|
1 /* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library. |
|
4 * |
|
5 * Copyright (C) 2017 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_COMPACT_GRAPH_H |
|
20 #define LEMON_COMPACT_GRAPH_H |
|
21 |
|
22 ///\ingroup graphs |
|
23 ///\file |
|
24 ///\brief CompactDigraph class. |
|
25 |
|
26 #include <lemon/core.h> |
|
27 #include <lemon/bits/graph_extender.h> |
|
28 |
|
29 #include <algorithm> |
|
30 |
|
31 namespace lemon { |
|
32 |
|
33 class CompactDigraphBase { |
|
34 |
|
35 public: |
|
36 |
|
37 CompactDigraphBase() |
|
38 : built(false), node_num(0), arc_num(0), |
|
39 node_first_out(NULL), |
|
40 arc_target(NULL) {} |
|
41 |
|
42 ~CompactDigraphBase() { |
|
43 if (built) { |
|
44 delete[] node_first_out; |
|
45 delete[] arc_target; |
|
46 } |
|
47 } |
|
48 |
|
49 class Node { |
|
50 friend class CompactDigraphBase; |
|
51 protected: |
|
52 int id; |
|
53 Node(int _id) : id(_id) {} |
|
54 public: |
|
55 Node() {} |
|
56 Node (Invalid) : id(-1) {} |
|
57 bool operator==(const Node& node) const { return id == node.id; } |
|
58 bool operator!=(const Node& node) const { return id != node.id; } |
|
59 bool operator<(const Node& node) const { return id < node.id; } |
|
60 }; |
|
61 |
|
62 class Arc { |
|
63 friend class CompactDigraphBase; |
|
64 protected: |
|
65 int id; |
|
66 int source; |
|
67 Arc(int _id, int _source) : id(_id), source(_source) {} |
|
68 public: |
|
69 Arc() { } |
|
70 Arc (Invalid) : id(-1), source(-1) {} |
|
71 bool operator==(const Arc& arc) const { return id == arc.id; } |
|
72 bool operator!=(const Arc& arc) const { return id != arc.id; } |
|
73 bool operator<(const Arc& arc) const { return id < arc.id; } |
|
74 }; |
|
75 |
|
76 Node source(const Arc& e) const { return Node(e.source); } |
|
77 Node target(const Arc& e) const { return Node(arc_target[e.id]); } |
|
78 |
|
79 void first(Node& n) const { n.id = node_num - 1; } |
|
80 static void next(Node& n) { --n.id; } |
|
81 |
|
82 private: |
|
83 |
|
84 void nextSource(Arc& e) const { |
|
85 if (e.id == -1) return; |
|
86 int last = node_first_out[e.source] - 1; |
|
87 while (e.id == last) { |
|
88 --e.source; |
|
89 last = node_first_out[e.source] - 1; |
|
90 } |
|
91 } |
|
92 |
|
93 public: |
|
94 |
|
95 void first(Arc& e) const { |
|
96 e.id = arc_num - 1; |
|
97 e.source = node_num - 1; |
|
98 nextSource(e); |
|
99 } |
|
100 void next(Arc& e) const { |
|
101 --e.id; |
|
102 nextSource(e); |
|
103 } |
|
104 |
|
105 void firstOut(Arc& e, const Node& n) const { |
|
106 e.source = n.id; |
|
107 e.id = node_first_out[n.id]; |
|
108 if (e.id == node_first_out[n.id + 1]) e = INVALID; |
|
109 } |
|
110 void nextOut(Arc& e) const { |
|
111 ++e.id; |
|
112 if (e.id == node_first_out[e.source + 1]) e = INVALID; |
|
113 } |
|
114 |
|
115 void firstIn(Arc& e, const Node& n) const { |
|
116 first(e); |
|
117 while(e != INVALID && target(e) != n) { |
|
118 next(e); |
|
119 } |
|
120 } |
|
121 void nextIn(Arc& e) const { |
|
122 Node arcTarget = target(e); |
|
123 do { |
|
124 next(e); |
|
125 } while(e != INVALID && target(e) != arcTarget); |
|
126 } |
|
127 |
|
128 static int id(const Node& n) { return n.id; } |
|
129 static Node nodeFromId(int id) { return Node(id); } |
|
130 int maxNodeId() const { return node_num - 1; } |
|
131 |
|
132 static int id(const Arc& e) { return e.id; } |
|
133 Arc arcFromId(int id) const { |
|
134 int *l = std::upper_bound(node_first_out, node_first_out + node_num, id) - 1; |
|
135 int src = l - node_first_out; |
|
136 return Arc(id, src); |
|
137 } |
|
138 int maxArcId() const { return arc_num - 1; } |
|
139 |
|
140 typedef True NodeNumTag; |
|
141 typedef True ArcNumTag; |
|
142 |
|
143 int nodeNum() const { return node_num; } |
|
144 int arcNum() const { return arc_num; } |
|
145 |
|
146 private: |
|
147 |
|
148 template <typename Digraph, typename NodeRefMap> |
|
149 class ArcLess { |
|
150 public: |
|
151 typedef typename Digraph::Arc Arc; |
|
152 |
|
153 ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
|
154 : digraph(_graph), nodeRef(_nodeRef) {} |
|
155 |
|
156 bool operator()(const Arc& left, const Arc& right) const { |
|
157 return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)]; |
|
158 } |
|
159 private: |
|
160 const Digraph& digraph; |
|
161 const NodeRefMap& nodeRef; |
|
162 }; |
|
163 |
|
164 public: |
|
165 |
|
166 typedef True BuildTag; |
|
167 |
|
168 void clear() { |
|
169 if (built) { |
|
170 delete[] node_first_out; |
|
171 delete[] arc_target; |
|
172 } |
|
173 built = false; |
|
174 node_num = 0; |
|
175 arc_num = 0; |
|
176 } |
|
177 |
|
178 template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
|
179 void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
|
180 typedef typename Digraph::Node GNode; |
|
181 typedef typename Digraph::Arc GArc; |
|
182 |
|
183 built = true; |
|
184 |
|
185 node_num = countNodes(digraph); |
|
186 arc_num = countArcs(digraph); |
|
187 |
|
188 node_first_out = new int[node_num + 1]; |
|
189 |
|
190 arc_target = new int[arc_num]; |
|
191 |
|
192 int node_index = 0; |
|
193 for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
194 nodeRef[n] = Node(node_index); |
|
195 ++node_index; |
|
196 } |
|
197 |
|
198 ArcLess<Digraph, NodeRefMap> arcLess(digraph, nodeRef); |
|
199 |
|
200 int arc_index = 0; |
|
201 for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) { |
|
202 int source = nodeRef[n].id; |
|
203 std::vector<GArc> arcs; |
|
204 for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) { |
|
205 arcs.push_back(e); |
|
206 } |
|
207 if (!arcs.empty()) { |
|
208 node_first_out[source] = arc_index; |
|
209 std::sort(arcs.begin(), arcs.end(), arcLess); |
|
210 for (typename std::vector<GArc>::iterator it = arcs.begin(); |
|
211 it != arcs.end(); ++it) { |
|
212 int target = nodeRef[digraph.target(*it)].id; |
|
213 arcRef[*it] = Arc(arc_index, source); |
|
214 arc_target[arc_index] = target; |
|
215 ++arc_index; |
|
216 } |
|
217 } else { |
|
218 node_first_out[source] = arc_index; |
|
219 } |
|
220 } |
|
221 node_first_out[node_num] = arc_num; |
|
222 } |
|
223 |
|
224 template <typename ArcListIterator> |
|
225 void build(int n, ArcListIterator first, ArcListIterator last) { |
|
226 built = true; |
|
227 |
|
228 node_num = n; |
|
229 arc_num = static_cast<int>(std::distance(first, last)); |
|
230 |
|
231 node_first_out = new int[node_num + 1]; |
|
232 |
|
233 arc_target = new int[arc_num]; |
|
234 |
|
235 int arc_index = 0; |
|
236 for (int i = 0; i != node_num; ++i) { |
|
237 node_first_out[i] = arc_index; |
|
238 for ( ; first != last && (*first).first == i; ++first) { |
|
239 int j = (*first).second; |
|
240 LEMON_ASSERT(j >= 0 && j < node_num, |
|
241 "Wrong arc list for CompactDigraph::build()"); |
|
242 arc_target[arc_index] = j; |
|
243 ++arc_index; |
|
244 } |
|
245 } |
|
246 LEMON_ASSERT(first == last, |
|
247 "Wrong arc list for CompactDigraph::build()"); |
|
248 node_first_out[node_num] = arc_num; |
|
249 } |
|
250 |
|
251 protected: |
|
252 bool built; |
|
253 int node_num; |
|
254 int arc_num; |
|
255 int *node_first_out; |
|
256 int *arc_target; |
|
257 }; |
|
258 |
|
259 typedef DigraphExtender<CompactDigraphBase> ExtendedCompactDigraphBase; |
|
260 |
|
261 |
|
262 /// \ingroup graphs |
|
263 /// |
|
264 /// \brief A static directed graph class. |
|
265 /// |
|
266 /// \ref CompactDigraph is a highly efficient digraph implementation |
|
267 /// similar to \ref StaticDigraph. It is more memory efficient but does |
|
268 /// not provide efficient iteration over incoming arcs. |
|
269 /// |
|
270 /// It stores only one \c int values for each node and one \c int value |
|
271 /// for each arc. Its \ref InArcIt implementation is inefficient and |
|
272 /// provided only for compatibility with the \ref concepts::Digraph "Digraph concept". |
|
273 /// |
|
274 /// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
275 /// Most of its member functions and nested classes are documented |
|
276 /// only in the concept class. |
|
277 /// |
|
278 /// \sa concepts::Digraph |
|
279 class CompactDigraph : public ExtendedCompactDigraphBase { |
|
280 |
|
281 private: |
|
282 /// Graphs are \e not copy constructible. Use DigraphCopy instead. |
|
283 CompactDigraph(const CompactDigraph &) : ExtendedCompactDigraphBase() {}; |
|
284 /// \brief Assignment of a graph to another one is \e not allowed. |
|
285 /// Use DigraphCopy instead. |
|
286 void operator=(const CompactDigraph&) {} |
|
287 |
|
288 public: |
|
289 |
|
290 typedef ExtendedCompactDigraphBase Parent; |
|
291 |
|
292 public: |
|
293 |
|
294 /// \brief Constructor |
|
295 /// |
|
296 /// Default constructor. |
|
297 CompactDigraph() : Parent() {} |
|
298 |
|
299 /// \brief The node with the given index. |
|
300 /// |
|
301 /// This function returns the node with the given index. |
|
302 /// \sa index() |
|
303 static Node node(int ix) { return Parent::nodeFromId(ix); } |
|
304 |
|
305 /// \brief The arc with the given index. |
|
306 /// |
|
307 /// This function returns the arc with the given index. |
|
308 /// \sa index() |
|
309 Arc arc(int ix) { return arcFromId(ix); } |
|
310 |
|
311 /// \brief The index of the given node. |
|
312 /// |
|
313 /// This function returns the index of the the given node. |
|
314 /// \sa node() |
|
315 static int index(Node node) { return Parent::id(node); } |
|
316 |
|
317 /// \brief The index of the given arc. |
|
318 /// |
|
319 /// This function returns the index of the the given arc. |
|
320 /// \sa arc() |
|
321 static int index(Arc arc) { return Parent::id(arc); } |
|
322 |
|
323 /// \brief Number of nodes. |
|
324 /// |
|
325 /// This function returns the number of nodes. |
|
326 int nodeNum() const { return node_num; } |
|
327 |
|
328 /// \brief Number of arcs. |
|
329 /// |
|
330 /// This function returns the number of arcs. |
|
331 int arcNum() const { return arc_num; } |
|
332 |
|
333 /// \brief Build the digraph copying another digraph. |
|
334 /// |
|
335 /// This function builds the digraph copying another digraph of any |
|
336 /// kind. It can be called more than once, but in such case, the whole |
|
337 /// structure and all maps will be cleared and rebuilt. |
|
338 /// |
|
339 /// This method also makes possible to copy a digraph to a CompactDigraph |
|
340 /// structure using \ref DigraphCopy. |
|
341 /// |
|
342 /// \param digraph An existing digraph to be copied. |
|
343 /// \param nodeRef The node references will be copied into this map. |
|
344 /// Its key type must be \c Digraph::Node and its value type must be |
|
345 /// \c CompactDigraph::Node. |
|
346 /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
347 /// concept. |
|
348 /// \param arcRef The arc references will be copied into this map. |
|
349 /// Its key type must be \c Digraph::Arc and its value type must be |
|
350 /// \c CompactDigraph::Arc. |
|
351 /// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
352 /// |
|
353 /// \note If you do not need the arc references, then you could use |
|
354 /// \ref NullMap for the last parameter. However the node references |
|
355 /// are required by the function itself, thus they must be readable |
|
356 /// from the map. |
|
357 template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
|
358 void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
|
359 if (built) Parent::clear(); |
|
360 Parent::build(digraph, nodeRef, arcRef); |
|
361 } |
|
362 |
|
363 /// \brief Build the digraph from an arc list. |
|
364 /// |
|
365 /// This function builds the digraph from the given arc list. |
|
366 /// It can be called more than once, but in such case, the whole |
|
367 /// structure and all maps will be cleared and rebuilt. |
|
368 /// |
|
369 /// The list of the arcs must be given in the range <tt>[begin, end)</tt> |
|
370 /// specified by STL compatible itartors whose \c value_type must be |
|
371 /// <tt>std::pair<int,int></tt>. |
|
372 /// Each arc must be specified by a pair of integer indices |
|
373 /// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a |
|
374 /// non-decreasing order with respect to their first values.</i> |
|
375 /// If the k-th pair in the list is <tt>(i,j)</tt>, then |
|
376 /// <tt>arc(k-1)</tt> will connect <tt>node(i)</tt> to <tt>node(j)</tt>. |
|
377 /// |
|
378 /// \param n The number of nodes. |
|
379 /// \param begin An iterator pointing to the beginning of the arc list. |
|
380 /// \param end An iterator pointing to the end of the arc list. |
|
381 /// |
|
382 /// For example, a simple digraph can be constructed like this. |
|
383 /// \code |
|
384 /// std::vector<std::pair<int,int> > arcs; |
|
385 /// arcs.push_back(std::make_pair(0,1)); |
|
386 /// arcs.push_back(std::make_pair(0,2)); |
|
387 /// arcs.push_back(std::make_pair(1,3)); |
|
388 /// arcs.push_back(std::make_pair(1,2)); |
|
389 /// arcs.push_back(std::make_pair(3,0)); |
|
390 /// CompactDigraph gr; |
|
391 /// gr.build(4, arcs.begin(), arcs.end()); |
|
392 /// \endcode |
|
393 template <typename ArcListIterator> |
|
394 void build(int n, ArcListIterator begin, ArcListIterator end) { |
|
395 if (built) Parent::clear(); |
|
396 CompactDigraphBase::build(n, begin, end); |
|
397 notifier(Node()).build(); |
|
398 notifier(Arc()).build(); |
|
399 } |
|
400 |
|
401 /// \brief Clear the digraph. |
|
402 /// |
|
403 /// This function erases all nodes and arcs from the digraph. |
|
404 void clear() { |
|
405 Parent::clear(); |
|
406 } |
|
407 |
|
408 public: |
|
409 |
|
410 Node baseNode(const OutArcIt &arc) const { |
|
411 return Parent::source(static_cast<const Arc&>(arc)); |
|
412 } |
|
413 |
|
414 Node runningNode(const OutArcIt &arc) const { |
|
415 return Parent::target(static_cast<const Arc&>(arc)); |
|
416 } |
|
417 |
|
418 Node baseNode(const InArcIt &arc) const { |
|
419 return Parent::target(static_cast<const Arc&>(arc)); |
|
420 } |
|
421 |
|
422 Node runningNode(const InArcIt &arc) const { |
|
423 return Parent::source(static_cast<const Arc&>(arc)); |
|
424 } |
|
425 |
|
426 }; |
|
427 |
|
428 } |
|
429 |
|
430 #endif |