lemon/full_graph.h
changeset 1023 939ee6d1e525
parent 877 141f9c0db4a3
child 1024 b84e68af8248
equal deleted inserted replaced
11:8423c30e2325 12:1765efc64578
   619     /// \brief Number of edges.
   619     /// \brief Number of edges.
   620     int edgeNum() const { return Parent::edgeNum(); }
   620     int edgeNum() const { return Parent::edgeNum(); }
   621 
   621 
   622   };
   622   };
   623 
   623 
       
   624   class FullBpGraphBase {
       
   625 
       
   626   protected:
       
   627 
       
   628     int _red_num, _blue_num;
       
   629     int _node_num, _edge_num;
       
   630 
       
   631   public:
       
   632 
       
   633     typedef FullBpGraphBase Graph;
       
   634 
       
   635     class Node;
       
   636     class Arc;
       
   637     class Edge;
       
   638 
       
   639     class Node {
       
   640       friend class FullBpGraphBase;
       
   641     protected:
       
   642 
       
   643       int _id;
       
   644       explicit Node(int id) { _id = id;}
       
   645 
       
   646     public:
       
   647       Node() {}
       
   648       Node (Invalid) { _id = -1; }
       
   649       bool operator==(const Node& node) const {return _id == node._id;}
       
   650       bool operator!=(const Node& node) const {return _id != node._id;}
       
   651       bool operator<(const Node& node) const {return _id < node._id;}
       
   652     };
       
   653 
       
   654     class Edge {
       
   655       friend class FullBpGraphBase;
       
   656     protected:
       
   657 
       
   658       int _id;
       
   659       explicit Edge(int id) { _id = id;}
       
   660 
       
   661     public:
       
   662       Edge() {}
       
   663       Edge (Invalid) { _id = -1; }
       
   664       bool operator==(const Edge& arc) const {return _id == arc._id;}
       
   665       bool operator!=(const Edge& arc) const {return _id != arc._id;}
       
   666       bool operator<(const Edge& arc) const {return _id < arc._id;}
       
   667     };
       
   668 
       
   669     class Arc {
       
   670       friend class FullBpGraphBase;
       
   671     protected:
       
   672 
       
   673       int _id;
       
   674       explicit Arc(int id) { _id = id;}
       
   675 
       
   676     public:
       
   677       operator Edge() const {
       
   678         return _id != -1 ? edgeFromId(_id / 2) : INVALID;
       
   679       }
       
   680 
       
   681       Arc() {}
       
   682       Arc (Invalid) { _id = -1; }
       
   683       bool operator==(const Arc& arc) const {return _id == arc._id;}
       
   684       bool operator!=(const Arc& arc) const {return _id != arc._id;}
       
   685       bool operator<(const Arc& arc) const {return _id < arc._id;}
       
   686     };
       
   687 
       
   688 
       
   689   protected:
       
   690 
       
   691     FullBpGraphBase()
       
   692       : _red_num(0), _blue_num(0), _node_num(0), _edge_num(0) {}
       
   693 
       
   694     void construct(int redNum, int blueNum) {
       
   695       _red_num = redNum; _blue_num = blueNum;
       
   696       _node_num = redNum + blueNum; _edge_num = redNum * blueNum;
       
   697     }
       
   698 
       
   699   public:
       
   700 
       
   701     typedef True NodeNumTag;
       
   702     typedef True EdgeNumTag;
       
   703     typedef True ArcNumTag;
       
   704 
       
   705     int nodeNum() const { return _node_num; }
       
   706     int redNum() const { return _red_num; }
       
   707     int blueNum() const { return _blue_num; }
       
   708     int edgeNum() const { return _edge_num; }
       
   709     int arcNum() const { return 2 * _edge_num; }
       
   710 
       
   711     int maxNodeId() const { return _node_num - 1; }
       
   712     int maxRedId() const { return _red_num - 1; }
       
   713     int maxBlueId() const { return _blue_num - 1; }
       
   714     int maxEdgeId() const { return _edge_num - 1; }
       
   715     int maxArcId() const { return 2 * _edge_num - 1; }
       
   716 
       
   717     bool red(Node n) const { return n._id < _red_num; }
       
   718     bool blue(Node n) const { return n._id >= _red_num; }
       
   719 
       
   720     Node source(Arc a) const {
       
   721       if (a._id & 1) {
       
   722         return Node((a._id >> 1) % _red_num);
       
   723       } else {
       
   724         return Node((a._id >> 1) / _red_num + _red_num);
       
   725       }
       
   726     }
       
   727     Node target(Arc a) const {
       
   728       if (a._id & 1) {
       
   729         return Node((a._id >> 1) / _red_num + _red_num);
       
   730       } else {
       
   731         return Node((a._id >> 1) % _red_num);
       
   732       }
       
   733     }
       
   734 
       
   735     Node redNode(Edge e) const {
       
   736       return Node(e._id % _red_num);
       
   737     }
       
   738     Node blueNode(Edge e) const {
       
   739       return Node(e._id / _red_num + _red_num);
       
   740     }
       
   741 
       
   742     static bool direction(Arc a) {
       
   743       return (a._id & 1) == 1;
       
   744     }
       
   745 
       
   746     static Arc direct(Edge e, bool d) {
       
   747       return Arc(e._id * 2 + (d ? 1 : 0));
       
   748     }
       
   749 
       
   750     void first(Node& node) const {
       
   751       node._id = _node_num - 1;
       
   752     }
       
   753 
       
   754     static void next(Node& node) {
       
   755       --node._id;
       
   756     }
       
   757 
       
   758     void firstRed(Node& node) const {
       
   759       node._id = _red_num - 1;
       
   760     }
       
   761 
       
   762     static void nextRed(Node& node) {
       
   763       --node._id;
       
   764     }
       
   765 
       
   766     void firstBlue(Node& node) const {
       
   767       if (_red_num == _node_num) node._id = -1;
       
   768       else node._id = _node_num - 1;
       
   769     }
       
   770 
       
   771     void nextBlue(Node& node) const {
       
   772       if (node._id == _red_num) node._id = -1;
       
   773       else --node._id;
       
   774     }
       
   775 
       
   776     void first(Arc& arc) const {
       
   777       arc._id = 2 * _edge_num - 1;
       
   778     }
       
   779 
       
   780     static void next(Arc& arc) {
       
   781       --arc._id;
       
   782     }
       
   783 
       
   784     void first(Edge& arc) const {
       
   785       arc._id = _edge_num - 1;
       
   786     }
       
   787 
       
   788     static void next(Edge& arc) {
       
   789       --arc._id;
       
   790     }
       
   791 
       
   792     void firstOut(Arc &a, const Node& v) const {
       
   793       if (v._id < _red_num) {
       
   794         a._id = 2 * (v._id + _red_num * (_blue_num - 1)) + 1;
       
   795       } else {
       
   796         a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num));
       
   797       }
       
   798     }
       
   799     void nextOut(Arc &a) const {
       
   800       if (a._id & 1) {
       
   801         a._id -= 2 * _red_num;
       
   802         if (a._id < 0) a._id = -1;
       
   803       } else {
       
   804         if (a._id % (2 * _red_num) == 0) a._id = -1;
       
   805         else a._id -= 2;
       
   806       }
       
   807     }
       
   808 
       
   809     void firstIn(Arc &a, const Node& v) const {
       
   810       if (v._id < _red_num) {
       
   811         a._id = 2 * (v._id + _red_num * (_blue_num - 1));
       
   812       } else {
       
   813         a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)) + 1;
       
   814       }
       
   815     }
       
   816     void nextIn(Arc &a) const {
       
   817       if (a._id & 1) {
       
   818         if (a._id % (2 * _red_num) == 1) a._id = -1;
       
   819         else a._id -= 2;
       
   820       } else {
       
   821         a._id -= 2 * _red_num;
       
   822         if (a._id < 0) a._id = -1;
       
   823       }
       
   824     }
       
   825 
       
   826     void firstInc(Edge &e, bool& d, const Node& v) const {
       
   827       if (v._id < _red_num) {
       
   828         d = true;
       
   829         e._id = v._id + _red_num * (_blue_num - 1);
       
   830       } else {
       
   831         d = false;
       
   832         e._id = _red_num - 1 + _red_num * (v._id - _red_num);
       
   833       }
       
   834     }
       
   835     void nextInc(Edge &e, bool& d) const {
       
   836       if (d) {
       
   837         e._id -= _red_num;
       
   838         if (e._id < 0) e._id = -1;
       
   839       } else {
       
   840         if (e._id % _red_num == 0) e._id = -1;
       
   841         else --e._id;
       
   842       }
       
   843     }
       
   844 
       
   845     static int id(Node v) { return v._id; }
       
   846     int redId(Node v) const {
       
   847       LEMON_DEBUG(v._id < _red_num, "Node has to be red");
       
   848       return v._id;
       
   849     }
       
   850     int blueId(Node v) const {
       
   851       LEMON_DEBUG(v._id >= _red_num, "Node has to be blue");
       
   852       return v._id - _red_num;
       
   853     }
       
   854     static int id(Arc e) { return e._id; }
       
   855     static int id(Edge e) { return e._id; }
       
   856     
       
   857     static Node nodeFromId(int id) { return Node(id);}
       
   858     static Arc arcFromId(int id) { return Arc(id);}
       
   859     static Edge edgeFromId(int id) { return Edge(id);}
       
   860 
       
   861     bool valid(Node n) const {
       
   862       return n._id >= 0 && n._id < _node_num;
       
   863     }
       
   864     bool valid(Arc a) const {
       
   865       return a._id >= 0 && a._id < 2 * _edge_num;
       
   866     }
       
   867     bool valid(Edge e) const {
       
   868       return e._id >= 0 && e._id < _edge_num;
       
   869     }
       
   870 
       
   871     Node redNode(int index) const {
       
   872       return Node(index);
       
   873     }
       
   874 
       
   875     int redIndex(Node n) const {
       
   876       return n._id;
       
   877     }
       
   878 
       
   879     Node blueNode(int index) const {
       
   880       return Node(index + _red_num);
       
   881     }
       
   882 
       
   883     int blueIndex(Node n) const {
       
   884       return n._id - _red_num;
       
   885     }
       
   886         
       
   887     void clear() {
       
   888       _red_num = 0; _blue_num = 0;
       
   889       _node_num = 0; _edge_num = 0;
       
   890     }
       
   891 
       
   892     Edge edge(const Node& u, const Node& v) const { 
       
   893       if (u._id < _red_num) {
       
   894         if (v._id < _red_num) {
       
   895           return Edge(-1);
       
   896         } else {
       
   897           return Edge(u._id + _red_num * (v._id - _red_num));
       
   898         }
       
   899       } else {
       
   900         if (v._id < _red_num) {
       
   901           return Edge(v._id + _red_num * (u._id - _red_num));
       
   902         } else {
       
   903           return Edge(-1);
       
   904         }
       
   905       }
       
   906     }
       
   907 
       
   908     Arc arc(const Node& u, const Node& v) const { 
       
   909       if (u._id < _red_num) {
       
   910         if (v._id < _red_num) {
       
   911           return Arc(-1);
       
   912         } else {
       
   913           return Arc(2 * (u._id + _red_num * (v._id - _red_num)) + 1);
       
   914         }
       
   915       } else {
       
   916         if (v._id < _red_num) {
       
   917           return Arc(2 * (v._id + _red_num * (u._id - _red_num)));
       
   918         } else {
       
   919           return Arc(-1);
       
   920         }
       
   921       }
       
   922     }
       
   923 
       
   924     typedef True FindEdgeTag;
       
   925     typedef True FindArcTag;
       
   926 
       
   927     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
       
   928       return prev != INVALID ? INVALID : edge(u, v);
       
   929     }
       
   930 
       
   931     Arc findArc(Node s, Node t, Arc prev = INVALID) const {
       
   932       return prev != INVALID ? INVALID : arc(s, t);
       
   933     }
       
   934 
       
   935   };
       
   936 
       
   937   typedef BpGraphExtender<FullBpGraphBase> ExtendedFullBpGraphBase;
       
   938 
       
   939   /// \ingroup graphs
       
   940   ///
       
   941   /// \brief An undirected full bipartite graph class.
       
   942   ///
       
   943   /// FullBpGraph is a simple and fast implmenetation of undirected
       
   944   /// full bipartite graphs. It contains an edge between every
       
   945   /// red-blue pairs of nodes, therefore the number of edges is
       
   946   /// <tt>nr*nb</tt>.  This class is completely static and it needs
       
   947   /// constant memory space.  Thus you can neither add nor delete
       
   948   /// nodes or edges, however the structure can be resized using
       
   949   /// resize().
       
   950   ///
       
   951   /// This type fully conforms to the \ref concepts::BpGraph "BpGraph concept".
       
   952   /// Most of its member functions and nested classes are documented
       
   953   /// only in the concept class.
       
   954   ///
       
   955   /// This class provides constant time counting for nodes, edges and arcs.
       
   956   ///
       
   957   /// \sa FullGraph
       
   958   class FullBpGraph : public ExtendedFullBpGraphBase {
       
   959   public:
       
   960 
       
   961     typedef ExtendedFullBpGraphBase Parent;
       
   962 
       
   963     /// \brief Default constructor.
       
   964     ///
       
   965     /// Default constructor. The number of nodes and edges will be zero.
       
   966     FullBpGraph() { construct(0, 0); }
       
   967 
       
   968     /// \brief Constructor
       
   969     ///
       
   970     /// Constructor.
       
   971     /// \param redNum The number of the red nodes.
       
   972     /// \param blueNum The number of the blue nodes.
       
   973     FullBpGraph(int redNum, int blueNum) { construct(redNum, blueNum); }
       
   974 
       
   975     /// \brief Resizes the graph
       
   976     ///
       
   977     /// This function resizes the graph. It fully destroys and
       
   978     /// rebuilds the structure, therefore the maps of the graph will be
       
   979     /// reallocated automatically and the previous values will be lost.
       
   980     void resize(int redNum, int blueNum) {
       
   981       Parent::notifier(Arc()).clear();
       
   982       Parent::notifier(Edge()).clear();
       
   983       Parent::notifier(Node()).clear();
       
   984       Parent::notifier(BlueNode()).clear();
       
   985       Parent::notifier(RedNode()).clear();
       
   986       construct(redNum, blueNum);
       
   987       Parent::notifier(RedNode()).build();
       
   988       Parent::notifier(BlueNode()).build();
       
   989       Parent::notifier(Node()).build();
       
   990       Parent::notifier(Edge()).build();
       
   991       Parent::notifier(Arc()).build();
       
   992     }
       
   993 
       
   994     /// \brief Returns the red node with the given index.
       
   995     ///
       
   996     /// Returns the red node with the given index. Since this
       
   997     /// structure is completely static, the red nodes can be indexed
       
   998     /// with integers from the range <tt>[0..redNum()-1]</tt>.
       
   999     /// \sa redIndex()
       
  1000     Node redNode(int index) const { return Parent::redNode(index); }
       
  1001 
       
  1002     /// \brief Returns the index of the given red node.
       
  1003     ///
       
  1004     /// Returns the index of the given red node. Since this structure
       
  1005     /// is completely static, the red nodes can be indexed with
       
  1006     /// integers from the range <tt>[0..redNum()-1]</tt>.
       
  1007     ///
       
  1008     /// \sa operator()()
       
  1009     int redIndex(Node node) const { return Parent::redIndex(node); }
       
  1010 
       
  1011     /// \brief Returns the blue node with the given index.
       
  1012     ///
       
  1013     /// Returns the blue node with the given index. Since this
       
  1014     /// structure is completely static, the blue nodes can be indexed
       
  1015     /// with integers from the range <tt>[0..blueNum()-1]</tt>.
       
  1016     /// \sa blueIndex()
       
  1017     Node blueNode(int index) const { return Parent::blueNode(index); }
       
  1018 
       
  1019     /// \brief Returns the index of the given blue node.
       
  1020     ///
       
  1021     /// Returns the index of the given blue node. Since this structure
       
  1022     /// is completely static, the blue nodes can be indexed with
       
  1023     /// integers from the range <tt>[0..blueNum()-1]</tt>.
       
  1024     ///
       
  1025     /// \sa operator()()
       
  1026     int blueIndex(Node node) const { return Parent::blueIndex(node); }
       
  1027 
       
  1028     /// \brief Returns the edge which connects the given nodes.
       
  1029     ///
       
  1030     /// Returns the edge which connects the given nodes.
       
  1031     Edge edge(const Node& u, const Node& v) const {
       
  1032       return Parent::edge(u, v);
       
  1033     }
       
  1034 
       
  1035     /// \brief Returns the arc which connects the given nodes.
       
  1036     ///
       
  1037     /// Returns the arc which connects the given nodes.
       
  1038     Arc arc(const Node& u, const Node& v) const {
       
  1039       return Parent::arc(u, v);
       
  1040     }
       
  1041 
       
  1042     /// \brief Number of nodes.
       
  1043     int nodeNum() const { return Parent::nodeNum(); }
       
  1044     /// \brief Number of red nodes.
       
  1045     int redNum() const { return Parent::redNum(); }
       
  1046     /// \brief Number of blue nodes.
       
  1047     int blueNum() const { return Parent::blueNum(); }
       
  1048     /// \brief Number of arcs.
       
  1049     int arcNum() const { return Parent::arcNum(); }
       
  1050     /// \brief Number of edges.
       
  1051     int edgeNum() const { return Parent::edgeNum(); }
       
  1052   };
       
  1053 
   624 
  1054 
   625 } //namespace lemon
  1055 } //namespace lemon
   626 
  1056 
   627 
  1057 
   628 #endif //LEMON_FULL_GRAPH_H
  1058 #endif //LEMON_FULL_GRAPH_H