   573
alpar@40
   574
/**
alpar@40
   575
@defgroup gen_opt_group General Optimization Tools
kpeter@559
   576
\brief This group contains some general optimization frameworks
alpar@40
   577
implemented in LEMON.
alpar@40
   578
kpeter@559
   579
This group contains some general optimization frameworks
alpar@40
   580
implemented in LEMON.
alpar@40
   581
*/
alpar@40
   582
alpar@40
   583
/**
kpeter@755
   584
@defgroup lp_group LP and MIP Solvers
alpar@40
   585
@ingroup gen_opt_group
kpeter@755
   586
\brief LP and MIP solver interfaces for LEMON.
alpar@40
   587
kpeter@755
   588
This group contains LP and MIP solver interfaces for LEMON.
kpeter@755
   589
Various LP solvers could be used in the same manner with this
kpeter@755
   590
high-level interface.
kpeter@755
   591
kpeter@755
   592
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
kpeter@755
   593
\ref cplex, \ref soplex.
alpar@40
   594
*/
alpar@40
   595
alpar@209
   596
/**
kpeter@314
   597
@defgroup lp_utils Tools for Lp and Mip Solvers
alpar@40
   598
@ingroup lp_group
kpeter@50
   599
\brief Helper tools to the Lp and Mip solvers.
alpar@40
   600
alpar@40
   601
This group adds some helper tools to general optimization framework
alpar@40
   602
implemented in LEMON.
alpar@40
   603
*/
alpar@40
   604
alpar@40
   605
/**
alpar@40
   606
@defgroup metah Metaheuristics
alpar@40
   607
@ingroup gen_opt_group
alpar@40
   608
\brief Metaheuristics for LEMON library.
alpar@40
   609
kpeter@559
   610
This group contains some metaheuristic optimization tools.
alpar@40
   611
*/
alpar@40
   612
alpar@40
   613
/**
alpar@209
   614
@defgroup utils Tools and Utilities
kpeter@50
   615
\brief Tools and utilities for programming in LEMON
alpar@40
   616
kpeter@50
   617
Tools and utilities for programming in LEMON.
alpar@40
   618
*/
alpar@40
   619
alpar@40
   620
/**
alpar@40
   621
@defgroup gutils Basic Graph Utilities
alpar@40
   622
@ingroup utils
kpeter@50
   623
\brief Simple basic graph utilities.
alpar@40
   624
kpeter@559
   625
This group contains some simple basic graph utilities.
alpar@40
   626
*/
alpar@40
   627
alpar@40
   628
/**
alpar@40
   629
@defgroup misc Miscellaneous Tools
alpar@40
   630
@ingroup utils
kpeter@50
   631
\brief Tools for development, debugging and testing.
kpeter@50
   632
kpeter@559
   633
This group contains several useful tools for development,
alpar@40
   634
debugging and testing.
alpar@40
   635
*/
alpar@40
   636
alpar@40
   637
/**
kpeter@314
   638
@defgroup timecount Time Measuring and Counting
alpar@40
   639
@ingroup misc
kpeter@50
   640
\brief Simple tools for measuring the performance of algorithms.
kpeter@50
   641
kpeter@559
   642
This group contains simple tools for measuring the performance
alpar@40
   643
of algorithms.
alpar@40
   644
*/
alpar@40
   645
alpar@40
   646
/**
alpar@40
   647
@defgroup exceptions Exceptions
alpar@40
   648
@ingroup utils
kpeter@50
   649
\brief Exceptions defined in LEMON.
kpeter@50
   650
kpeter@559
   651
This group contains the exceptions defined in LEMON.
alpar@40
   652
*/
alpar@40
   653
alpar@40
   654
/**
alpar@40
   655
@defgroup io_group Input-Output
kpeter@50
   656
\brief Graph Input-Output methods
alpar@40
   657
kpeter@559
   658
This group contains the tools for importing and exporting graphs
kpeter@314
   659
and graph related data. Now it supports the \ref lgf-format
kpeter@314
   660
"LEMON Graph Format", the \c DIMACS format and the encapsulated
kpeter@314
   661
postscript (EPS) format.
alpar@40
   662
*/
alpar@40
   663
alpar@40
   664
/**
kpeter@351
   665
@defgroup lemon_io LEMON Graph Format
alpar@40
   666
@ingroup io_group
kpeter@314
   667
\brief Reading and writing LEMON Graph Format.
alpar@40
   668
kpeter@559
   669
This group contains methods for reading and writing
ladanyi@236
   670
\ref lgf-format "LEMON Graph Format".
alpar@40
   671
*/
alpar@40
   672
alpar@40
   673
/**
kpeter@314
   674
@defgroup eps_io Postscript Exporting
alpar@40
   675
@ingroup io_group
alpar@40
   676
\brief General \c EPS drawer and graph exporter
alpar@40
   677
kpeter@559
   678
This group contains general \c EPS drawing methods and special
alpar@209
   679
graph exporting tools.
alpar@40
   680
*/
alpar@40
   681
alpar@40
   682
/**
kpeter@714
   683
@defgroup dimacs_group DIMACS Format
kpeter@388
   684
@ingroup io_group
kpeter@388
   685
\brief Read and write files in DIMACS format
kpeter@388
   686
kpeter@388
   687
Tools to read a digraph from or write it to a file in DIMACS format data.
kpeter@388
   688
*/
kpeter@388
   689
kpeter@388
   690
/**
kpeter@351
   691
@defgroup nauty_group NAUTY Format
kpeter@351
   692
@ingroup io_group
kpeter@351
   693
\brief Read \e Nauty format
kpeter@388
   694
kpeter@351
   695
Tool to read graphs from \e Nauty format data.
kpeter@351
   696
*/
kpeter@351
   697
kpeter@351
   698
/**
alpar@40
   699
@defgroup concept Concepts
alpar@40
   700
\brief Skeleton classes and concept checking classes
alpar@40
   701
kpeter@559
   702
This group contains the data/algorithm skeletons and concept checking
alpar@40
   703
classes implemented in LEMON.
alpar@40
   704
alpar@40
   705
The purpose of the classes in this group is fourfold.
alpar@209
   706
kpeter@318
   707
- These classes contain the documentations of the %concepts. In order
alpar@40
   708
  to avoid document multiplications, an implementation of a concept
alpar@40
   709
  simply refers to the corresponding concept class.
alpar@40
   710
alpar@40
   711
- These classes declare every functions, <tt>typedef</tt>s etc. an
kpeter@318
   712
  implementation of the %concepts should provide, however completely
alpar@40
   713
  without implementations and real data structures behind the
alpar@40
   714
  interface. On the other hand they should provide nothing else. All
alpar@40
   715
  the algorithms working on a data structure meeting a certain concept
alpar@40
   716
  should compile with these classes. (Though it will not run properly,
alpar@40
   717
  of course.) In this way it is easily to check if an algorithm
alpar@40
   718
  doesn't use any extra feature of a certain implementation.
alpar@40
   719
alpar@40
   720
- The concept descriptor classes also provide a <em>checker class</em>
kpeter@50
   721
  that makes it possible to check whether a certain implementation of a
alpar@40
   722
  concept indeed provides all the required features.
alpar@40
   723
alpar@40
   724
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   725
*/
alpar@40
   726
alpar@40
   727
/**
alpar@40
   728
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   729
@ingroup concept
alpar@40
   730
\brief Skeleton and concept checking classes for graph structures
alpar@40
   731
kpeter@735
   732
This group contains the skeletons and concept checking classes of
kpeter@735
   733
graph structures.
alpar@40
   734
*/
alpar@40
   735
kpeter@314
   736
/**
kpeter@314
   737
@defgroup map_concepts Map Concepts
kpeter@314
   738
@ingroup concept
kpeter@314
   739
\brief Skeleton and concept checking classes for maps
kpeter@314
   740
kpeter@559
   741
This group contains the skeletons and concept checking classes of maps.
alpar@40
   742
*/
alpar@40
   743
alpar@40
   744
/**
kpeter@714
   745
@defgroup tools Standalone Utility Applications
kpeter@714
   746
kpeter@714
   747
Some utility applications are listed here.
kpeter@714
   748
kpeter@714
   749
The standard compilation procedure (<tt>./configure;make</tt>) will compile
kpeter@714
   750
them, as well.
kpeter@714
   751
*/
kpeter@714
   752
kpeter@714
   753
/**
alpar@40
   754
\anchor demoprograms
alpar@40
   755
kpeter@406
   756
@defgroup demos Demo Programs
alpar@40
   757
alpar@40
   758
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   759
the \c demo subdirectory of the source tree.
alpar@40
   760
ladanyi@564
   761
In order to compile them, use the <tt>make demo</tt> or the
ladanyi@564
   762
<tt>make check</tt> commands.
alpar@40
   763
*/
alpar@40
   764
kpeter@406
   765
}