lemon/grosso_locatelli_pullan_mc.h
changeset 910 0fbbdd578c06
child 918 8583fb74238c
equal deleted inserted replaced
-1:000000000000 0:1f985e41fbeb
       
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2003-2010
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
       
    20 #define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
       
    21 
       
    22 /// \ingroup approx_algs
       
    23 ///
       
    24 /// \file
       
    25 /// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan
       
    26 /// for the maximum clique problem
       
    27 
       
    28 #include <vector>
       
    29 #include <limits>
       
    30 #include <lemon/core.h>
       
    31 #include <lemon/random.h>
       
    32 
       
    33 namespace lemon {
       
    34 
       
    35   /// \addtogroup approx_algs
       
    36   /// @{
       
    37 
       
    38   /// \brief Implementation of the iterated local search algorithm of Grosso,
       
    39   /// Locatelli, and Pullan for the maximum clique problem
       
    40   ///
       
    41   /// \ref GrossoLocatelliPullanMc implements the iterated local search
       
    42   /// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum
       
    43   /// \e clique \e problem \ref grosso08maxclique.
       
    44   /// It is to find the largest complete subgraph (\e clique) in an
       
    45   /// undirected graph, i.e., the largest set of nodes where each
       
    46   /// pair of nodes is connected.
       
    47   ///
       
    48   /// This class provides a simple but highly efficient and robust heuristic
       
    49   /// method that quickly finds a large clique, but not necessarily the
       
    50   /// largest one.
       
    51   ///
       
    52   /// \tparam GR The undirected graph type the algorithm runs on.
       
    53   ///
       
    54   /// \note %GrossoLocatelliPullanMc provides three different node selection
       
    55   /// rules, from which the most powerful one is used by default.
       
    56   /// For more information, see \ref SelectionRule.
       
    57   template <typename GR>
       
    58   class GrossoLocatelliPullanMc
       
    59   {
       
    60   public:
       
    61 
       
    62     /// \brief Constants for specifying the node selection rule.
       
    63     ///
       
    64     /// Enum type containing constants for specifying the node selection rule
       
    65     /// for the \ref run() function.
       
    66     ///
       
    67     /// During the algorithm, nodes are selected for addition to the current
       
    68     /// clique according to the applied rule.
       
    69     /// In general, the PENALTY_BASED rule turned out to be the most powerful
       
    70     /// and the most robust, thus it is the default option.
       
    71     /// However, another selection rule can be specified using the \ref run()
       
    72     /// function with the proper parameter.
       
    73     enum SelectionRule {
       
    74 
       
    75       /// A node is selected randomly without any evaluation at each step.
       
    76       RANDOM,
       
    77 
       
    78       /// A node of maximum degree is selected randomly at each step.
       
    79       DEGREE_BASED,
       
    80 
       
    81       /// A node of minimum penalty is selected randomly at each step.
       
    82       /// The node penalties are updated adaptively after each stage of the
       
    83       /// search process.
       
    84       PENALTY_BASED
       
    85     };
       
    86 
       
    87   private:
       
    88 
       
    89     TEMPLATE_GRAPH_TYPEDEFS(GR);
       
    90 
       
    91     typedef std::vector<int> IntVector;
       
    92     typedef std::vector<char> BoolVector;
       
    93     typedef std::vector<BoolVector> BoolMatrix;
       
    94     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
       
    95 
       
    96     const GR &_graph;
       
    97     IntNodeMap _id;
       
    98 
       
    99     // Internal matrix representation of the graph
       
   100     BoolMatrix _gr;
       
   101     int _n;
       
   102 
       
   103     // The current clique
       
   104     BoolVector _clique;
       
   105     int _size;
       
   106 
       
   107     // The best clique found so far
       
   108     BoolVector _best_clique;
       
   109     int _best_size;
       
   110 
       
   111     // The "distances" of the nodes from the current clique.
       
   112     // _delta[u] is the number of nodes in the clique that are
       
   113     // not connected with u.
       
   114     IntVector _delta;
       
   115 
       
   116     // The current tabu set
       
   117     BoolVector _tabu;
       
   118 
       
   119     // Random number generator
       
   120     Random _rnd;
       
   121 
       
   122   private:
       
   123 
       
   124     // Implementation of the RANDOM node selection rule.
       
   125     class RandomSelectionRule
       
   126     {
       
   127     private:
       
   128 
       
   129       // References to the algorithm instance
       
   130       const BoolVector &_clique;
       
   131       const IntVector  &_delta;
       
   132       const BoolVector &_tabu;
       
   133       Random &_rnd;
       
   134 
       
   135       // Pivot rule data
       
   136       int _n;
       
   137 
       
   138     public:
       
   139 
       
   140       // Constructor
       
   141       RandomSelectionRule(GrossoLocatelliPullanMc &mc) :
       
   142         _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
       
   143         _rnd(mc._rnd), _n(mc._n)
       
   144       {}
       
   145 
       
   146       // Return a node index for a feasible add move or -1 if no one exists
       
   147       int nextFeasibleAddNode() const {
       
   148         int start_node = _rnd[_n];
       
   149         for (int i = start_node; i != _n; i++) {
       
   150           if (_delta[i] == 0 && !_tabu[i]) return i;
       
   151         }
       
   152         for (int i = 0; i != start_node; i++) {
       
   153           if (_delta[i] == 0 && !_tabu[i]) return i;
       
   154         }
       
   155         return -1;
       
   156       }
       
   157 
       
   158       // Return a node index for a feasible swap move or -1 if no one exists
       
   159       int nextFeasibleSwapNode() const {
       
   160         int start_node = _rnd[_n];
       
   161         for (int i = start_node; i != _n; i++) {
       
   162           if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
       
   163         }
       
   164         for (int i = 0; i != start_node; i++) {
       
   165           if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
       
   166         }
       
   167         return -1;
       
   168       }
       
   169 
       
   170       // Return a node index for an add move or -1 if no one exists
       
   171       int nextAddNode() const {
       
   172         int start_node = _rnd[_n];
       
   173         for (int i = start_node; i != _n; i++) {
       
   174           if (_delta[i] == 0) return i;
       
   175         }
       
   176         for (int i = 0; i != start_node; i++) {
       
   177           if (_delta[i] == 0) return i;
       
   178         }
       
   179         return -1;
       
   180       }
       
   181 
       
   182       // Update internal data structures between stages (if necessary)
       
   183       void update() {}
       
   184 
       
   185     }; //class RandomSelectionRule
       
   186 
       
   187 
       
   188     // Implementation of the DEGREE_BASED node selection rule.
       
   189     class DegreeBasedSelectionRule
       
   190     {
       
   191     private:
       
   192 
       
   193       // References to the algorithm instance
       
   194       const BoolVector &_clique;
       
   195       const IntVector  &_delta;
       
   196       const BoolVector &_tabu;
       
   197       Random &_rnd;
       
   198 
       
   199       // Pivot rule data
       
   200       int _n;
       
   201       IntVector _deg;
       
   202 
       
   203     public:
       
   204 
       
   205       // Constructor
       
   206       DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
       
   207         _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
       
   208         _rnd(mc._rnd), _n(mc._n), _deg(_n)
       
   209       {
       
   210         for (int i = 0; i != _n; i++) {
       
   211           int d = 0;
       
   212           BoolVector &row = mc._gr[i];
       
   213           for (int j = 0; j != _n; j++) {
       
   214             if (row[j]) d++;
       
   215           }
       
   216           _deg[i] = d;
       
   217         }
       
   218       }
       
   219 
       
   220       // Return a node index for a feasible add move or -1 if no one exists
       
   221       int nextFeasibleAddNode() const {
       
   222         int start_node = _rnd[_n];
       
   223         int node = -1, max_deg = -1;
       
   224         for (int i = start_node; i != _n; i++) {
       
   225           if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
       
   226             node = i;
       
   227             max_deg = _deg[i];
       
   228           }
       
   229         }
       
   230         for (int i = 0; i != start_node; i++) {
       
   231           if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
       
   232             node = i;
       
   233             max_deg = _deg[i];
       
   234           }
       
   235         }
       
   236         return node;
       
   237       }
       
   238 
       
   239       // Return a node index for a feasible swap move or -1 if no one exists
       
   240       int nextFeasibleSwapNode() const {
       
   241         int start_node = _rnd[_n];
       
   242         int node = -1, max_deg = -1;
       
   243         for (int i = start_node; i != _n; i++) {
       
   244           if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
       
   245               _deg[i] > max_deg) {
       
   246             node = i;
       
   247             max_deg = _deg[i];
       
   248           }
       
   249         }
       
   250         for (int i = 0; i != start_node; i++) {
       
   251           if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
       
   252               _deg[i] > max_deg) {
       
   253             node = i;
       
   254             max_deg = _deg[i];
       
   255           }
       
   256         }
       
   257         return node;
       
   258       }
       
   259 
       
   260       // Return a node index for an add move or -1 if no one exists
       
   261       int nextAddNode() const {
       
   262         int start_node = _rnd[_n];
       
   263         int node = -1, max_deg = -1;
       
   264         for (int i = start_node; i != _n; i++) {
       
   265           if (_delta[i] == 0 && _deg[i] > max_deg) {
       
   266             node = i;
       
   267             max_deg = _deg[i];
       
   268           }
       
   269         }
       
   270         for (int i = 0; i != start_node; i++) {
       
   271           if (_delta[i] == 0 && _deg[i] > max_deg) {
       
   272             node = i;
       
   273             max_deg = _deg[i];
       
   274           }
       
   275         }
       
   276         return node;
       
   277       }
       
   278 
       
   279       // Update internal data structures between stages (if necessary)
       
   280       void update() {}
       
   281 
       
   282     }; //class DegreeBasedSelectionRule
       
   283 
       
   284 
       
   285     // Implementation of the PENALTY_BASED node selection rule.
       
   286     class PenaltyBasedSelectionRule
       
   287     {
       
   288     private:
       
   289 
       
   290       // References to the algorithm instance
       
   291       const BoolVector &_clique;
       
   292       const IntVector  &_delta;
       
   293       const BoolVector &_tabu;
       
   294       Random &_rnd;
       
   295 
       
   296       // Pivot rule data
       
   297       int _n;
       
   298       IntVector _penalty;
       
   299 
       
   300     public:
       
   301 
       
   302       // Constructor
       
   303       PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
       
   304         _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
       
   305         _rnd(mc._rnd), _n(mc._n), _penalty(_n, 0)
       
   306       {}
       
   307 
       
   308       // Return a node index for a feasible add move or -1 if no one exists
       
   309       int nextFeasibleAddNode() const {
       
   310         int start_node = _rnd[_n];
       
   311         int node = -1, min_p = std::numeric_limits<int>::max();
       
   312         for (int i = start_node; i != _n; i++) {
       
   313           if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
       
   314             node = i;
       
   315             min_p = _penalty[i];
       
   316           }
       
   317         }
       
   318         for (int i = 0; i != start_node; i++) {
       
   319           if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
       
   320             node = i;
       
   321             min_p = _penalty[i];
       
   322           }
       
   323         }
       
   324         return node;
       
   325       }
       
   326 
       
   327       // Return a node index for a feasible swap move or -1 if no one exists
       
   328       int nextFeasibleSwapNode() const {
       
   329         int start_node = _rnd[_n];
       
   330         int node = -1, min_p = std::numeric_limits<int>::max();
       
   331         for (int i = start_node; i != _n; i++) {
       
   332           if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
       
   333               _penalty[i] < min_p) {
       
   334             node = i;
       
   335             min_p = _penalty[i];
       
   336           }
       
   337         }
       
   338         for (int i = 0; i != start_node; i++) {
       
   339           if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
       
   340               _penalty[i] < min_p) {
       
   341             node = i;
       
   342             min_p = _penalty[i];
       
   343           }
       
   344         }
       
   345         return node;
       
   346       }
       
   347 
       
   348       // Return a node index for an add move or -1 if no one exists
       
   349       int nextAddNode() const {
       
   350         int start_node = _rnd[_n];
       
   351         int node = -1, min_p = std::numeric_limits<int>::max();
       
   352         for (int i = start_node; i != _n; i++) {
       
   353           if (_delta[i] == 0 && _penalty[i] < min_p) {
       
   354             node = i;
       
   355             min_p = _penalty[i];
       
   356           }
       
   357         }
       
   358         for (int i = 0; i != start_node; i++) {
       
   359           if (_delta[i] == 0 && _penalty[i] < min_p) {
       
   360             node = i;
       
   361             min_p = _penalty[i];
       
   362           }
       
   363         }
       
   364         return node;
       
   365       }
       
   366 
       
   367       // Update internal data structures between stages (if necessary)
       
   368       void update() {}
       
   369 
       
   370     }; //class PenaltyBasedSelectionRule
       
   371 
       
   372   public:
       
   373 
       
   374     /// \brief Constructor.
       
   375     ///
       
   376     /// Constructor.
       
   377     /// The global \ref rnd "random number generator instance" is used
       
   378     /// during the algorithm.
       
   379     ///
       
   380     /// \param graph The undirected graph the algorithm runs on.
       
   381     GrossoLocatelliPullanMc(const GR& graph) :
       
   382       _graph(graph), _id(_graph), _rnd(rnd)
       
   383     {}
       
   384 
       
   385     /// \brief Constructor with random seed.
       
   386     ///
       
   387     /// Constructor with random seed.
       
   388     ///
       
   389     /// \param graph The undirected graph the algorithm runs on.
       
   390     /// \param seed Seed value for the internal random number generator
       
   391     /// that is used during the algorithm.
       
   392     GrossoLocatelliPullanMc(const GR& graph, int seed) :
       
   393       _graph(graph), _id(_graph), _rnd(seed)
       
   394     {}
       
   395 
       
   396     /// \brief Constructor with random number generator.
       
   397     ///
       
   398     /// Constructor with random number generator.
       
   399     ///
       
   400     /// \param graph The undirected graph the algorithm runs on.
       
   401     /// \param random A random number generator that is used during the
       
   402     /// algorithm.
       
   403     GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
       
   404       _graph(graph), _id(_graph), _rnd(random)
       
   405     {}
       
   406 
       
   407     /// \name Execution Control
       
   408     /// @{
       
   409 
       
   410     /// \brief Runs the algorithm.
       
   411     ///
       
   412     /// This function runs the algorithm.
       
   413     ///
       
   414     /// \param step_num The maximum number of node selections (steps)
       
   415     /// during the search process.
       
   416     /// This parameter controls the running time and the success of the
       
   417     /// algorithm. For larger values, the algorithm runs slower but it more
       
   418     /// likely finds larger cliques. For smaller values, the algorithm is
       
   419     /// faster but probably gives worse results.
       
   420     /// \param rule The node selection rule. For more information, see
       
   421     /// \ref SelectionRule.
       
   422     ///
       
   423     /// \return The size of the found clique.
       
   424     int run(int step_num = 100000,
       
   425             SelectionRule rule = PENALTY_BASED)
       
   426     {
       
   427       init();
       
   428       switch (rule) {
       
   429         case RANDOM:
       
   430           return start<RandomSelectionRule>(step_num);
       
   431         case DEGREE_BASED:
       
   432           return start<DegreeBasedSelectionRule>(step_num);
       
   433         case PENALTY_BASED:
       
   434           return start<PenaltyBasedSelectionRule>(step_num);
       
   435       }
       
   436       return 0; // avoid warning
       
   437     }
       
   438 
       
   439     /// @}
       
   440 
       
   441     /// \name Query Functions
       
   442     /// @{
       
   443 
       
   444     /// \brief The size of the found clique
       
   445     ///
       
   446     /// This function returns the size of the found clique.
       
   447     ///
       
   448     /// \pre run() must be called before using this function.
       
   449     int cliqueSize() const {
       
   450       return _best_size;
       
   451     }
       
   452 
       
   453     /// \brief Gives back the found clique in a \c bool node map
       
   454     ///
       
   455     /// This function gives back the characteristic vector of the found
       
   456     /// clique in the given node map.
       
   457     /// It must be a \ref concepts::WriteMap "writable" node map with
       
   458     /// \c bool (or convertible) value type.
       
   459     ///
       
   460     /// \pre run() must be called before using this function.
       
   461     template <typename CliqueMap>
       
   462     void cliqueMap(CliqueMap &map) const {
       
   463       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   464         map[n] = static_cast<bool>(_best_clique[_id[n]]);
       
   465       }
       
   466     }
       
   467 
       
   468     /// \brief Iterator to list the nodes of the found clique
       
   469     ///
       
   470     /// This iterator class lists the nodes of the found clique.
       
   471     /// Before using it, you must allocate a GrossoLocatelliPullanMc instance
       
   472     /// and call its \ref GrossoLocatelliPullanMc::run() "run()" method.
       
   473     ///
       
   474     /// The following example prints out the IDs of the nodes in the found
       
   475     /// clique.
       
   476     /// \code
       
   477     ///   GrossoLocatelliPullanMc<Graph> mc(g);
       
   478     ///   mc.run();
       
   479     ///   for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc);
       
   480     ///        n != INVALID; ++n)
       
   481     ///   {
       
   482     ///     std::cout << g.id(n) << std::endl;
       
   483     ///   }
       
   484     /// \endcode
       
   485     class CliqueNodeIt
       
   486     {
       
   487     private:
       
   488       NodeIt _it;
       
   489       BoolNodeMap _map;
       
   490 
       
   491     public:
       
   492 
       
   493       /// Constructor
       
   494 
       
   495       /// Constructor.
       
   496       /// \param mc The algorithm instance.
       
   497       CliqueNodeIt(const GrossoLocatelliPullanMc &mc)
       
   498        : _map(mc._graph)
       
   499       {
       
   500         mc.cliqueMap(_map);
       
   501         for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ;
       
   502       }
       
   503 
       
   504       /// Conversion to \c Node
       
   505       operator Node() const { return _it; }
       
   506 
       
   507       bool operator==(Invalid) const { return _it == INVALID; }
       
   508       bool operator!=(Invalid) const { return _it != INVALID; }
       
   509 
       
   510       /// Next node
       
   511       CliqueNodeIt &operator++() {
       
   512         for (++_it; _it != INVALID && !_map[_it]; ++_it) ;
       
   513         return *this;
       
   514       }
       
   515 
       
   516       /// Postfix incrementation
       
   517 
       
   518       /// Postfix incrementation.
       
   519       ///
       
   520       /// \warning This incrementation returns a \c Node, not a
       
   521       /// \c CliqueNodeIt as one may expect.
       
   522       typename GR::Node operator++(int) {
       
   523         Node n=*this;
       
   524         ++(*this);
       
   525         return n;
       
   526       }
       
   527 
       
   528     };
       
   529 
       
   530     /// @}
       
   531 
       
   532   private:
       
   533 
       
   534     // Adds a node to the current clique
       
   535     void addCliqueNode(int u) {
       
   536       if (_clique[u]) return;
       
   537       _clique[u] = true;
       
   538       _size++;
       
   539       BoolVector &row = _gr[u];
       
   540       for (int i = 0; i != _n; i++) {
       
   541         if (!row[i]) _delta[i]++;
       
   542       }
       
   543     }
       
   544 
       
   545     // Removes a node from the current clique
       
   546     void delCliqueNode(int u) {
       
   547       if (!_clique[u]) return;
       
   548       _clique[u] = false;
       
   549       _size--;
       
   550       BoolVector &row = _gr[u];
       
   551       for (int i = 0; i != _n; i++) {
       
   552         if (!row[i]) _delta[i]--;
       
   553       }
       
   554     }
       
   555 
       
   556     // Initialize data structures
       
   557     void init() {
       
   558       _n = countNodes(_graph);
       
   559       int ui = 0;
       
   560       for (NodeIt u(_graph); u != INVALID; ++u) {
       
   561         _id[u] = ui++;
       
   562       }
       
   563       _gr.clear();
       
   564       _gr.resize(_n, BoolVector(_n, false));
       
   565       ui = 0;
       
   566       for (NodeIt u(_graph); u != INVALID; ++u) {
       
   567         for (IncEdgeIt e(_graph, u); e != INVALID; ++e) {
       
   568           int vi = _id[_graph.runningNode(e)];
       
   569           _gr[ui][vi] = true;
       
   570           _gr[vi][ui] = true;
       
   571         }
       
   572         ++ui;
       
   573       }
       
   574 
       
   575       _clique.clear();
       
   576       _clique.resize(_n, false);
       
   577       _size = 0;
       
   578       _best_clique.clear();
       
   579       _best_clique.resize(_n, false);
       
   580       _best_size = 0;
       
   581       _delta.clear();
       
   582       _delta.resize(_n, 0);
       
   583       _tabu.clear();
       
   584       _tabu.resize(_n, false);
       
   585     }
       
   586 
       
   587     // Executes the algorithm
       
   588     template <typename SelectionRuleImpl>
       
   589     int start(int max_select) {
       
   590       // Options for the restart rule
       
   591       const bool delta_based_restart = true;
       
   592       const int restart_delta_limit = 4;
       
   593 
       
   594       if (_n == 0) return 0;
       
   595       if (_n == 1) {
       
   596         _best_clique[0] = true;
       
   597         _best_size = 1;
       
   598         return _best_size;
       
   599       }
       
   600 
       
   601       // Iterated local search
       
   602       SelectionRuleImpl sel_method(*this);
       
   603       int select = 0;
       
   604       IntVector restart_nodes;
       
   605 
       
   606       while (select < max_select) {
       
   607 
       
   608         // Perturbation/restart
       
   609         if (delta_based_restart) {
       
   610           restart_nodes.clear();
       
   611           for (int i = 0; i != _n; i++) {
       
   612             if (_delta[i] >= restart_delta_limit)
       
   613               restart_nodes.push_back(i);
       
   614           }
       
   615         }
       
   616         int rs_node = -1;
       
   617         if (restart_nodes.size() > 0) {
       
   618           rs_node = restart_nodes[_rnd[restart_nodes.size()]];
       
   619         } else {
       
   620           rs_node = _rnd[_n];
       
   621         }
       
   622         BoolVector &row = _gr[rs_node];
       
   623         for (int i = 0; i != _n; i++) {
       
   624           if (_clique[i] && !row[i]) delCliqueNode(i);
       
   625         }
       
   626         addCliqueNode(rs_node);
       
   627 
       
   628         // Local search
       
   629         _tabu.clear();
       
   630         _tabu.resize(_n, false);
       
   631         bool tabu_empty = true;
       
   632         int max_swap = _size;
       
   633         while (select < max_select) {
       
   634           select++;
       
   635           int u;
       
   636           if ((u = sel_method.nextFeasibleAddNode()) != -1) {
       
   637             // Feasible add move
       
   638             addCliqueNode(u);
       
   639             if (tabu_empty) max_swap = _size;
       
   640           }
       
   641           else if ((u = sel_method.nextFeasibleSwapNode()) != -1) {
       
   642             // Feasible swap move
       
   643             int v = -1;
       
   644             BoolVector &row = _gr[u];
       
   645             for (int i = 0; i != _n; i++) {
       
   646               if (_clique[i] && !row[i]) {
       
   647                 v = i;
       
   648                 break;
       
   649               }
       
   650             }
       
   651             addCliqueNode(u);
       
   652             delCliqueNode(v);
       
   653             _tabu[v] = true;
       
   654             tabu_empty = false;
       
   655             if (--max_swap <= 0) break;
       
   656           }
       
   657           else if ((u = sel_method.nextAddNode()) != -1) {
       
   658             // Non-feasible add move
       
   659             addCliqueNode(u);
       
   660           }
       
   661           else break;
       
   662         }
       
   663         if (_size > _best_size) {
       
   664           _best_clique = _clique;
       
   665           _best_size = _size;
       
   666           if (_best_size == _n) return _best_size;
       
   667         }
       
   668         sel_method.update();
       
   669       }
       
   670 
       
   671       return _best_size;
       
   672     }
       
   673 
       
   674   }; //class GrossoLocatelliPullanMc
       
   675 
       
   676   ///@}
       
   677 
       
   678 } //namespace lemon
       
   679 
       
   680 #endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H