lemon/euler.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:26:13 +0100
changeset 806 fa6f37d7a25b
parent 592 2ebfdb89ec66
child 877 141f9c0db4a3
permissions -rw-r--r--
Entirely rework CapacityScaling (#180)

- Use the new interface similarly to NetworkSimplex.
- Rework the implementation using an efficient internal structure
for handling the residual network. This improvement made the
code much faster (up to 2-5 times faster on large graphs).
- Handle GEQ supply type (LEQ is not supported).
- Handle negative costs for arcs of finite capacity.
(Note that this algorithm cannot handle arcs of negative cost
and infinite upper bound, thus it returns UNBOUNDED if such
an arc exists.)
- Extend the documentation.
alpar@520
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@520
     2
 *
alpar@520
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@520
     4
 *
alpar@520
     5
 * Copyright (C) 2003-2009
alpar@520
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@520
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@520
     8
 *
alpar@520
     9
 * Permission to use, modify and distribute this software is granted
alpar@520
    10
 * provided that this copyright notice appears in all copies. For
alpar@520
    11
 * precise terms see the accompanying LICENSE file.
alpar@520
    12
 *
alpar@520
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@520
    14
 * express or implied, and with no claim as to its suitability for any
alpar@520
    15
 * purpose.
alpar@520
    16
 *
alpar@520
    17
 */
alpar@520
    18
alpar@520
    19
#ifndef LEMON_EULER_H
alpar@520
    20
#define LEMON_EULER_H
alpar@520
    21
alpar@520
    22
#include<lemon/core.h>
alpar@520
    23
#include<lemon/adaptors.h>
alpar@520
    24
#include<lemon/connectivity.h>
alpar@520
    25
#include <list>
alpar@520
    26
kpeter@586
    27
/// \ingroup graph_properties
alpar@520
    28
/// \file
kpeter@592
    29
/// \brief Euler tour iterators and a function for checking the \e Eulerian 
kpeter@592
    30
/// property.
alpar@520
    31
///
kpeter@592
    32
///This file provides Euler tour iterators and a function to check
kpeter@592
    33
///if a (di)graph is \e Eulerian.
alpar@520
    34
alpar@520
    35
namespace lemon {
alpar@520
    36
kpeter@592
    37
  ///Euler tour iterator for digraphs.
alpar@520
    38
kpeter@592
    39
  /// \ingroup graph_prop
kpeter@592
    40
  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
kpeter@592
    41
  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
alpar@520
    42
  ///
kpeter@592
    43
  ///For example, if the given digraph has an Euler tour (i.e it has only one
kpeter@592
    44
  ///non-trivial component and the in-degree is equal to the out-degree 
kpeter@592
    45
  ///for all nodes), then the following code will put the arcs of \c g
kpeter@592
    46
  ///to the vector \c et according to an Euler tour of \c g.
alpar@520
    47
  ///\code
alpar@520
    48
  ///  std::vector<ListDigraph::Arc> et;
kpeter@592
    49
  ///  for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
alpar@520
    50
  ///    et.push_back(e);
alpar@520
    51
  ///\endcode
kpeter@592
    52
  ///If \c g has no Euler tour, then the resulted walk will not be closed
kpeter@592
    53
  ///or not contain all arcs.
alpar@520
    54
  ///\sa EulerIt
kpeter@559
    55
  template<typename GR>
alpar@520
    56
  class DiEulerIt
alpar@520
    57
  {
kpeter@559
    58
    typedef typename GR::Node Node;
kpeter@559
    59
    typedef typename GR::NodeIt NodeIt;
kpeter@559
    60
    typedef typename GR::Arc Arc;
kpeter@559
    61
    typedef typename GR::ArcIt ArcIt;
kpeter@559
    62
    typedef typename GR::OutArcIt OutArcIt;
kpeter@559
    63
    typedef typename GR::InArcIt InArcIt;
alpar@520
    64
kpeter@559
    65
    const GR &g;
kpeter@592
    66
    typename GR::template NodeMap<OutArcIt> narc;
alpar@520
    67
    std::list<Arc> euler;
alpar@520
    68
alpar@520
    69
  public:
alpar@520
    70
alpar@520
    71
    ///Constructor
alpar@520
    72
kpeter@592
    73
    ///Constructor.
kpeter@559
    74
    ///\param gr A digraph.
kpeter@592
    75
    ///\param start The starting point of the tour. If it is not given,
kpeter@592
    76
    ///the tour will start from the first node that has an outgoing arc.
kpeter@559
    77
    DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
kpeter@592
    78
      : g(gr), narc(g)
alpar@520
    79
    {
kpeter@591
    80
      if (start==INVALID) {
kpeter@591
    81
        NodeIt n(g);
kpeter@591
    82
        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
kpeter@591
    83
        start=n;
kpeter@591
    84
      }
kpeter@591
    85
      if (start!=INVALID) {
kpeter@592
    86
        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
kpeter@592
    87
        while (narc[start]!=INVALID) {
kpeter@592
    88
          euler.push_back(narc[start]);
kpeter@592
    89
          Node next=g.target(narc[start]);
kpeter@592
    90
          ++narc[start];
kpeter@591
    91
          start=next;
kpeter@591
    92
        }
alpar@520
    93
      }
alpar@520
    94
    }
alpar@520
    95
kpeter@592
    96
    ///Arc conversion
alpar@520
    97
    operator Arc() { return euler.empty()?INVALID:euler.front(); }
kpeter@592
    98
    ///Compare with \c INVALID
alpar@520
    99
    bool operator==(Invalid) { return euler.empty(); }
kpeter@592
   100
    ///Compare with \c INVALID
alpar@520
   101
    bool operator!=(Invalid) { return !euler.empty(); }
alpar@520
   102
alpar@520
   103
    ///Next arc of the tour
kpeter@592
   104
kpeter@592
   105
    ///Next arc of the tour
kpeter@592
   106
    ///
alpar@520
   107
    DiEulerIt &operator++() {
alpar@520
   108
      Node s=g.target(euler.front());
alpar@520
   109
      euler.pop_front();
alpar@520
   110
      typename std::list<Arc>::iterator next=euler.begin();
kpeter@592
   111
      while(narc[s]!=INVALID) {
kpeter@592
   112
        euler.insert(next,narc[s]);
kpeter@592
   113
        Node n=g.target(narc[s]);
kpeter@592
   114
        ++narc[s];
alpar@520
   115
        s=n;
alpar@520
   116
      }
alpar@520
   117
      return *this;
alpar@520
   118
    }
alpar@520
   119
    ///Postfix incrementation
alpar@520
   120
kpeter@592
   121
    /// Postfix incrementation.
kpeter@592
   122
    ///
alpar@520
   123
    ///\warning This incrementation
kpeter@592
   124
    ///returns an \c Arc, not a \ref DiEulerIt, as one may
alpar@520
   125
    ///expect.
alpar@520
   126
    Arc operator++(int)
alpar@520
   127
    {
alpar@520
   128
      Arc e=*this;
alpar@520
   129
      ++(*this);
alpar@520
   130
      return e;
alpar@520
   131
    }
alpar@520
   132
  };
alpar@520
   133
kpeter@592
   134
  ///Euler tour iterator for graphs.
alpar@520
   135
kpeter@586
   136
  /// \ingroup graph_properties
kpeter@592
   137
  ///This iterator provides an Euler tour (Eulerian circuit) of an
kpeter@592
   138
  ///\e undirected graph (if there exists) and it converts to the \c Arc
kpeter@592
   139
  ///and \c Edge types of the graph.
alpar@520
   140
  ///
kpeter@592
   141
  ///For example, if the given graph has an Euler tour (i.e it has only one 
kpeter@592
   142
  ///non-trivial component and the degree of each node is even),
alpar@520
   143
  ///the following code will print the arc IDs according to an
alpar@520
   144
  ///Euler tour of \c g.
alpar@520
   145
  ///\code
kpeter@592
   146
  ///  for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
alpar@520
   147
  ///    std::cout << g.id(Edge(e)) << std::eol;
alpar@520
   148
  ///  }
alpar@520
   149
  ///\endcode
kpeter@592
   150
  ///Although this iterator is for undirected graphs, it still returns 
kpeter@592
   151
  ///arcs in order to indicate the direction of the tour.
kpeter@592
   152
  ///(But arcs convert to edges, of course.)
alpar@520
   153
  ///
kpeter@592
   154
  ///If \c g has no Euler tour, then the resulted walk will not be closed
kpeter@592
   155
  ///or not contain all edges.
kpeter@559
   156
  template<typename GR>
alpar@520
   157
  class EulerIt
alpar@520
   158
  {
kpeter@559
   159
    typedef typename GR::Node Node;
kpeter@559
   160
    typedef typename GR::NodeIt NodeIt;
kpeter@559
   161
    typedef typename GR::Arc Arc;
kpeter@559
   162
    typedef typename GR::Edge Edge;
kpeter@559
   163
    typedef typename GR::ArcIt ArcIt;
kpeter@559
   164
    typedef typename GR::OutArcIt OutArcIt;
kpeter@559
   165
    typedef typename GR::InArcIt InArcIt;
alpar@520
   166
kpeter@559
   167
    const GR &g;
kpeter@592
   168
    typename GR::template NodeMap<OutArcIt> narc;
kpeter@559
   169
    typename GR::template EdgeMap<bool> visited;
alpar@520
   170
    std::list<Arc> euler;
alpar@520
   171
alpar@520
   172
  public:
alpar@520
   173
alpar@520
   174
    ///Constructor
alpar@520
   175
kpeter@592
   176
    ///Constructor.
kpeter@592
   177
    ///\param gr A graph.
kpeter@592
   178
    ///\param start The starting point of the tour. If it is not given,
kpeter@592
   179
    ///the tour will start from the first node that has an incident edge.
kpeter@559
   180
    EulerIt(const GR &gr, typename GR::Node start = INVALID)
kpeter@592
   181
      : g(gr), narc(g), visited(g, false)
alpar@520
   182
    {
kpeter@591
   183
      if (start==INVALID) {
kpeter@591
   184
        NodeIt n(g);
kpeter@591
   185
        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
kpeter@591
   186
        start=n;
kpeter@591
   187
      }
kpeter@591
   188
      if (start!=INVALID) {
kpeter@592
   189
        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
kpeter@592
   190
        while(narc[start]!=INVALID) {
kpeter@592
   191
          euler.push_back(narc[start]);
kpeter@592
   192
          visited[narc[start]]=true;
kpeter@592
   193
          Node next=g.target(narc[start]);
kpeter@592
   194
          ++narc[start];
kpeter@591
   195
          start=next;
kpeter@592
   196
          while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start];
kpeter@591
   197
        }
alpar@520
   198
      }
alpar@520
   199
    }
alpar@520
   200
kpeter@592
   201
    ///Arc conversion
alpar@520
   202
    operator Arc() const { return euler.empty()?INVALID:euler.front(); }
kpeter@592
   203
    ///Edge conversion
alpar@520
   204
    operator Edge() const { return euler.empty()?INVALID:euler.front(); }
kpeter@592
   205
    ///Compare with \c INVALID
alpar@520
   206
    bool operator==(Invalid) const { return euler.empty(); }
kpeter@592
   207
    ///Compare with \c INVALID
alpar@520
   208
    bool operator!=(Invalid) const { return !euler.empty(); }
alpar@520
   209
alpar@520
   210
    ///Next arc of the tour
kpeter@592
   211
kpeter@592
   212
    ///Next arc of the tour
kpeter@592
   213
    ///
alpar@520
   214
    EulerIt &operator++() {
alpar@520
   215
      Node s=g.target(euler.front());
alpar@520
   216
      euler.pop_front();
alpar@520
   217
      typename std::list<Arc>::iterator next=euler.begin();
kpeter@592
   218
      while(narc[s]!=INVALID) {
kpeter@592
   219
        while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s];
kpeter@592
   220
        if(narc[s]==INVALID) break;
alpar@520
   221
        else {
kpeter@592
   222
          euler.insert(next,narc[s]);
kpeter@592
   223
          visited[narc[s]]=true;
kpeter@592
   224
          Node n=g.target(narc[s]);
kpeter@592
   225
          ++narc[s];
alpar@520
   226
          s=n;
alpar@520
   227
        }
alpar@520
   228
      }
alpar@520
   229
      return *this;
alpar@520
   230
    }
alpar@520
   231
alpar@520
   232
    ///Postfix incrementation
alpar@520
   233
kpeter@592
   234
    /// Postfix incrementation.
kpeter@592
   235
    ///
kpeter@592
   236
    ///\warning This incrementation returns an \c Arc (which converts to 
kpeter@592
   237
    ///an \c Edge), not an \ref EulerIt, as one may expect.
alpar@520
   238
    Arc operator++(int)
alpar@520
   239
    {
alpar@520
   240
      Arc e=*this;
alpar@520
   241
      ++(*this);
alpar@520
   242
      return e;
alpar@520
   243
    }
alpar@520
   244
  };
alpar@520
   245
alpar@520
   246
kpeter@648
   247
  ///Check if the given graph is Eulerian
alpar@520
   248
kpeter@586
   249
  /// \ingroup graph_properties
kpeter@648
   250
  ///This function checks if the given graph is Eulerian.
kpeter@592
   251
  ///It works for both directed and undirected graphs.
kpeter@592
   252
  ///
kpeter@592
   253
  ///By definition, a digraph is called \e Eulerian if
kpeter@592
   254
  ///and only if it is connected and the number of incoming and outgoing
alpar@520
   255
  ///arcs are the same for each node.
alpar@521
   256
  ///Similarly, an undirected graph is called \e Eulerian if
kpeter@592
   257
  ///and only if it is connected and the number of incident edges is even
kpeter@592
   258
  ///for each node.
kpeter@592
   259
  ///
kpeter@592
   260
  ///\note There are (di)graphs that are not Eulerian, but still have an
kpeter@592
   261
  /// Euler tour, since they may contain isolated nodes.
kpeter@592
   262
  ///
kpeter@592
   263
  ///\sa DiEulerIt, EulerIt
kpeter@559
   264
  template<typename GR>
alpar@520
   265
#ifdef DOXYGEN
alpar@520
   266
  bool
alpar@520
   267
#else
kpeter@559
   268
  typename enable_if<UndirectedTagIndicator<GR>,bool>::type
kpeter@559
   269
  eulerian(const GR &g)
alpar@520
   270
  {
kpeter@559
   271
    for(typename GR::NodeIt n(g);n!=INVALID;++n)
alpar@520
   272
      if(countIncEdges(g,n)%2) return false;
alpar@520
   273
    return connected(g);
alpar@520
   274
  }
kpeter@559
   275
  template<class GR>
kpeter@559
   276
  typename disable_if<UndirectedTagIndicator<GR>,bool>::type
alpar@520
   277
#endif
kpeter@559
   278
  eulerian(const GR &g)
alpar@520
   279
  {
kpeter@559
   280
    for(typename GR::NodeIt n(g);n!=INVALID;++n)
alpar@520
   281
      if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
kpeter@592
   282
    return connected(undirector(g));
alpar@520
   283
  }
alpar@520
   284
alpar@520
   285
}
alpar@520
   286
alpar@520
   287
#endif