lemon/smart_graph.h
changeset 1019 4c89e925cfe2
parent 877 141f9c0db4a3
child 1020 5ef0ab7b61cd
equal deleted inserted replaced
27:2d8d10318be5 28:a443e0eda4a8
   403     };
   403     };
   404 
   404 
   405     std::vector<NodeT> nodes;
   405     std::vector<NodeT> nodes;
   406     std::vector<ArcT> arcs;
   406     std::vector<ArcT> arcs;
   407 
   407 
   408     int first_free_arc;
       
   409 
       
   410   public:
   408   public:
   411 
   409 
   412     typedef SmartGraphBase Graph;
   410     typedef SmartGraphBase Graph;
   413 
   411 
   414     class Node;
   412     class Node;
   809         _graph->restoreSnapshot(*this);
   807         _graph->restoreSnapshot(*this);
   810       }
   808       }
   811     };
   809     };
   812   };
   810   };
   813 
   811 
       
   812   class SmartBpGraphBase {
       
   813 
       
   814   protected:
       
   815 
       
   816     struct NodeT {
       
   817       int first_out;
       
   818       int partition_next;
       
   819       int partition_index;
       
   820       bool red;
       
   821     };
       
   822 
       
   823     struct ArcT {
       
   824       int target;
       
   825       int next_out;
       
   826     };
       
   827 
       
   828     std::vector<NodeT> nodes;
       
   829     std::vector<ArcT> arcs;
       
   830 
       
   831     int first_red, first_blue;
       
   832 
       
   833   public:
       
   834 
       
   835     typedef SmartBpGraphBase Graph;
       
   836 
       
   837     class Node;
       
   838     class Arc;
       
   839     class Edge;
       
   840 
       
   841     class Node {
       
   842       friend class SmartBpGraphBase;
       
   843     protected:
       
   844 
       
   845       int _id;
       
   846       explicit Node(int id) { _id = id;}
       
   847 
       
   848     public:
       
   849       Node() {}
       
   850       Node (Invalid) { _id = -1; }
       
   851       bool operator==(const Node& node) const {return _id == node._id;}
       
   852       bool operator!=(const Node& node) const {return _id != node._id;}
       
   853       bool operator<(const Node& node) const {return _id < node._id;}
       
   854     };
       
   855 
       
   856     class Edge {
       
   857       friend class SmartBpGraphBase;
       
   858     protected:
       
   859 
       
   860       int _id;
       
   861       explicit Edge(int id) { _id = id;}
       
   862 
       
   863     public:
       
   864       Edge() {}
       
   865       Edge (Invalid) { _id = -1; }
       
   866       bool operator==(const Edge& arc) const {return _id == arc._id;}
       
   867       bool operator!=(const Edge& arc) const {return _id != arc._id;}
       
   868       bool operator<(const Edge& arc) const {return _id < arc._id;}
       
   869     };
       
   870 
       
   871     class Arc {
       
   872       friend class SmartBpGraphBase;
       
   873     protected:
       
   874 
       
   875       int _id;
       
   876       explicit Arc(int id) { _id = id;}
       
   877 
       
   878     public:
       
   879       operator Edge() const {
       
   880         return _id != -1 ? edgeFromId(_id / 2) : INVALID;
       
   881       }
       
   882 
       
   883       Arc() {}
       
   884       Arc (Invalid) { _id = -1; }
       
   885       bool operator==(const Arc& arc) const {return _id == arc._id;}
       
   886       bool operator!=(const Arc& arc) const {return _id != arc._id;}
       
   887       bool operator<(const Arc& arc) const {return _id < arc._id;}
       
   888     };
       
   889 
       
   890 
       
   891 
       
   892     SmartBpGraphBase()
       
   893       : nodes(), arcs(), first_red(-1), first_blue(-1) {}
       
   894 
       
   895     typedef True NodeNumTag;
       
   896     typedef True EdgeNumTag;
       
   897     typedef True ArcNumTag;
       
   898 
       
   899     int nodeNum() const { return nodes.size(); }
       
   900     int redNum() const {
       
   901       return first_red == -1 ? 0 : nodes[first_red].partition_index + 1;
       
   902     }
       
   903     int blueNum() const {
       
   904       return first_blue == -1 ? 0 : nodes[first_blue].partition_index + 1;
       
   905     }
       
   906     int edgeNum() const { return arcs.size() / 2; }
       
   907     int arcNum() const { return arcs.size(); }
       
   908 
       
   909     int maxNodeId() const { return nodes.size()-1; }
       
   910     int maxRedId() const {
       
   911       return first_red == -1 ? -1 : nodes[first_red].partition_index;
       
   912     }
       
   913     int maxBlueId() const {
       
   914       return first_blue == -1 ? -1 : nodes[first_blue].partition_index;
       
   915     }
       
   916     int maxEdgeId() const { return arcs.size() / 2 - 1; }
       
   917     int maxArcId() const { return arcs.size()-1; }
       
   918 
       
   919     bool red(Node n) const { return nodes[n._id].red; }
       
   920     bool blue(Node n) const { return !nodes[n._id].red; }
       
   921 
       
   922     Node source(Arc a) const { return Node(arcs[a._id ^ 1].target); }
       
   923     Node target(Arc a) const { return Node(arcs[a._id].target); }
       
   924 
       
   925     Node redNode(Edge e) const { return Node(arcs[2 * e._id].target); }
       
   926     Node blueNode(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
       
   927 
       
   928     Node u(Edge e) const { return redNode(e); }
       
   929     Node v(Edge e) const { return blueNode(e); }
       
   930 
       
   931     static bool direction(Arc a) {
       
   932       return (a._id & 1) == 1;
       
   933     }
       
   934 
       
   935     static Arc direct(Edge e, bool d) {
       
   936       return Arc(e._id * 2 + (d ? 1 : 0));
       
   937     }
       
   938 
       
   939     void first(Node& node) const {
       
   940       node._id = nodes.size() - 1;
       
   941     }
       
   942 
       
   943     static void next(Node& node) {
       
   944       --node._id;
       
   945     }
       
   946 
       
   947     void firstRed(Node& node) const {
       
   948       node._id = first_red;
       
   949     }
       
   950 
       
   951     void nextRed(Node& node) const {
       
   952       node._id = nodes[node._id].partition_next;
       
   953     }
       
   954 
       
   955     void firstBlue(Node& node) const {
       
   956       node._id = first_blue;
       
   957     }
       
   958 
       
   959     void nextBlue(Node& node) const {
       
   960       node._id = nodes[node._id].partition_next;
       
   961     }
       
   962 
       
   963     void first(Arc& arc) const {
       
   964       arc._id = arcs.size() - 1;
       
   965     }
       
   966 
       
   967     static void next(Arc& arc) {
       
   968       --arc._id;
       
   969     }
       
   970 
       
   971     void first(Edge& arc) const {
       
   972       arc._id = arcs.size() / 2 - 1;
       
   973     }
       
   974 
       
   975     static void next(Edge& arc) {
       
   976       --arc._id;
       
   977     }
       
   978 
       
   979     void firstOut(Arc &arc, const Node& v) const {
       
   980       arc._id = nodes[v._id].first_out;
       
   981     }
       
   982     void nextOut(Arc &arc) const {
       
   983       arc._id = arcs[arc._id].next_out;
       
   984     }
       
   985 
       
   986     void firstIn(Arc &arc, const Node& v) const {
       
   987       arc._id = ((nodes[v._id].first_out) ^ 1);
       
   988       if (arc._id == -2) arc._id = -1;
       
   989     }
       
   990     void nextIn(Arc &arc) const {
       
   991       arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
       
   992       if (arc._id == -2) arc._id = -1;
       
   993     }
       
   994 
       
   995     void firstInc(Edge &arc, bool& d, const Node& v) const {
       
   996       int de = nodes[v._id].first_out;
       
   997       if (de != -1) {
       
   998         arc._id = de / 2;
       
   999         d = ((de & 1) == 1);
       
  1000       } else {
       
  1001         arc._id = -1;
       
  1002         d = true;
       
  1003       }
       
  1004     }
       
  1005     void nextInc(Edge &arc, bool& d) const {
       
  1006       int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
       
  1007       if (de != -1) {
       
  1008         arc._id = de / 2;
       
  1009         d = ((de & 1) == 1);
       
  1010       } else {
       
  1011         arc._id = -1;
       
  1012         d = true;
       
  1013       }
       
  1014     }
       
  1015 
       
  1016     static int id(Node v) { return v._id; }
       
  1017     int redId(Node v) const {
       
  1018       LEMON_DEBUG(nodes[v._id].red, "Node has to be red");
       
  1019       return nodes[v._id].partition_index;
       
  1020     }
       
  1021     int blueId(Node v) const {
       
  1022       LEMON_DEBUG(nodes[v._id].red, "Node has to be blue");
       
  1023       return nodes[v._id].partition_index;
       
  1024     }
       
  1025     static int id(Arc e) { return e._id; }
       
  1026     static int id(Edge e) { return e._id; }
       
  1027 
       
  1028     static Node nodeFromId(int id) { return Node(id);}
       
  1029     static Arc arcFromId(int id) { return Arc(id);}
       
  1030     static Edge edgeFromId(int id) { return Edge(id);}
       
  1031 
       
  1032     bool valid(Node n) const {
       
  1033       return n._id >= 0 && n._id < static_cast<int>(nodes.size());
       
  1034     }
       
  1035     bool valid(Arc a) const {
       
  1036       return a._id >= 0 && a._id < static_cast<int>(arcs.size());
       
  1037     }
       
  1038     bool valid(Edge e) const {
       
  1039       return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
       
  1040     }
       
  1041 
       
  1042     Node addRedNode() {
       
  1043       int n = nodes.size();
       
  1044       nodes.push_back(NodeT());
       
  1045       nodes[n].first_out = -1;
       
  1046       nodes[n].red = true;
       
  1047       if (first_red == -1) {
       
  1048         nodes[n].partition_index = 0;
       
  1049       } else {
       
  1050         nodes[n].partition_index = nodes[first_red].partition_index + 1;
       
  1051       }
       
  1052       nodes[n].partition_next = first_red;
       
  1053       first_red = n;
       
  1054 
       
  1055       return Node(n);
       
  1056     }
       
  1057 
       
  1058     Node addBlueNode() {
       
  1059       int n = nodes.size();
       
  1060       nodes.push_back(NodeT());
       
  1061       nodes[n].first_out = -1;
       
  1062       nodes[n].red = false;
       
  1063       if (first_blue == -1) {
       
  1064         nodes[n].partition_index = 0;
       
  1065       } else {
       
  1066         nodes[n].partition_index = nodes[first_blue].partition_index + 1;
       
  1067       }
       
  1068       nodes[n].partition_next = first_blue;
       
  1069       first_blue = n;
       
  1070 
       
  1071       return Node(n);
       
  1072     }
       
  1073 
       
  1074     Edge addEdge(Node u, Node v) {
       
  1075       int n = arcs.size();
       
  1076       arcs.push_back(ArcT());
       
  1077       arcs.push_back(ArcT());
       
  1078 
       
  1079       arcs[n].target = u._id;
       
  1080       arcs[n | 1].target = v._id;
       
  1081 
       
  1082       arcs[n].next_out = nodes[v._id].first_out;
       
  1083       nodes[v._id].first_out = n;
       
  1084 
       
  1085       arcs[n | 1].next_out = nodes[u._id].first_out;
       
  1086       nodes[u._id].first_out = (n | 1);
       
  1087 
       
  1088       return Edge(n / 2);
       
  1089     }
       
  1090 
       
  1091     void clear() {
       
  1092       arcs.clear();
       
  1093       nodes.clear();
       
  1094       first_red = -1;
       
  1095       first_blue = -1;
       
  1096     }
       
  1097 
       
  1098   };
       
  1099 
       
  1100   typedef BpGraphExtender<SmartBpGraphBase> ExtendedSmartBpGraphBase;
       
  1101 
       
  1102   /// \ingroup graphs
       
  1103   ///
       
  1104   /// \brief A smart undirected graph class.
       
  1105   ///
       
  1106   /// \ref SmartBpGraph is a simple and fast graph implementation.
       
  1107   /// It is also quite memory efficient but at the price
       
  1108   /// that it does not support node and edge deletion
       
  1109   /// (except for the Snapshot feature).
       
  1110   ///
       
  1111   /// This type fully conforms to the \ref concepts::Graph "Graph concept"
       
  1112   /// and it also provides some additional functionalities.
       
  1113   /// Most of its member functions and nested classes are documented
       
  1114   /// only in the concept class.
       
  1115   ///
       
  1116   /// This class provides constant time counting for nodes, edges and arcs.
       
  1117   ///
       
  1118   /// \sa concepts::Graph
       
  1119   /// \sa SmartDigraph
       
  1120   class SmartBpGraph : public ExtendedSmartBpGraphBase {
       
  1121     typedef ExtendedSmartBpGraphBase Parent;
       
  1122 
       
  1123   private:
       
  1124     /// Graphs are \e not copy constructible. Use GraphCopy instead.
       
  1125     SmartBpGraph(const SmartBpGraph &) : ExtendedSmartBpGraphBase() {};
       
  1126     /// \brief Assignment of a graph to another one is \e not allowed.
       
  1127     /// Use GraphCopy instead.
       
  1128     void operator=(const SmartBpGraph &) {}
       
  1129 
       
  1130   public:
       
  1131 
       
  1132     /// Constructor
       
  1133 
       
  1134     /// Constructor.
       
  1135     ///
       
  1136     SmartBpGraph() {}
       
  1137 
       
  1138     /// \brief Add a new red node to the graph.
       
  1139     ///
       
  1140     /// This function adds a red new node to the graph.
       
  1141     /// \return The new node.
       
  1142     Node addRedNode() { return Parent::addRedNode(); }
       
  1143 
       
  1144     /// \brief Add a new blue node to the graph.
       
  1145     ///
       
  1146     /// This function adds a blue new node to the graph.
       
  1147     /// \return The new node.
       
  1148     Node addBlueNode() { return Parent::addBlueNode(); }
       
  1149 
       
  1150     /// \brief Add a new edge to the graph.
       
  1151     ///
       
  1152     /// This function adds a new edge to the graph between nodes
       
  1153     /// \c u and \c v with inherent orientation from node \c u to
       
  1154     /// node \c v.
       
  1155     /// \return The new edge.
       
  1156     Edge addEdge(Node red, Node blue) {
       
  1157       LEMON_DEBUG(Parent::red(red) && Parent::blue(blue),
       
  1158                   "Edge has to be formed by a red and a blue nodes");
       
  1159       return Parent::addEdge(red, blue);
       
  1160     }
       
  1161 
       
  1162     /// \brief Node validity check
       
  1163     ///
       
  1164     /// This function gives back \c true if the given node is valid,
       
  1165     /// i.e. it is a real node of the graph.
       
  1166     ///
       
  1167     /// \warning A removed node (using Snapshot) could become valid again
       
  1168     /// if new nodes are added to the graph.
       
  1169     bool valid(Node n) const { return Parent::valid(n); }
       
  1170 
       
  1171     /// \brief Edge validity check
       
  1172     ///
       
  1173     /// This function gives back \c true if the given edge is valid,
       
  1174     /// i.e. it is a real edge of the graph.
       
  1175     ///
       
  1176     /// \warning A removed edge (using Snapshot) could become valid again
       
  1177     /// if new edges are added to the graph.
       
  1178     bool valid(Edge e) const { return Parent::valid(e); }
       
  1179 
       
  1180     /// \brief Arc validity check
       
  1181     ///
       
  1182     /// This function gives back \c true if the given arc is valid,
       
  1183     /// i.e. it is a real arc of the graph.
       
  1184     ///
       
  1185     /// \warning A removed arc (using Snapshot) could become valid again
       
  1186     /// if new edges are added to the graph.
       
  1187     bool valid(Arc a) const { return Parent::valid(a); }
       
  1188 
       
  1189     ///Clear the graph.
       
  1190 
       
  1191     ///This function erases all nodes and arcs from the graph.
       
  1192     ///
       
  1193     void clear() {
       
  1194       Parent::clear();
       
  1195     }
       
  1196 
       
  1197     /// Reserve memory for nodes.
       
  1198 
       
  1199     /// Using this function, it is possible to avoid superfluous memory
       
  1200     /// allocation: if you know that the graph you want to build will
       
  1201     /// be large (e.g. it will contain millions of nodes and/or edges),
       
  1202     /// then it is worth reserving space for this amount before starting
       
  1203     /// to build the graph.
       
  1204     /// \sa reserveEdge()
       
  1205     void reserveNode(int n) { nodes.reserve(n); };
       
  1206 
       
  1207     /// Reserve memory for edges.
       
  1208 
       
  1209     /// Using this function, it is possible to avoid superfluous memory
       
  1210     /// allocation: if you know that the graph you want to build will
       
  1211     /// be large (e.g. it will contain millions of nodes and/or edges),
       
  1212     /// then it is worth reserving space for this amount before starting
       
  1213     /// to build the graph.
       
  1214     /// \sa reserveNode()
       
  1215     void reserveEdge(int m) { arcs.reserve(2 * m); };
       
  1216 
       
  1217   public:
       
  1218 
       
  1219     class Snapshot;
       
  1220 
       
  1221   protected:
       
  1222 
       
  1223     void saveSnapshot(Snapshot &s)
       
  1224     {
       
  1225       s._graph = this;
       
  1226       s.node_num = nodes.size();
       
  1227       s.arc_num = arcs.size();
       
  1228     }
       
  1229 
       
  1230     void restoreSnapshot(const Snapshot &s)
       
  1231     {
       
  1232       while(s.arc_num<arcs.size()) {
       
  1233         int n=arcs.size()-1;
       
  1234         Edge arc=edgeFromId(n/2);
       
  1235         Parent::notifier(Edge()).erase(arc);
       
  1236         std::vector<Arc> dir;
       
  1237         dir.push_back(arcFromId(n));
       
  1238         dir.push_back(arcFromId(n-1));
       
  1239         Parent::notifier(Arc()).erase(dir);
       
  1240         nodes[arcs[n-1].target].first_out=arcs[n].next_out;
       
  1241         nodes[arcs[n].target].first_out=arcs[n-1].next_out;
       
  1242         arcs.pop_back();
       
  1243         arcs.pop_back();
       
  1244       }
       
  1245       while(s.node_num<nodes.size()) {
       
  1246         int n=nodes.size()-1;
       
  1247         Node node = nodeFromId(n);
       
  1248         if (Parent::red(node)) {
       
  1249           first_red = nodes[n].partition_next;
       
  1250           Parent::notifier(RedNode()).erase(node);          
       
  1251         } else {
       
  1252           first_blue = nodes[n].partition_next;
       
  1253           Parent::notifier(BlueNode()).erase(node);
       
  1254         }
       
  1255         Parent::notifier(Node()).erase(node);
       
  1256         nodes.pop_back();
       
  1257       }
       
  1258     }
       
  1259 
       
  1260   public:
       
  1261 
       
  1262     ///Class to make a snapshot of the graph and to restore it later.
       
  1263 
       
  1264     ///Class to make a snapshot of the graph and to restore it later.
       
  1265     ///
       
  1266     ///The newly added nodes and edges can be removed using the
       
  1267     ///restore() function. This is the only way for deleting nodes and/or
       
  1268     ///edges from a SmartBpGraph structure.
       
  1269     ///
       
  1270     ///\note After a state is restored, you cannot restore a later state,
       
  1271     ///i.e. you cannot add the removed nodes and edges again using
       
  1272     ///another Snapshot instance.
       
  1273     ///
       
  1274     ///\warning The validity of the snapshot is not stored due to
       
  1275     ///performance reasons. If you do not use the snapshot correctly,
       
  1276     ///it can cause broken program, invalid or not restored state of
       
  1277     ///the graph or no change.
       
  1278     class Snapshot
       
  1279     {
       
  1280       SmartBpGraph *_graph;
       
  1281     protected:
       
  1282       friend class SmartBpGraph;
       
  1283       unsigned int node_num;
       
  1284       unsigned int arc_num;
       
  1285     public:
       
  1286       ///Default constructor.
       
  1287 
       
  1288       ///Default constructor.
       
  1289       ///You have to call save() to actually make a snapshot.
       
  1290       Snapshot() : _graph(0) {}
       
  1291       ///Constructor that immediately makes a snapshot
       
  1292 
       
  1293       /// This constructor immediately makes a snapshot of the given graph.
       
  1294       ///
       
  1295       Snapshot(SmartBpGraph &gr) {
       
  1296         gr.saveSnapshot(*this);
       
  1297       }
       
  1298 
       
  1299       ///Make a snapshot.
       
  1300 
       
  1301       ///This function makes a snapshot of the given graph.
       
  1302       ///It can be called more than once. In case of a repeated
       
  1303       ///call, the previous snapshot gets lost.
       
  1304       void save(SmartBpGraph &gr)
       
  1305       {
       
  1306         gr.saveSnapshot(*this);
       
  1307       }
       
  1308 
       
  1309       ///Undo the changes until the last snapshot.
       
  1310 
       
  1311       ///This function undos the changes until the last snapshot
       
  1312       ///created by save() or Snapshot(SmartBpGraph&).
       
  1313       void restore()
       
  1314       {
       
  1315         _graph->restoreSnapshot(*this);
       
  1316       }
       
  1317     };
       
  1318   };
       
  1319 
   814 } //namespace lemon
  1320 } //namespace lemon
   815 
  1321 
   816 
  1322 
   817 #endif //LEMON_SMART_GRAPH_H
  1323 #endif //LEMON_SMART_GRAPH_H