|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2008 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_BFS_H |
|
20 #define LEMON_BFS_H |
|
21 |
|
22 ///\ingroup search |
|
23 ///\file |
|
24 ///\brief Bfs algorithm. |
|
25 |
|
26 #include <lemon/list_graph.h> |
|
27 #include <lemon/graph_utils.h> |
|
28 #include <lemon/bits/path_dump.h> |
|
29 #include <lemon/bits/invalid.h> |
|
30 #include <lemon/error.h> |
|
31 #include <lemon/maps.h> |
|
32 |
|
33 namespace lemon { |
|
34 |
|
35 |
|
36 |
|
37 ///Default traits class of Bfs class. |
|
38 |
|
39 ///Default traits class of Bfs class. |
|
40 ///\param GR Digraph type. |
|
41 template<class GR> |
|
42 struct BfsDefaultTraits |
|
43 { |
|
44 ///The digraph type the algorithm runs on. |
|
45 typedef GR Digraph; |
|
46 ///\brief The type of the map that stores the last |
|
47 ///arcs of the shortest paths. |
|
48 /// |
|
49 ///The type of the map that stores the last |
|
50 ///arcs of the shortest paths. |
|
51 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
52 /// |
|
53 typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
|
54 ///Instantiates a PredMap. |
|
55 |
|
56 ///This function instantiates a \ref PredMap. |
|
57 ///\param G is the digraph, to which we would like to define the PredMap. |
|
58 ///\todo The digraph alone may be insufficient to initialize |
|
59 static PredMap *createPredMap(const GR &G) |
|
60 { |
|
61 return new PredMap(G); |
|
62 } |
|
63 ///The type of the map that indicates which nodes are processed. |
|
64 |
|
65 ///The type of the map that indicates which nodes are processed. |
|
66 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
67 ///\todo named parameter to set this type, function to read and write. |
|
68 typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
|
69 ///Instantiates a ProcessedMap. |
|
70 |
|
71 ///This function instantiates a \ref ProcessedMap. |
|
72 ///\param g is the digraph, to which |
|
73 ///we would like to define the \ref ProcessedMap |
|
74 #ifdef DOXYGEN |
|
75 static ProcessedMap *createProcessedMap(const GR &g) |
|
76 #else |
|
77 static ProcessedMap *createProcessedMap(const GR &) |
|
78 #endif |
|
79 { |
|
80 return new ProcessedMap(); |
|
81 } |
|
82 ///The type of the map that indicates which nodes are reached. |
|
83 |
|
84 ///The type of the map that indicates which nodes are reached. |
|
85 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
86 ///\todo named parameter to set this type, function to read and write. |
|
87 typedef typename Digraph::template NodeMap<bool> ReachedMap; |
|
88 ///Instantiates a ReachedMap. |
|
89 |
|
90 ///This function instantiates a \ref ReachedMap. |
|
91 ///\param G is the digraph, to which |
|
92 ///we would like to define the \ref ReachedMap. |
|
93 static ReachedMap *createReachedMap(const GR &G) |
|
94 { |
|
95 return new ReachedMap(G); |
|
96 } |
|
97 ///The type of the map that stores the dists of the nodes. |
|
98 |
|
99 ///The type of the map that stores the dists of the nodes. |
|
100 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
101 /// |
|
102 typedef typename Digraph::template NodeMap<int> DistMap; |
|
103 ///Instantiates a DistMap. |
|
104 |
|
105 ///This function instantiates a \ref DistMap. |
|
106 ///\param G is the digraph, to which we would like to define the \ref DistMap |
|
107 static DistMap *createDistMap(const GR &G) |
|
108 { |
|
109 return new DistMap(G); |
|
110 } |
|
111 }; |
|
112 |
|
113 ///%BFS algorithm class. |
|
114 |
|
115 ///\ingroup search |
|
116 ///This class provides an efficient implementation of the %BFS algorithm. |
|
117 /// |
|
118 ///\param GR The digraph type the algorithm runs on. The default value is |
|
119 ///\ref ListDigraph. The value of GR is not used directly by Bfs, it |
|
120 ///is only passed to \ref BfsDefaultTraits. |
|
121 ///\param TR Traits class to set various data types used by the algorithm. |
|
122 ///The default traits class is |
|
123 ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
|
124 ///See \ref BfsDefaultTraits for the documentation of |
|
125 ///a Bfs traits class. |
|
126 /// |
|
127 ///\author Alpar Juttner |
|
128 |
|
129 #ifdef DOXYGEN |
|
130 template <typename GR, |
|
131 typename TR> |
|
132 #else |
|
133 template <typename GR=ListDigraph, |
|
134 typename TR=BfsDefaultTraits<GR> > |
|
135 #endif |
|
136 class Bfs { |
|
137 public: |
|
138 /** |
|
139 * \brief \ref Exception for uninitialized parameters. |
|
140 * |
|
141 * This error represents problems in the initialization |
|
142 * of the parameters of the algorithms. |
|
143 */ |
|
144 class UninitializedParameter : public lemon::UninitializedParameter { |
|
145 public: |
|
146 virtual const char* what() const throw() { |
|
147 return "lemon::Bfs::UninitializedParameter"; |
|
148 } |
|
149 }; |
|
150 |
|
151 typedef TR Traits; |
|
152 ///The type of the underlying digraph. |
|
153 typedef typename TR::Digraph Digraph; |
|
154 |
|
155 ///\brief The type of the map that stores the last |
|
156 ///arcs of the shortest paths. |
|
157 typedef typename TR::PredMap PredMap; |
|
158 ///The type of the map indicating which nodes are reached. |
|
159 typedef typename TR::ReachedMap ReachedMap; |
|
160 ///The type of the map indicating which nodes are processed. |
|
161 typedef typename TR::ProcessedMap ProcessedMap; |
|
162 ///The type of the map that stores the dists of the nodes. |
|
163 typedef typename TR::DistMap DistMap; |
|
164 private: |
|
165 |
|
166 typedef typename Digraph::Node Node; |
|
167 typedef typename Digraph::NodeIt NodeIt; |
|
168 typedef typename Digraph::Arc Arc; |
|
169 typedef typename Digraph::OutArcIt OutArcIt; |
|
170 |
|
171 /// Pointer to the underlying digraph. |
|
172 const Digraph *G; |
|
173 ///Pointer to the map of predecessors arcs. |
|
174 PredMap *_pred; |
|
175 ///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
176 bool local_pred; |
|
177 ///Pointer to the map of distances. |
|
178 DistMap *_dist; |
|
179 ///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
180 bool local_dist; |
|
181 ///Pointer to the map of reached status of the nodes. |
|
182 ReachedMap *_reached; |
|
183 ///Indicates if \ref _reached is locally allocated (\c true) or not. |
|
184 bool local_reached; |
|
185 ///Pointer to the map of processed status of the nodes. |
|
186 ProcessedMap *_processed; |
|
187 ///Indicates if \ref _processed is locally allocated (\c true) or not. |
|
188 bool local_processed; |
|
189 |
|
190 std::vector<typename Digraph::Node> _queue; |
|
191 int _queue_head,_queue_tail,_queue_next_dist; |
|
192 int _curr_dist; |
|
193 |
|
194 ///Creates the maps if necessary. |
|
195 |
|
196 ///\todo Better memory allocation (instead of new). |
|
197 void create_maps() |
|
198 { |
|
199 if(!_pred) { |
|
200 local_pred = true; |
|
201 _pred = Traits::createPredMap(*G); |
|
202 } |
|
203 if(!_dist) { |
|
204 local_dist = true; |
|
205 _dist = Traits::createDistMap(*G); |
|
206 } |
|
207 if(!_reached) { |
|
208 local_reached = true; |
|
209 _reached = Traits::createReachedMap(*G); |
|
210 } |
|
211 if(!_processed) { |
|
212 local_processed = true; |
|
213 _processed = Traits::createProcessedMap(*G); |
|
214 } |
|
215 } |
|
216 |
|
217 protected: |
|
218 |
|
219 Bfs() {} |
|
220 |
|
221 public: |
|
222 |
|
223 typedef Bfs Create; |
|
224 |
|
225 ///\name Named template parameters |
|
226 |
|
227 ///@{ |
|
228 |
|
229 template <class T> |
|
230 struct DefPredMapTraits : public Traits { |
|
231 typedef T PredMap; |
|
232 static PredMap *createPredMap(const Digraph &) |
|
233 { |
|
234 throw UninitializedParameter(); |
|
235 } |
|
236 }; |
|
237 ///\brief \ref named-templ-param "Named parameter" for setting |
|
238 ///PredMap type |
|
239 /// |
|
240 ///\ref named-templ-param "Named parameter" for setting PredMap type |
|
241 /// |
|
242 template <class T> |
|
243 struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { |
|
244 typedef Bfs< Digraph, DefPredMapTraits<T> > Create; |
|
245 }; |
|
246 |
|
247 template <class T> |
|
248 struct DefDistMapTraits : public Traits { |
|
249 typedef T DistMap; |
|
250 static DistMap *createDistMap(const Digraph &) |
|
251 { |
|
252 throw UninitializedParameter(); |
|
253 } |
|
254 }; |
|
255 ///\brief \ref named-templ-param "Named parameter" for setting |
|
256 ///DistMap type |
|
257 /// |
|
258 ///\ref named-templ-param "Named parameter" for setting DistMap type |
|
259 /// |
|
260 template <class T> |
|
261 struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { |
|
262 typedef Bfs< Digraph, DefDistMapTraits<T> > Create; |
|
263 }; |
|
264 |
|
265 template <class T> |
|
266 struct DefReachedMapTraits : public Traits { |
|
267 typedef T ReachedMap; |
|
268 static ReachedMap *createReachedMap(const Digraph &) |
|
269 { |
|
270 throw UninitializedParameter(); |
|
271 } |
|
272 }; |
|
273 ///\brief \ref named-templ-param "Named parameter" for setting |
|
274 ///ReachedMap type |
|
275 /// |
|
276 ///\ref named-templ-param "Named parameter" for setting ReachedMap type |
|
277 /// |
|
278 template <class T> |
|
279 struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { |
|
280 typedef Bfs< Digraph, DefReachedMapTraits<T> > Create; |
|
281 }; |
|
282 |
|
283 template <class T> |
|
284 struct DefProcessedMapTraits : public Traits { |
|
285 typedef T ProcessedMap; |
|
286 static ProcessedMap *createProcessedMap(const Digraph &) |
|
287 { |
|
288 throw UninitializedParameter(); |
|
289 } |
|
290 }; |
|
291 ///\brief \ref named-templ-param "Named parameter" for setting |
|
292 ///ProcessedMap type |
|
293 /// |
|
294 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
|
295 /// |
|
296 template <class T> |
|
297 struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > { |
|
298 typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create; |
|
299 }; |
|
300 |
|
301 struct DefDigraphProcessedMapTraits : public Traits { |
|
302 typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
303 static ProcessedMap *createProcessedMap(const Digraph &G) |
|
304 { |
|
305 return new ProcessedMap(G); |
|
306 } |
|
307 }; |
|
308 ///\brief \ref named-templ-param "Named parameter" |
|
309 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
|
310 /// |
|
311 ///\ref named-templ-param "Named parameter" |
|
312 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
|
313 ///If you don't set it explicitly, it will be automatically allocated. |
|
314 template <class T> |
|
315 struct DefProcessedMapToBeDefaultMap : |
|
316 public Bfs< Digraph, DefDigraphProcessedMapTraits> { |
|
317 typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create; |
|
318 }; |
|
319 |
|
320 ///@} |
|
321 |
|
322 public: |
|
323 |
|
324 ///Constructor. |
|
325 |
|
326 ///\param _G the digraph the algorithm will run on. |
|
327 /// |
|
328 Bfs(const Digraph& _G) : |
|
329 G(&_G), |
|
330 _pred(NULL), local_pred(false), |
|
331 _dist(NULL), local_dist(false), |
|
332 _reached(NULL), local_reached(false), |
|
333 _processed(NULL), local_processed(false) |
|
334 { } |
|
335 |
|
336 ///Destructor. |
|
337 ~Bfs() |
|
338 { |
|
339 if(local_pred) delete _pred; |
|
340 if(local_dist) delete _dist; |
|
341 if(local_reached) delete _reached; |
|
342 if(local_processed) delete _processed; |
|
343 } |
|
344 |
|
345 ///Sets the map storing the predecessor arcs. |
|
346 |
|
347 ///Sets the map storing the predecessor arcs. |
|
348 ///If you don't use this function before calling \ref run(), |
|
349 ///it will allocate one. The destructor deallocates this |
|
350 ///automatically allocated map, of course. |
|
351 ///\return <tt> (*this) </tt> |
|
352 Bfs &predMap(PredMap &m) |
|
353 { |
|
354 if(local_pred) { |
|
355 delete _pred; |
|
356 local_pred=false; |
|
357 } |
|
358 _pred = &m; |
|
359 return *this; |
|
360 } |
|
361 |
|
362 ///Sets the map indicating the reached nodes. |
|
363 |
|
364 ///Sets the map indicating the reached nodes. |
|
365 ///If you don't use this function before calling \ref run(), |
|
366 ///it will allocate one. The destructor deallocates this |
|
367 ///automatically allocated map, of course. |
|
368 ///\return <tt> (*this) </tt> |
|
369 Bfs &reachedMap(ReachedMap &m) |
|
370 { |
|
371 if(local_reached) { |
|
372 delete _reached; |
|
373 local_reached=false; |
|
374 } |
|
375 _reached = &m; |
|
376 return *this; |
|
377 } |
|
378 |
|
379 ///Sets the map indicating the processed nodes. |
|
380 |
|
381 ///Sets the map indicating the processed nodes. |
|
382 ///If you don't use this function before calling \ref run(), |
|
383 ///it will allocate one. The destructor deallocates this |
|
384 ///automatically allocated map, of course. |
|
385 ///\return <tt> (*this) </tt> |
|
386 Bfs &processedMap(ProcessedMap &m) |
|
387 { |
|
388 if(local_processed) { |
|
389 delete _processed; |
|
390 local_processed=false; |
|
391 } |
|
392 _processed = &m; |
|
393 return *this; |
|
394 } |
|
395 |
|
396 ///Sets the map storing the distances calculated by the algorithm. |
|
397 |
|
398 ///Sets the map storing the distances calculated by the algorithm. |
|
399 ///If you don't use this function before calling \ref run(), |
|
400 ///it will allocate one. The destructor deallocates this |
|
401 ///automatically allocated map, of course. |
|
402 ///\return <tt> (*this) </tt> |
|
403 Bfs &distMap(DistMap &m) |
|
404 { |
|
405 if(local_dist) { |
|
406 delete _dist; |
|
407 local_dist=false; |
|
408 } |
|
409 _dist = &m; |
|
410 return *this; |
|
411 } |
|
412 |
|
413 public: |
|
414 ///\name Execution control |
|
415 ///The simplest way to execute the algorithm is to use |
|
416 ///one of the member functions called \c run(...). |
|
417 ///\n |
|
418 ///If you need more control on the execution, |
|
419 ///first you must call \ref init(), then you can add several source nodes |
|
420 ///with \ref addSource(). |
|
421 ///Finally \ref start() will perform the actual path |
|
422 ///computation. |
|
423 |
|
424 ///@{ |
|
425 |
|
426 ///\brief Initializes the internal data structures. |
|
427 /// |
|
428 ///Initializes the internal data structures. |
|
429 /// |
|
430 void init() |
|
431 { |
|
432 create_maps(); |
|
433 _queue.resize(countNodes(*G)); |
|
434 _queue_head=_queue_tail=0; |
|
435 _curr_dist=1; |
|
436 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
|
437 _pred->set(u,INVALID); |
|
438 _reached->set(u,false); |
|
439 _processed->set(u,false); |
|
440 } |
|
441 } |
|
442 |
|
443 ///Adds a new source node. |
|
444 |
|
445 ///Adds a new source node to the set of nodes to be processed. |
|
446 /// |
|
447 void addSource(Node s) |
|
448 { |
|
449 if(!(*_reached)[s]) |
|
450 { |
|
451 _reached->set(s,true); |
|
452 _pred->set(s,INVALID); |
|
453 _dist->set(s,0); |
|
454 _queue[_queue_head++]=s; |
|
455 _queue_next_dist=_queue_head; |
|
456 } |
|
457 } |
|
458 |
|
459 ///Processes the next node. |
|
460 |
|
461 ///Processes the next node. |
|
462 /// |
|
463 ///\return The processed node. |
|
464 /// |
|
465 ///\warning The queue must not be empty! |
|
466 Node processNextNode() |
|
467 { |
|
468 if(_queue_tail==_queue_next_dist) { |
|
469 _curr_dist++; |
|
470 _queue_next_dist=_queue_head; |
|
471 } |
|
472 Node n=_queue[_queue_tail++]; |
|
473 _processed->set(n,true); |
|
474 Node m; |
|
475 for(OutArcIt e(*G,n);e!=INVALID;++e) |
|
476 if(!(*_reached)[m=G->target(e)]) { |
|
477 _queue[_queue_head++]=m; |
|
478 _reached->set(m,true); |
|
479 _pred->set(m,e); |
|
480 _dist->set(m,_curr_dist); |
|
481 } |
|
482 return n; |
|
483 } |
|
484 |
|
485 ///Processes the next node. |
|
486 |
|
487 ///Processes the next node. And checks that the given target node |
|
488 ///is reached. If the target node is reachable from the processed |
|
489 ///node then the reached parameter will be set true. The reached |
|
490 ///parameter should be initially false. |
|
491 /// |
|
492 ///\param target The target node. |
|
493 ///\retval reach Indicates that the target node is reached. |
|
494 ///\return The processed node. |
|
495 /// |
|
496 ///\warning The queue must not be empty! |
|
497 Node processNextNode(Node target, bool& reach) |
|
498 { |
|
499 if(_queue_tail==_queue_next_dist) { |
|
500 _curr_dist++; |
|
501 _queue_next_dist=_queue_head; |
|
502 } |
|
503 Node n=_queue[_queue_tail++]; |
|
504 _processed->set(n,true); |
|
505 Node m; |
|
506 for(OutArcIt e(*G,n);e!=INVALID;++e) |
|
507 if(!(*_reached)[m=G->target(e)]) { |
|
508 _queue[_queue_head++]=m; |
|
509 _reached->set(m,true); |
|
510 _pred->set(m,e); |
|
511 _dist->set(m,_curr_dist); |
|
512 reach = reach || (target == m); |
|
513 } |
|
514 return n; |
|
515 } |
|
516 |
|
517 ///Processes the next node. |
|
518 |
|
519 ///Processes the next node. And checks that at least one of |
|
520 ///reached node has true value in the \c nm node map. If one node |
|
521 ///with true value is reachable from the processed node then the |
|
522 ///rnode parameter will be set to the first of such nodes. |
|
523 /// |
|
524 ///\param nm The node map of possible targets. |
|
525 ///\retval rnode The reached target node. |
|
526 ///\return The processed node. |
|
527 /// |
|
528 ///\warning The queue must not be empty! |
|
529 template<class NM> |
|
530 Node processNextNode(const NM& nm, Node& rnode) |
|
531 { |
|
532 if(_queue_tail==_queue_next_dist) { |
|
533 _curr_dist++; |
|
534 _queue_next_dist=_queue_head; |
|
535 } |
|
536 Node n=_queue[_queue_tail++]; |
|
537 _processed->set(n,true); |
|
538 Node m; |
|
539 for(OutArcIt e(*G,n);e!=INVALID;++e) |
|
540 if(!(*_reached)[m=G->target(e)]) { |
|
541 _queue[_queue_head++]=m; |
|
542 _reached->set(m,true); |
|
543 _pred->set(m,e); |
|
544 _dist->set(m,_curr_dist); |
|
545 if (nm[m] && rnode == INVALID) rnode = m; |
|
546 } |
|
547 return n; |
|
548 } |
|
549 |
|
550 ///Next node to be processed. |
|
551 |
|
552 ///Next node to be processed. |
|
553 /// |
|
554 ///\return The next node to be processed or INVALID if the queue is |
|
555 /// empty. |
|
556 Node nextNode() |
|
557 { |
|
558 return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
|
559 } |
|
560 |
|
561 ///\brief Returns \c false if there are nodes |
|
562 ///to be processed in the queue |
|
563 /// |
|
564 ///Returns \c false if there are nodes |
|
565 ///to be processed in the queue |
|
566 bool emptyQueue() { return _queue_tail==_queue_head; } |
|
567 ///Returns the number of the nodes to be processed. |
|
568 |
|
569 ///Returns the number of the nodes to be processed in the queue. |
|
570 int queueSize() { return _queue_head-_queue_tail; } |
|
571 |
|
572 ///Executes the algorithm. |
|
573 |
|
574 ///Executes the algorithm. |
|
575 /// |
|
576 ///\pre init() must be called and at least one node should be added |
|
577 ///with addSource() before using this function. |
|
578 /// |
|
579 ///This method runs the %BFS algorithm from the root node(s) |
|
580 ///in order to |
|
581 ///compute the |
|
582 ///shortest path to each node. The algorithm computes |
|
583 ///- The shortest path tree. |
|
584 ///- The distance of each node from the root(s). |
|
585 void start() |
|
586 { |
|
587 while ( !emptyQueue() ) processNextNode(); |
|
588 } |
|
589 |
|
590 ///Executes the algorithm until \c dest is reached. |
|
591 |
|
592 ///Executes the algorithm until \c dest is reached. |
|
593 /// |
|
594 ///\pre init() must be called and at least one node should be added |
|
595 ///with addSource() before using this function. |
|
596 /// |
|
597 ///This method runs the %BFS algorithm from the root node(s) |
|
598 ///in order to compute the shortest path to \c dest. |
|
599 ///The algorithm computes |
|
600 ///- The shortest path to \c dest. |
|
601 ///- The distance of \c dest from the root(s). |
|
602 void start(Node dest) |
|
603 { |
|
604 bool reach = false; |
|
605 while ( !emptyQueue() && !reach ) processNextNode(dest, reach); |
|
606 } |
|
607 |
|
608 ///Executes the algorithm until a condition is met. |
|
609 |
|
610 ///Executes the algorithm until a condition is met. |
|
611 /// |
|
612 ///\pre init() must be called and at least one node should be added |
|
613 ///with addSource() before using this function. |
|
614 /// |
|
615 ///\param nm must be a bool (or convertible) node map. The |
|
616 ///algorithm will stop when it reaches a node \c v with |
|
617 /// <tt>nm[v]</tt> true. |
|
618 /// |
|
619 ///\return The reached node \c v with <tt>nm[v]</tt> true or |
|
620 ///\c INVALID if no such node was found. |
|
621 template<class NM> |
|
622 Node start(const NM &nm) |
|
623 { |
|
624 Node rnode = INVALID; |
|
625 while ( !emptyQueue() && rnode == INVALID ) { |
|
626 processNextNode(nm, rnode); |
|
627 } |
|
628 return rnode; |
|
629 } |
|
630 |
|
631 ///Runs %BFS algorithm from node \c s. |
|
632 |
|
633 ///This method runs the %BFS algorithm from a root node \c s |
|
634 ///in order to |
|
635 ///compute the |
|
636 ///shortest path to each node. The algorithm computes |
|
637 ///- The shortest path tree. |
|
638 ///- The distance of each node from the root. |
|
639 /// |
|
640 ///\note b.run(s) is just a shortcut of the following code. |
|
641 ///\code |
|
642 /// b.init(); |
|
643 /// b.addSource(s); |
|
644 /// b.start(); |
|
645 ///\endcode |
|
646 void run(Node s) { |
|
647 init(); |
|
648 addSource(s); |
|
649 start(); |
|
650 } |
|
651 |
|
652 ///Finds the shortest path between \c s and \c t. |
|
653 |
|
654 ///Finds the shortest path between \c s and \c t. |
|
655 /// |
|
656 ///\return The length of the shortest s---t path if there exists one, |
|
657 ///0 otherwise. |
|
658 ///\note Apart from the return value, b.run(s) is |
|
659 ///just a shortcut of the following code. |
|
660 ///\code |
|
661 /// b.init(); |
|
662 /// b.addSource(s); |
|
663 /// b.start(t); |
|
664 ///\endcode |
|
665 int run(Node s,Node t) { |
|
666 init(); |
|
667 addSource(s); |
|
668 start(t); |
|
669 return reached(t) ? _curr_dist : 0; |
|
670 } |
|
671 |
|
672 ///@} |
|
673 |
|
674 ///\name Query Functions |
|
675 ///The result of the %BFS algorithm can be obtained using these |
|
676 ///functions.\n |
|
677 ///Before the use of these functions, |
|
678 ///either run() or start() must be calleb. |
|
679 |
|
680 ///@{ |
|
681 |
|
682 typedef PredMapPath<Digraph, PredMap> Path; |
|
683 |
|
684 ///Gives back the shortest path. |
|
685 |
|
686 ///Gives back the shortest path. |
|
687 ///\pre The \c t should be reachable from the source. |
|
688 Path path(Node t) |
|
689 { |
|
690 return Path(*G, *_pred, t); |
|
691 } |
|
692 |
|
693 ///The distance of a node from the root(s). |
|
694 |
|
695 ///Returns the distance of a node from the root(s). |
|
696 ///\pre \ref run() must be called before using this function. |
|
697 ///\warning If node \c v in unreachable from the root(s) the return value |
|
698 ///of this function is undefined. |
|
699 int dist(Node v) const { return (*_dist)[v]; } |
|
700 |
|
701 ///Returns the 'previous arc' of the shortest path tree. |
|
702 |
|
703 ///For a node \c v it returns the 'previous arc' |
|
704 ///of the shortest path tree, |
|
705 ///i.e. it returns the last arc of a shortest path from the root(s) to \c |
|
706 ///v. It is \ref INVALID |
|
707 ///if \c v is unreachable from the root(s) or \c v is a root. The |
|
708 ///shortest path tree used here is equal to the shortest path tree used in |
|
709 ///\ref predNode(). |
|
710 ///\pre Either \ref run() or \ref start() must be called before using |
|
711 ///this function. |
|
712 Arc predArc(Node v) const { return (*_pred)[v];} |
|
713 |
|
714 ///Returns the 'previous node' of the shortest path tree. |
|
715 |
|
716 ///For a node \c v it returns the 'previous node' |
|
717 ///of the shortest path tree, |
|
718 ///i.e. it returns the last but one node from a shortest path from the |
|
719 ///root(a) to \c /v. |
|
720 ///It is INVALID if \c v is unreachable from the root(s) or |
|
721 ///if \c v itself a root. |
|
722 ///The shortest path tree used here is equal to the shortest path |
|
723 ///tree used in \ref predArc(). |
|
724 ///\pre Either \ref run() or \ref start() must be called before |
|
725 ///using this function. |
|
726 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
|
727 G->source((*_pred)[v]); } |
|
728 |
|
729 ///Returns a reference to the NodeMap of distances. |
|
730 |
|
731 ///Returns a reference to the NodeMap of distances. |
|
732 ///\pre Either \ref run() or \ref init() must |
|
733 ///be called before using this function. |
|
734 const DistMap &distMap() const { return *_dist;} |
|
735 |
|
736 ///Returns a reference to the shortest path tree map. |
|
737 |
|
738 ///Returns a reference to the NodeMap of the arcs of the |
|
739 ///shortest path tree. |
|
740 ///\pre Either \ref run() or \ref init() |
|
741 ///must be called before using this function. |
|
742 const PredMap &predMap() const { return *_pred;} |
|
743 |
|
744 ///Checks if a node is reachable from the root. |
|
745 |
|
746 ///Returns \c true if \c v is reachable from the root. |
|
747 ///\warning The source nodes are indicated as unreached. |
|
748 ///\pre Either \ref run() or \ref start() |
|
749 ///must be called before using this function. |
|
750 /// |
|
751 bool reached(Node v) { return (*_reached)[v]; } |
|
752 |
|
753 ///@} |
|
754 }; |
|
755 |
|
756 ///Default traits class of Bfs function. |
|
757 |
|
758 ///Default traits class of Bfs function. |
|
759 ///\param GR Digraph type. |
|
760 template<class GR> |
|
761 struct BfsWizardDefaultTraits |
|
762 { |
|
763 ///The digraph type the algorithm runs on. |
|
764 typedef GR Digraph; |
|
765 ///\brief The type of the map that stores the last |
|
766 ///arcs of the shortest paths. |
|
767 /// |
|
768 ///The type of the map that stores the last |
|
769 ///arcs of the shortest paths. |
|
770 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
771 /// |
|
772 typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
|
773 ///Instantiates a PredMap. |
|
774 |
|
775 ///This function instantiates a \ref PredMap. |
|
776 ///\param g is the digraph, to which we would like to define the PredMap. |
|
777 ///\todo The digraph alone may be insufficient to initialize |
|
778 #ifdef DOXYGEN |
|
779 static PredMap *createPredMap(const GR &g) |
|
780 #else |
|
781 static PredMap *createPredMap(const GR &) |
|
782 #endif |
|
783 { |
|
784 return new PredMap(); |
|
785 } |
|
786 |
|
787 ///The type of the map that indicates which nodes are processed. |
|
788 |
|
789 ///The type of the map that indicates which nodes are processed. |
|
790 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
791 ///\todo named parameter to set this type, function to read and write. |
|
792 typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
|
793 ///Instantiates a ProcessedMap. |
|
794 |
|
795 ///This function instantiates a \ref ProcessedMap. |
|
796 ///\param g is the digraph, to which |
|
797 ///we would like to define the \ref ProcessedMap |
|
798 #ifdef DOXYGEN |
|
799 static ProcessedMap *createProcessedMap(const GR &g) |
|
800 #else |
|
801 static ProcessedMap *createProcessedMap(const GR &) |
|
802 #endif |
|
803 { |
|
804 return new ProcessedMap(); |
|
805 } |
|
806 ///The type of the map that indicates which nodes are reached. |
|
807 |
|
808 ///The type of the map that indicates which nodes are reached. |
|
809 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
810 ///\todo named parameter to set this type, function to read and write. |
|
811 typedef typename Digraph::template NodeMap<bool> ReachedMap; |
|
812 ///Instantiates a ReachedMap. |
|
813 |
|
814 ///This function instantiates a \ref ReachedMap. |
|
815 ///\param G is the digraph, to which |
|
816 ///we would like to define the \ref ReachedMap. |
|
817 static ReachedMap *createReachedMap(const GR &G) |
|
818 { |
|
819 return new ReachedMap(G); |
|
820 } |
|
821 ///The type of the map that stores the dists of the nodes. |
|
822 |
|
823 ///The type of the map that stores the dists of the nodes. |
|
824 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
825 /// |
|
826 typedef NullMap<typename Digraph::Node,int> DistMap; |
|
827 ///Instantiates a DistMap. |
|
828 |
|
829 ///This function instantiates a \ref DistMap. |
|
830 ///\param g is the digraph, to which we would like to define the \ref DistMap |
|
831 #ifdef DOXYGEN |
|
832 static DistMap *createDistMap(const GR &g) |
|
833 #else |
|
834 static DistMap *createDistMap(const GR &) |
|
835 #endif |
|
836 { |
|
837 return new DistMap(); |
|
838 } |
|
839 }; |
|
840 |
|
841 /// Default traits used by \ref BfsWizard |
|
842 |
|
843 /// To make it easier to use Bfs algorithm |
|
844 ///we have created a wizard class. |
|
845 /// This \ref BfsWizard class needs default traits, |
|
846 ///as well as the \ref Bfs class. |
|
847 /// The \ref BfsWizardBase is a class to be the default traits of the |
|
848 /// \ref BfsWizard class. |
|
849 template<class GR> |
|
850 class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
|
851 { |
|
852 |
|
853 typedef BfsWizardDefaultTraits<GR> Base; |
|
854 protected: |
|
855 /// Type of the nodes in the digraph. |
|
856 typedef typename Base::Digraph::Node Node; |
|
857 |
|
858 /// Pointer to the underlying digraph. |
|
859 void *_g; |
|
860 ///Pointer to the map of reached nodes. |
|
861 void *_reached; |
|
862 ///Pointer to the map of processed nodes. |
|
863 void *_processed; |
|
864 ///Pointer to the map of predecessors arcs. |
|
865 void *_pred; |
|
866 ///Pointer to the map of distances. |
|
867 void *_dist; |
|
868 ///Pointer to the source node. |
|
869 Node _source; |
|
870 |
|
871 public: |
|
872 /// Constructor. |
|
873 |
|
874 /// This constructor does not require parameters, therefore it initiates |
|
875 /// all of the attributes to default values (0, INVALID). |
|
876 BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
|
877 _dist(0), _source(INVALID) {} |
|
878 |
|
879 /// Constructor. |
|
880 |
|
881 /// This constructor requires some parameters, |
|
882 /// listed in the parameters list. |
|
883 /// Others are initiated to 0. |
|
884 /// \param g is the initial value of \ref _g |
|
885 /// \param s is the initial value of \ref _source |
|
886 BfsWizardBase(const GR &g, Node s=INVALID) : |
|
887 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
|
888 _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
|
889 |
|
890 }; |
|
891 |
|
892 /// A class to make the usage of Bfs algorithm easier |
|
893 |
|
894 /// This class is created to make it easier to use Bfs algorithm. |
|
895 /// It uses the functions and features of the plain \ref Bfs, |
|
896 /// but it is much simpler to use it. |
|
897 /// |
|
898 /// Simplicity means that the way to change the types defined |
|
899 /// in the traits class is based on functions that returns the new class |
|
900 /// and not on templatable built-in classes. |
|
901 /// When using the plain \ref Bfs |
|
902 /// the new class with the modified type comes from |
|
903 /// the original class by using the :: |
|
904 /// operator. In the case of \ref BfsWizard only |
|
905 /// a function have to be called and it will |
|
906 /// return the needed class. |
|
907 /// |
|
908 /// It does not have own \ref run method. When its \ref run method is called |
|
909 /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run |
|
910 /// method of it. |
|
911 template<class TR> |
|
912 class BfsWizard : public TR |
|
913 { |
|
914 typedef TR Base; |
|
915 |
|
916 ///The type of the underlying digraph. |
|
917 typedef typename TR::Digraph Digraph; |
|
918 //\e |
|
919 typedef typename Digraph::Node Node; |
|
920 //\e |
|
921 typedef typename Digraph::NodeIt NodeIt; |
|
922 //\e |
|
923 typedef typename Digraph::Arc Arc; |
|
924 //\e |
|
925 typedef typename Digraph::OutArcIt OutArcIt; |
|
926 |
|
927 ///\brief The type of the map that stores |
|
928 ///the reached nodes |
|
929 typedef typename TR::ReachedMap ReachedMap; |
|
930 ///\brief The type of the map that stores |
|
931 ///the processed nodes |
|
932 typedef typename TR::ProcessedMap ProcessedMap; |
|
933 ///\brief The type of the map that stores the last |
|
934 ///arcs of the shortest paths. |
|
935 typedef typename TR::PredMap PredMap; |
|
936 ///The type of the map that stores the dists of the nodes. |
|
937 typedef typename TR::DistMap DistMap; |
|
938 |
|
939 public: |
|
940 /// Constructor. |
|
941 BfsWizard() : TR() {} |
|
942 |
|
943 /// Constructor that requires parameters. |
|
944 |
|
945 /// Constructor that requires parameters. |
|
946 /// These parameters will be the default values for the traits class. |
|
947 BfsWizard(const Digraph &g, Node s=INVALID) : |
|
948 TR(g,s) {} |
|
949 |
|
950 ///Copy constructor |
|
951 BfsWizard(const TR &b) : TR(b) {} |
|
952 |
|
953 ~BfsWizard() {} |
|
954 |
|
955 ///Runs Bfs algorithm from a given node. |
|
956 |
|
957 ///Runs Bfs algorithm from a given node. |
|
958 ///The node can be given by the \ref source function. |
|
959 void run() |
|
960 { |
|
961 if(Base::_source==INVALID) throw UninitializedParameter(); |
|
962 Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
|
963 if(Base::_reached) |
|
964 alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
|
965 if(Base::_processed) |
|
966 alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
|
967 if(Base::_pred) |
|
968 alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
969 if(Base::_dist) |
|
970 alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
971 alg.run(Base::_source); |
|
972 } |
|
973 |
|
974 ///Runs Bfs algorithm from the given node. |
|
975 |
|
976 ///Runs Bfs algorithm from the given node. |
|
977 ///\param s is the given source. |
|
978 void run(Node s) |
|
979 { |
|
980 Base::_source=s; |
|
981 run(); |
|
982 } |
|
983 |
|
984 template<class T> |
|
985 struct DefPredMapBase : public Base { |
|
986 typedef T PredMap; |
|
987 static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
988 DefPredMapBase(const TR &b) : TR(b) {} |
|
989 }; |
|
990 |
|
991 ///\brief \ref named-templ-param "Named parameter" |
|
992 ///function for setting PredMap |
|
993 /// |
|
994 /// \ref named-templ-param "Named parameter" |
|
995 ///function for setting PredMap |
|
996 /// |
|
997 template<class T> |
|
998 BfsWizard<DefPredMapBase<T> > predMap(const T &t) |
|
999 { |
|
1000 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1001 return BfsWizard<DefPredMapBase<T> >(*this); |
|
1002 } |
|
1003 |
|
1004 |
|
1005 template<class T> |
|
1006 struct DefReachedMapBase : public Base { |
|
1007 typedef T ReachedMap; |
|
1008 static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
|
1009 DefReachedMapBase(const TR &b) : TR(b) {} |
|
1010 }; |
|
1011 |
|
1012 ///\brief \ref named-templ-param "Named parameter" |
|
1013 ///function for setting ReachedMap |
|
1014 /// |
|
1015 /// \ref named-templ-param "Named parameter" |
|
1016 ///function for setting ReachedMap |
|
1017 /// |
|
1018 template<class T> |
|
1019 BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
|
1020 { |
|
1021 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1022 return BfsWizard<DefReachedMapBase<T> >(*this); |
|
1023 } |
|
1024 |
|
1025 |
|
1026 template<class T> |
|
1027 struct DefProcessedMapBase : public Base { |
|
1028 typedef T ProcessedMap; |
|
1029 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
|
1030 DefProcessedMapBase(const TR &b) : TR(b) {} |
|
1031 }; |
|
1032 |
|
1033 ///\brief \ref named-templ-param "Named parameter" |
|
1034 ///function for setting ProcessedMap |
|
1035 /// |
|
1036 /// \ref named-templ-param "Named parameter" |
|
1037 ///function for setting ProcessedMap |
|
1038 /// |
|
1039 template<class T> |
|
1040 BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
|
1041 { |
|
1042 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1043 return BfsWizard<DefProcessedMapBase<T> >(*this); |
|
1044 } |
|
1045 |
|
1046 |
|
1047 template<class T> |
|
1048 struct DefDistMapBase : public Base { |
|
1049 typedef T DistMap; |
|
1050 static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
1051 DefDistMapBase(const TR &b) : TR(b) {} |
|
1052 }; |
|
1053 |
|
1054 ///\brief \ref named-templ-param "Named parameter" |
|
1055 ///function for setting DistMap type |
|
1056 /// |
|
1057 /// \ref named-templ-param "Named parameter" |
|
1058 ///function for setting DistMap type |
|
1059 /// |
|
1060 template<class T> |
|
1061 BfsWizard<DefDistMapBase<T> > distMap(const T &t) |
|
1062 { |
|
1063 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1064 return BfsWizard<DefDistMapBase<T> >(*this); |
|
1065 } |
|
1066 |
|
1067 /// Sets the source node, from which the Bfs algorithm runs. |
|
1068 |
|
1069 /// Sets the source node, from which the Bfs algorithm runs. |
|
1070 /// \param s is the source node. |
|
1071 BfsWizard<TR> &source(Node s) |
|
1072 { |
|
1073 Base::_source=s; |
|
1074 return *this; |
|
1075 } |
|
1076 |
|
1077 }; |
|
1078 |
|
1079 ///Function type interface for Bfs algorithm. |
|
1080 |
|
1081 /// \ingroup search |
|
1082 ///Function type interface for Bfs algorithm. |
|
1083 /// |
|
1084 ///This function also has several |
|
1085 ///\ref named-templ-func-param "named parameters", |
|
1086 ///they are declared as the members of class \ref BfsWizard. |
|
1087 ///The following |
|
1088 ///example shows how to use these parameters. |
|
1089 ///\code |
|
1090 /// bfs(g,source).predMap(preds).run(); |
|
1091 ///\endcode |
|
1092 ///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
|
1093 ///to the end of the parameter list. |
|
1094 ///\sa BfsWizard |
|
1095 ///\sa Bfs |
|
1096 template<class GR> |
|
1097 BfsWizard<BfsWizardBase<GR> > |
|
1098 bfs(const GR &g,typename GR::Node s=INVALID) |
|
1099 { |
|
1100 return BfsWizard<BfsWizardBase<GR> >(g,s); |
|
1101 } |
|
1102 |
|
1103 #ifdef DOXYGEN |
|
1104 /// \brief Visitor class for bfs. |
|
1105 /// |
|
1106 /// This class defines the interface of the BfsVisit events, and |
|
1107 /// it could be the base of a real Visitor class. |
|
1108 template <typename _Digraph> |
|
1109 struct BfsVisitor { |
|
1110 typedef _Digraph Digraph; |
|
1111 typedef typename Digraph::Arc Arc; |
|
1112 typedef typename Digraph::Node Node; |
|
1113 /// \brief Called when the arc reach a node. |
|
1114 /// |
|
1115 /// It is called when the bfs find an arc which target is not |
|
1116 /// reached yet. |
|
1117 void discover(const Arc& arc) {} |
|
1118 /// \brief Called when the node reached first time. |
|
1119 /// |
|
1120 /// It is Called when the node reached first time. |
|
1121 void reach(const Node& node) {} |
|
1122 /// \brief Called when the arc examined but target of the arc |
|
1123 /// already discovered. |
|
1124 /// |
|
1125 /// It called when the arc examined but the target of the arc |
|
1126 /// already discovered. |
|
1127 void examine(const Arc& arc) {} |
|
1128 /// \brief Called for the source node of the bfs. |
|
1129 /// |
|
1130 /// It is called for the source node of the bfs. |
|
1131 void start(const Node& node) {} |
|
1132 /// \brief Called when the node processed. |
|
1133 /// |
|
1134 /// It is Called when the node processed. |
|
1135 void process(const Node& node) {} |
|
1136 }; |
|
1137 #else |
|
1138 template <typename _Digraph> |
|
1139 struct BfsVisitor { |
|
1140 typedef _Digraph Digraph; |
|
1141 typedef typename Digraph::Arc Arc; |
|
1142 typedef typename Digraph::Node Node; |
|
1143 void discover(const Arc&) {} |
|
1144 void reach(const Node&) {} |
|
1145 void examine(const Arc&) {} |
|
1146 void start(const Node&) {} |
|
1147 void process(const Node&) {} |
|
1148 |
|
1149 template <typename _Visitor> |
|
1150 struct Constraints { |
|
1151 void constraints() { |
|
1152 Arc arc; |
|
1153 Node node; |
|
1154 visitor.discover(arc); |
|
1155 visitor.reach(node); |
|
1156 visitor.examine(arc); |
|
1157 visitor.start(node); |
|
1158 visitor.process(node); |
|
1159 } |
|
1160 _Visitor& visitor; |
|
1161 }; |
|
1162 }; |
|
1163 #endif |
|
1164 |
|
1165 /// \brief Default traits class of BfsVisit class. |
|
1166 /// |
|
1167 /// Default traits class of BfsVisit class. |
|
1168 /// \param _Digraph Digraph type. |
|
1169 template<class _Digraph> |
|
1170 struct BfsVisitDefaultTraits { |
|
1171 |
|
1172 /// \brief The digraph type the algorithm runs on. |
|
1173 typedef _Digraph Digraph; |
|
1174 |
|
1175 /// \brief The type of the map that indicates which nodes are reached. |
|
1176 /// |
|
1177 /// The type of the map that indicates which nodes are reached. |
|
1178 /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
1179 /// \todo named parameter to set this type, function to read and write. |
|
1180 typedef typename Digraph::template NodeMap<bool> ReachedMap; |
|
1181 |
|
1182 /// \brief Instantiates a ReachedMap. |
|
1183 /// |
|
1184 /// This function instantiates a \ref ReachedMap. |
|
1185 /// \param digraph is the digraph, to which |
|
1186 /// we would like to define the \ref ReachedMap. |
|
1187 static ReachedMap *createReachedMap(const Digraph &digraph) { |
|
1188 return new ReachedMap(digraph); |
|
1189 } |
|
1190 |
|
1191 }; |
|
1192 |
|
1193 /// \ingroup search |
|
1194 /// |
|
1195 /// \brief %BFS Visit algorithm class. |
|
1196 /// |
|
1197 /// This class provides an efficient implementation of the %BFS algorithm |
|
1198 /// with visitor interface. |
|
1199 /// |
|
1200 /// The %BfsVisit class provides an alternative interface to the Bfs |
|
1201 /// class. It works with callback mechanism, the BfsVisit object calls |
|
1202 /// on every bfs event the \c Visitor class member functions. |
|
1203 /// |
|
1204 /// \param _Digraph The digraph type the algorithm runs on. The default value is |
|
1205 /// \ref ListDigraph. The value of _Digraph is not used directly by Bfs, it |
|
1206 /// is only passed to \ref BfsDefaultTraits. |
|
1207 /// \param _Visitor The Visitor object for the algorithm. The |
|
1208 /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty Visitor which |
|
1209 /// does not observe the Bfs events. If you want to observe the bfs |
|
1210 /// events you should implement your own Visitor class. |
|
1211 /// \param _Traits Traits class to set various data types used by the |
|
1212 /// algorithm. The default traits class is |
|
1213 /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
|
1214 /// See \ref BfsVisitDefaultTraits for the documentation of |
|
1215 /// a Bfs visit traits class. |
|
1216 /// |
|
1217 /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
|
1218 #ifdef DOXYGEN |
|
1219 template <typename _Digraph, typename _Visitor, typename _Traits> |
|
1220 #else |
|
1221 template <typename _Digraph = ListDigraph, |
|
1222 typename _Visitor = BfsVisitor<_Digraph>, |
|
1223 typename _Traits = BfsDefaultTraits<_Digraph> > |
|
1224 #endif |
|
1225 class BfsVisit { |
|
1226 public: |
|
1227 |
|
1228 /// \brief \ref Exception for uninitialized parameters. |
|
1229 /// |
|
1230 /// This error represents problems in the initialization |
|
1231 /// of the parameters of the algorithms. |
|
1232 class UninitializedParameter : public lemon::UninitializedParameter { |
|
1233 public: |
|
1234 virtual const char* what() const throw() |
|
1235 { |
|
1236 return "lemon::BfsVisit::UninitializedParameter"; |
|
1237 } |
|
1238 }; |
|
1239 |
|
1240 typedef _Traits Traits; |
|
1241 |
|
1242 typedef typename Traits::Digraph Digraph; |
|
1243 |
|
1244 typedef _Visitor Visitor; |
|
1245 |
|
1246 ///The type of the map indicating which nodes are reached. |
|
1247 typedef typename Traits::ReachedMap ReachedMap; |
|
1248 |
|
1249 private: |
|
1250 |
|
1251 typedef typename Digraph::Node Node; |
|
1252 typedef typename Digraph::NodeIt NodeIt; |
|
1253 typedef typename Digraph::Arc Arc; |
|
1254 typedef typename Digraph::OutArcIt OutArcIt; |
|
1255 |
|
1256 /// Pointer to the underlying digraph. |
|
1257 const Digraph *_digraph; |
|
1258 /// Pointer to the visitor object. |
|
1259 Visitor *_visitor; |
|
1260 ///Pointer to the map of reached status of the nodes. |
|
1261 ReachedMap *_reached; |
|
1262 ///Indicates if \ref _reached is locally allocated (\c true) or not. |
|
1263 bool local_reached; |
|
1264 |
|
1265 std::vector<typename Digraph::Node> _list; |
|
1266 int _list_front, _list_back; |
|
1267 |
|
1268 /// \brief Creates the maps if necessary. |
|
1269 /// |
|
1270 /// Creates the maps if necessary. |
|
1271 void create_maps() { |
|
1272 if(!_reached) { |
|
1273 local_reached = true; |
|
1274 _reached = Traits::createReachedMap(*_digraph); |
|
1275 } |
|
1276 } |
|
1277 |
|
1278 protected: |
|
1279 |
|
1280 BfsVisit() {} |
|
1281 |
|
1282 public: |
|
1283 |
|
1284 typedef BfsVisit Create; |
|
1285 |
|
1286 /// \name Named template parameters |
|
1287 |
|
1288 ///@{ |
|
1289 template <class T> |
|
1290 struct DefReachedMapTraits : public Traits { |
|
1291 typedef T ReachedMap; |
|
1292 static ReachedMap *createReachedMap(const Digraph &digraph) { |
|
1293 throw UninitializedParameter(); |
|
1294 } |
|
1295 }; |
|
1296 /// \brief \ref named-templ-param "Named parameter" for setting |
|
1297 /// ReachedMap type |
|
1298 /// |
|
1299 /// \ref named-templ-param "Named parameter" for setting ReachedMap type |
|
1300 template <class T> |
|
1301 struct DefReachedMap : public BfsVisit< Digraph, Visitor, |
|
1302 DefReachedMapTraits<T> > { |
|
1303 typedef BfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
|
1304 }; |
|
1305 ///@} |
|
1306 |
|
1307 public: |
|
1308 |
|
1309 /// \brief Constructor. |
|
1310 /// |
|
1311 /// Constructor. |
|
1312 /// |
|
1313 /// \param digraph the digraph the algorithm will run on. |
|
1314 /// \param visitor The visitor of the algorithm. |
|
1315 /// |
|
1316 BfsVisit(const Digraph& digraph, Visitor& visitor) |
|
1317 : _digraph(&digraph), _visitor(&visitor), |
|
1318 _reached(0), local_reached(false) {} |
|
1319 |
|
1320 /// \brief Destructor. |
|
1321 /// |
|
1322 /// Destructor. |
|
1323 ~BfsVisit() { |
|
1324 if(local_reached) delete _reached; |
|
1325 } |
|
1326 |
|
1327 /// \brief Sets the map indicating if a node is reached. |
|
1328 /// |
|
1329 /// Sets the map indicating if a node is reached. |
|
1330 /// If you don't use this function before calling \ref run(), |
|
1331 /// it will allocate one. The destuctor deallocates this |
|
1332 /// automatically allocated map, of course. |
|
1333 /// \return <tt> (*this) </tt> |
|
1334 BfsVisit &reachedMap(ReachedMap &m) { |
|
1335 if(local_reached) { |
|
1336 delete _reached; |
|
1337 local_reached = false; |
|
1338 } |
|
1339 _reached = &m; |
|
1340 return *this; |
|
1341 } |
|
1342 |
|
1343 public: |
|
1344 /// \name Execution control |
|
1345 /// The simplest way to execute the algorithm is to use |
|
1346 /// one of the member functions called \c run(...). |
|
1347 /// \n |
|
1348 /// If you need more control on the execution, |
|
1349 /// first you must call \ref init(), then you can adda source node |
|
1350 /// with \ref addSource(). |
|
1351 /// Finally \ref start() will perform the actual path |
|
1352 /// computation. |
|
1353 |
|
1354 /// @{ |
|
1355 /// \brief Initializes the internal data structures. |
|
1356 /// |
|
1357 /// Initializes the internal data structures. |
|
1358 /// |
|
1359 void init() { |
|
1360 create_maps(); |
|
1361 _list.resize(countNodes(*_digraph)); |
|
1362 _list_front = _list_back = -1; |
|
1363 for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
|
1364 _reached->set(u, false); |
|
1365 } |
|
1366 } |
|
1367 |
|
1368 /// \brief Adds a new source node. |
|
1369 /// |
|
1370 /// Adds a new source node to the set of nodes to be processed. |
|
1371 void addSource(Node s) { |
|
1372 if(!(*_reached)[s]) { |
|
1373 _reached->set(s,true); |
|
1374 _visitor->start(s); |
|
1375 _visitor->reach(s); |
|
1376 _list[++_list_back] = s; |
|
1377 } |
|
1378 } |
|
1379 |
|
1380 /// \brief Processes the next node. |
|
1381 /// |
|
1382 /// Processes the next node. |
|
1383 /// |
|
1384 /// \return The processed node. |
|
1385 /// |
|
1386 /// \pre The queue must not be empty! |
|
1387 Node processNextNode() { |
|
1388 Node n = _list[++_list_front]; |
|
1389 _visitor->process(n); |
|
1390 Arc e; |
|
1391 for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
|
1392 Node m = _digraph->target(e); |
|
1393 if (!(*_reached)[m]) { |
|
1394 _visitor->discover(e); |
|
1395 _visitor->reach(m); |
|
1396 _reached->set(m, true); |
|
1397 _list[++_list_back] = m; |
|
1398 } else { |
|
1399 _visitor->examine(e); |
|
1400 } |
|
1401 } |
|
1402 return n; |
|
1403 } |
|
1404 |
|
1405 /// \brief Processes the next node. |
|
1406 /// |
|
1407 /// Processes the next node. And checks that the given target node |
|
1408 /// is reached. If the target node is reachable from the processed |
|
1409 /// node then the reached parameter will be set true. The reached |
|
1410 /// parameter should be initially false. |
|
1411 /// |
|
1412 /// \param target The target node. |
|
1413 /// \retval reach Indicates that the target node is reached. |
|
1414 /// \return The processed node. |
|
1415 /// |
|
1416 /// \warning The queue must not be empty! |
|
1417 Node processNextNode(Node target, bool& reach) { |
|
1418 Node n = _list[++_list_front]; |
|
1419 _visitor->process(n); |
|
1420 Arc e; |
|
1421 for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
|
1422 Node m = _digraph->target(e); |
|
1423 if (!(*_reached)[m]) { |
|
1424 _visitor->discover(e); |
|
1425 _visitor->reach(m); |
|
1426 _reached->set(m, true); |
|
1427 _list[++_list_back] = m; |
|
1428 reach = reach || (target == m); |
|
1429 } else { |
|
1430 _visitor->examine(e); |
|
1431 } |
|
1432 } |
|
1433 return n; |
|
1434 } |
|
1435 |
|
1436 /// \brief Processes the next node. |
|
1437 /// |
|
1438 /// Processes the next node. And checks that at least one of |
|
1439 /// reached node has true value in the \c nm node map. If one node |
|
1440 /// with true value is reachable from the processed node then the |
|
1441 /// rnode parameter will be set to the first of such nodes. |
|
1442 /// |
|
1443 /// \param nm The node map of possible targets. |
|
1444 /// \retval rnode The reached target node. |
|
1445 /// \return The processed node. |
|
1446 /// |
|
1447 /// \warning The queue must not be empty! |
|
1448 template <typename NM> |
|
1449 Node processNextNode(const NM& nm, Node& rnode) { |
|
1450 Node n = _list[++_list_front]; |
|
1451 _visitor->process(n); |
|
1452 Arc e; |
|
1453 for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
|
1454 Node m = _digraph->target(e); |
|
1455 if (!(*_reached)[m]) { |
|
1456 _visitor->discover(e); |
|
1457 _visitor->reach(m); |
|
1458 _reached->set(m, true); |
|
1459 _list[++_list_back] = m; |
|
1460 if (nm[m] && rnode == INVALID) rnode = m; |
|
1461 } else { |
|
1462 _visitor->examine(e); |
|
1463 } |
|
1464 } |
|
1465 return n; |
|
1466 } |
|
1467 |
|
1468 /// \brief Next node to be processed. |
|
1469 /// |
|
1470 /// Next node to be processed. |
|
1471 /// |
|
1472 /// \return The next node to be processed or INVALID if the stack is |
|
1473 /// empty. |
|
1474 Node nextNode() { |
|
1475 return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
|
1476 } |
|
1477 |
|
1478 /// \brief Returns \c false if there are nodes |
|
1479 /// to be processed in the queue |
|
1480 /// |
|
1481 /// Returns \c false if there are nodes |
|
1482 /// to be processed in the queue |
|
1483 bool emptyQueue() { return _list_front == _list_back; } |
|
1484 |
|
1485 /// \brief Returns the number of the nodes to be processed. |
|
1486 /// |
|
1487 /// Returns the number of the nodes to be processed in the queue. |
|
1488 int queueSize() { return _list_back - _list_front; } |
|
1489 |
|
1490 /// \brief Executes the algorithm. |
|
1491 /// |
|
1492 /// Executes the algorithm. |
|
1493 /// |
|
1494 /// \pre init() must be called and at least one node should be added |
|
1495 /// with addSource() before using this function. |
|
1496 void start() { |
|
1497 while ( !emptyQueue() ) processNextNode(); |
|
1498 } |
|
1499 |
|
1500 /// \brief Executes the algorithm until \c dest is reached. |
|
1501 /// |
|
1502 /// Executes the algorithm until \c dest is reached. |
|
1503 /// |
|
1504 /// \pre init() must be called and at least one node should be added |
|
1505 /// with addSource() before using this function. |
|
1506 void start(Node dest) { |
|
1507 bool reach = false; |
|
1508 while ( !emptyQueue() && !reach ) processNextNode(dest, reach); |
|
1509 } |
|
1510 |
|
1511 /// \brief Executes the algorithm until a condition is met. |
|
1512 /// |
|
1513 /// Executes the algorithm until a condition is met. |
|
1514 /// |
|
1515 /// \pre init() must be called and at least one node should be added |
|
1516 /// with addSource() before using this function. |
|
1517 /// |
|
1518 ///\param nm must be a bool (or convertible) node map. The |
|
1519 ///algorithm will stop when it reaches a node \c v with |
|
1520 /// <tt>nm[v]</tt> true. |
|
1521 /// |
|
1522 ///\return The reached node \c v with <tt>nm[v]</tt> true or |
|
1523 ///\c INVALID if no such node was found. |
|
1524 template <typename NM> |
|
1525 Node start(const NM &nm) { |
|
1526 Node rnode = INVALID; |
|
1527 while ( !emptyQueue() && rnode == INVALID ) { |
|
1528 processNextNode(nm, rnode); |
|
1529 } |
|
1530 return rnode; |
|
1531 } |
|
1532 |
|
1533 /// \brief Runs %BFSVisit algorithm from node \c s. |
|
1534 /// |
|
1535 /// This method runs the %BFS algorithm from a root node \c s. |
|
1536 /// \note b.run(s) is just a shortcut of the following code. |
|
1537 ///\code |
|
1538 /// b.init(); |
|
1539 /// b.addSource(s); |
|
1540 /// b.start(); |
|
1541 ///\endcode |
|
1542 void run(Node s) { |
|
1543 init(); |
|
1544 addSource(s); |
|
1545 start(); |
|
1546 } |
|
1547 |
|
1548 /// \brief Runs %BFSVisit algorithm to visit all nodes in the digraph. |
|
1549 /// |
|
1550 /// This method runs the %BFS algorithm in order to |
|
1551 /// compute the %BFS path to each node. The algorithm computes |
|
1552 /// - The %BFS tree. |
|
1553 /// - The distance of each node from the root in the %BFS tree. |
|
1554 /// |
|
1555 ///\note b.run() is just a shortcut of the following code. |
|
1556 ///\code |
|
1557 /// b.init(); |
|
1558 /// for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1559 /// if (!b.reached(it)) { |
|
1560 /// b.addSource(it); |
|
1561 /// b.start(); |
|
1562 /// } |
|
1563 /// } |
|
1564 ///\endcode |
|
1565 void run() { |
|
1566 init(); |
|
1567 for (NodeIt it(*_digraph); it != INVALID; ++it) { |
|
1568 if (!reached(it)) { |
|
1569 addSource(it); |
|
1570 start(); |
|
1571 } |
|
1572 } |
|
1573 } |
|
1574 ///@} |
|
1575 |
|
1576 /// \name Query Functions |
|
1577 /// The result of the %BFS algorithm can be obtained using these |
|
1578 /// functions.\n |
|
1579 /// Before the use of these functions, |
|
1580 /// either run() or start() must be called. |
|
1581 ///@{ |
|
1582 |
|
1583 /// \brief Checks if a node is reachable from the root. |
|
1584 /// |
|
1585 /// Returns \c true if \c v is reachable from the root(s). |
|
1586 /// \warning The source nodes are inditated as unreachable. |
|
1587 /// \pre Either \ref run() or \ref start() |
|
1588 /// must be called before using this function. |
|
1589 /// |
|
1590 bool reached(Node v) { return (*_reached)[v]; } |
|
1591 ///@} |
|
1592 }; |
|
1593 |
|
1594 } //END OF NAMESPACE LEMON |
|
1595 |
|
1596 #endif |
|
1597 |