lemon/graph_utils.h
changeset 220 a5d8c039f218
parent 209 765619b7cbb2
equal deleted inserted replaced
9:dbf70d3c47ac -1:000000000000
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_GRAPH_UTILS_H
       
    20 #define LEMON_GRAPH_UTILS_H
       
    21 
       
    22 #include <iterator>
       
    23 #include <vector>
       
    24 #include <map>
       
    25 #include <cmath>
       
    26 #include <algorithm>
       
    27 
       
    28 #include <lemon/bits/invalid.h>
       
    29 #include <lemon/bits/utility.h>
       
    30 #include <lemon/maps.h>
       
    31 #include <lemon/bits/traits.h>
       
    32 
       
    33 #include <lemon/bits/alteration_notifier.h>
       
    34 #include <lemon/bits/default_map.h>
       
    35 
       
    36 ///\ingroup gutils
       
    37 ///\file
       
    38 ///\brief Graph utilities.
       
    39 
       
    40 namespace lemon {
       
    41 
       
    42   /// \addtogroup gutils
       
    43   /// @{
       
    44 
       
    45   ///Creates convenience typedefs for the digraph types and iterators
       
    46 
       
    47   ///This \c \#define creates convenience typedefs for the following types
       
    48   ///of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
       
    49   ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
       
    50   ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
       
    51   ///
       
    52   ///\note If the graph type is a dependent type, ie. the graph type depend
       
    53   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
       
    54   ///macro.
       
    55 #define DIGRAPH_TYPEDEFS(Digraph)                                       \
       
    56   typedef Digraph::Node Node;                                           \
       
    57   typedef Digraph::NodeIt NodeIt;                                       \
       
    58   typedef Digraph::Arc Arc;                                             \
       
    59   typedef Digraph::ArcIt ArcIt;                                         \
       
    60   typedef Digraph::InArcIt InArcIt;                                     \
       
    61   typedef Digraph::OutArcIt OutArcIt;                                   \
       
    62   typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
       
    63   typedef Digraph::NodeMap<int> IntNodeMap;                             \
       
    64   typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
       
    65   typedef Digraph::ArcMap<bool> BoolArcMap;                             \
       
    66   typedef Digraph::ArcMap<int> IntArcMap;                               \
       
    67   typedef Digraph::ArcMap<double> DoubleArcMap
       
    68 
       
    69   ///Creates convenience typedefs for the digraph types and iterators
       
    70 
       
    71   ///\see DIGRAPH_TYPEDEFS
       
    72   ///
       
    73   ///\note Use this macro, if the graph type is a dependent type,
       
    74   ///ie. the graph type depend on a template parameter.
       
    75 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
       
    76   typedef typename Digraph::Node Node;                                  \
       
    77   typedef typename Digraph::NodeIt NodeIt;                              \
       
    78   typedef typename Digraph::Arc Arc;                                    \
       
    79   typedef typename Digraph::ArcIt ArcIt;                                \
       
    80   typedef typename Digraph::InArcIt InArcIt;                            \
       
    81   typedef typename Digraph::OutArcIt OutArcIt;                          \
       
    82   typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
       
    83   typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
       
    84   typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
       
    85   typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
       
    86   typedef typename Digraph::template ArcMap<int> IntArcMap;             \
       
    87   typedef typename Digraph::template ArcMap<double> DoubleArcMap
       
    88 
       
    89   ///Creates convenience typedefs for the graph types and iterators
       
    90 
       
    91   ///This \c \#define creates the same convenience typedefs as defined
       
    92   ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
       
    93   ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
       
    94   ///\c DoubleEdgeMap.
       
    95   ///
       
    96   ///\note If the graph type is a dependent type, ie. the graph type depend
       
    97   ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
       
    98   ///macro.
       
    99 #define GRAPH_TYPEDEFS(Graph)                                           \
       
   100   DIGRAPH_TYPEDEFS(Graph);                                              \
       
   101   typedef Graph::Edge Edge;                                             \
       
   102   typedef Graph::EdgeIt EdgeIt;                                         \
       
   103   typedef Graph::IncEdgeIt IncEdgeIt;                                   \
       
   104   typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
       
   105   typedef Graph::EdgeMap<int> IntEdgeMap;                               \
       
   106   typedef Graph::EdgeMap<double> DoubleEdgeMap
       
   107 
       
   108   ///Creates convenience typedefs for the graph types and iterators
       
   109 
       
   110   ///\see GRAPH_TYPEDEFS
       
   111   ///
       
   112   ///\note Use this macro, if the graph type is a dependent type,
       
   113   ///ie. the graph type depend on a template parameter.
       
   114 #define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
       
   115   TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
       
   116   typedef typename Graph::Edge Edge;                                    \
       
   117   typedef typename Graph::EdgeIt EdgeIt;                                \
       
   118   typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
       
   119   typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
       
   120   typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
       
   121   typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
       
   122 
       
   123   /// \brief Function to count the items in the graph.
       
   124   ///
       
   125   /// This function counts the items (nodes, arcs etc) in the graph.
       
   126   /// The complexity of the function is O(n) because
       
   127   /// it iterates on all of the items.
       
   128   template <typename Graph, typename Item>
       
   129   inline int countItems(const Graph& g) {
       
   130     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
       
   131     int num = 0;
       
   132     for (ItemIt it(g); it != INVALID; ++it) {
       
   133       ++num;
       
   134     }
       
   135     return num;
       
   136   }
       
   137 
       
   138   // Node counting:
       
   139 
       
   140   namespace _graph_utils_bits {
       
   141 
       
   142     template <typename Graph, typename Enable = void>
       
   143     struct CountNodesSelector {
       
   144       static int count(const Graph &g) {
       
   145         return countItems<Graph, typename Graph::Node>(g);
       
   146       }
       
   147     };
       
   148 
       
   149     template <typename Graph>
       
   150     struct CountNodesSelector<
       
   151       Graph, typename
       
   152       enable_if<typename Graph::NodeNumTag, void>::type>
       
   153     {
       
   154       static int count(const Graph &g) {
       
   155         return g.nodeNum();
       
   156       }
       
   157     };
       
   158   }
       
   159 
       
   160   /// \brief Function to count the nodes in the graph.
       
   161   ///
       
   162   /// This function counts the nodes in the graph.
       
   163   /// The complexity of the function is O(n) but for some
       
   164   /// graph structures it is specialized to run in O(1).
       
   165   ///
       
   166   /// If the graph contains a \e nodeNum() member function and a
       
   167   /// \e NodeNumTag tag then this function calls directly the member
       
   168   /// function to query the cardinality of the node set.
       
   169   template <typename Graph>
       
   170   inline int countNodes(const Graph& g) {
       
   171     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
       
   172   }
       
   173 
       
   174   // Arc counting:
       
   175 
       
   176   namespace _graph_utils_bits {
       
   177 
       
   178     template <typename Graph, typename Enable = void>
       
   179     struct CountArcsSelector {
       
   180       static int count(const Graph &g) {
       
   181         return countItems<Graph, typename Graph::Arc>(g);
       
   182       }
       
   183     };
       
   184 
       
   185     template <typename Graph>
       
   186     struct CountArcsSelector<
       
   187       Graph,
       
   188       typename enable_if<typename Graph::ArcNumTag, void>::type>
       
   189     {
       
   190       static int count(const Graph &g) {
       
   191         return g.arcNum();
       
   192       }
       
   193     };
       
   194   }
       
   195 
       
   196   /// \brief Function to count the arcs in the graph.
       
   197   ///
       
   198   /// This function counts the arcs in the graph.
       
   199   /// The complexity of the function is O(e) but for some
       
   200   /// graph structures it is specialized to run in O(1).
       
   201   ///
       
   202   /// If the graph contains a \e arcNum() member function and a
       
   203   /// \e EdgeNumTag tag then this function calls directly the member
       
   204   /// function to query the cardinality of the arc set.
       
   205   template <typename Graph>
       
   206   inline int countArcs(const Graph& g) {
       
   207     return _graph_utils_bits::CountArcsSelector<Graph>::count(g);
       
   208   }
       
   209 
       
   210   // Edge counting:
       
   211   namespace _graph_utils_bits {
       
   212 
       
   213     template <typename Graph, typename Enable = void>
       
   214     struct CountEdgesSelector {
       
   215       static int count(const Graph &g) {
       
   216         return countItems<Graph, typename Graph::Edge>(g);
       
   217       }
       
   218     };
       
   219 
       
   220     template <typename Graph>
       
   221     struct CountEdgesSelector<
       
   222       Graph,
       
   223       typename enable_if<typename Graph::EdgeNumTag, void>::type>
       
   224     {
       
   225       static int count(const Graph &g) {
       
   226         return g.edgeNum();
       
   227       }
       
   228     };
       
   229   }
       
   230 
       
   231   /// \brief Function to count the edges in the graph.
       
   232   ///
       
   233   /// This function counts the edges in the graph.
       
   234   /// The complexity of the function is O(m) but for some
       
   235   /// graph structures it is specialized to run in O(1).
       
   236   ///
       
   237   /// If the graph contains a \e edgeNum() member function and a
       
   238   /// \e EdgeNumTag tag then this function calls directly the member
       
   239   /// function to query the cardinality of the edge set.
       
   240   template <typename Graph>
       
   241   inline int countEdges(const Graph& g) {
       
   242     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
       
   243 
       
   244   }
       
   245 
       
   246 
       
   247   template <typename Graph, typename DegIt>
       
   248   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
       
   249     int num = 0;
       
   250     for (DegIt it(_g, _n); it != INVALID; ++it) {
       
   251       ++num;
       
   252     }
       
   253     return num;
       
   254   }
       
   255 
       
   256   /// \brief Function to count the number of the out-arcs from node \c n.
       
   257   ///
       
   258   /// This function counts the number of the out-arcs from node \c n
       
   259   /// in the graph.
       
   260   template <typename Graph>
       
   261   inline int countOutArcs(const Graph& _g,  const typename Graph::Node& _n) {
       
   262     return countNodeDegree<Graph, typename Graph::OutArcIt>(_g, _n);
       
   263   }
       
   264 
       
   265   /// \brief Function to count the number of the in-arcs to node \c n.
       
   266   ///
       
   267   /// This function counts the number of the in-arcs to node \c n
       
   268   /// in the graph.
       
   269   template <typename Graph>
       
   270   inline int countInArcs(const Graph& _g,  const typename Graph::Node& _n) {
       
   271     return countNodeDegree<Graph, typename Graph::InArcIt>(_g, _n);
       
   272   }
       
   273 
       
   274   /// \brief Function to count the number of the inc-edges to node \c n.
       
   275   ///
       
   276   /// This function counts the number of the inc-edges to node \c n
       
   277   /// in the graph.
       
   278   template <typename Graph>
       
   279   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
       
   280     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
       
   281   }
       
   282 
       
   283   namespace _graph_utils_bits {
       
   284 
       
   285     template <typename Graph, typename Enable = void>
       
   286     struct FindArcSelector {
       
   287       typedef typename Graph::Node Node;
       
   288       typedef typename Graph::Arc Arc;
       
   289       static Arc find(const Graph &g, Node u, Node v, Arc e) {
       
   290         if (e == INVALID) {
       
   291           g.firstOut(e, u);
       
   292         } else {
       
   293           g.nextOut(e);
       
   294         }
       
   295         while (e != INVALID && g.target(e) != v) {
       
   296           g.nextOut(e);
       
   297         }
       
   298         return e;
       
   299       }
       
   300     };
       
   301 
       
   302     template <typename Graph>
       
   303     struct FindArcSelector<
       
   304       Graph,
       
   305       typename enable_if<typename Graph::FindEdgeTag, void>::type>
       
   306     {
       
   307       typedef typename Graph::Node Node;
       
   308       typedef typename Graph::Arc Arc;
       
   309       static Arc find(const Graph &g, Node u, Node v, Arc prev) {
       
   310         return g.findArc(u, v, prev);
       
   311       }
       
   312     };
       
   313   }
       
   314 
       
   315   /// \brief Finds an arc between two nodes of a graph.
       
   316   ///
       
   317   /// Finds an arc from node \c u to node \c v in graph \c g.
       
   318   ///
       
   319   /// If \c prev is \ref INVALID (this is the default value), then
       
   320   /// it finds the first arc from \c u to \c v. Otherwise it looks for
       
   321   /// the next arc from \c u to \c v after \c prev.
       
   322   /// \return The found arc or \ref INVALID if there is no such an arc.
       
   323   ///
       
   324   /// Thus you can iterate through each arc from \c u to \c v as it follows.
       
   325   ///\code
       
   326   /// for(Arc e=findArc(g,u,v);e!=INVALID;e=findArc(g,u,v,e)) {
       
   327   ///   ...
       
   328   /// }
       
   329   ///\endcode
       
   330   ///
       
   331   ///\sa ArcLookUp
       
   332   ///\sa AllArcLookUp
       
   333   ///\sa DynArcLookUp
       
   334   ///\sa ConArcIt
       
   335   template <typename Graph>
       
   336   inline typename Graph::Arc
       
   337   findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
       
   338            typename Graph::Arc prev = INVALID) {
       
   339     return _graph_utils_bits::FindArcSelector<Graph>::find(g, u, v, prev);
       
   340   }
       
   341 
       
   342   /// \brief Iterator for iterating on arcs connected the same nodes.
       
   343   ///
       
   344   /// Iterator for iterating on arcs connected the same nodes. It is
       
   345   /// higher level interface for the findArc() function. You can
       
   346   /// use it the following way:
       
   347   ///\code
       
   348   /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
       
   349   ///   ...
       
   350   /// }
       
   351   ///\endcode
       
   352   ///
       
   353   ///\sa findArc()
       
   354   ///\sa ArcLookUp
       
   355   ///\sa AllArcLookUp
       
   356   ///\sa DynArcLookUp
       
   357   template <typename _Graph>
       
   358   class ConArcIt : public _Graph::Arc {
       
   359   public:
       
   360 
       
   361     typedef _Graph Graph;
       
   362     typedef typename Graph::Arc Parent;
       
   363 
       
   364     typedef typename Graph::Arc Arc;
       
   365     typedef typename Graph::Node Node;
       
   366 
       
   367     /// \brief Constructor.
       
   368     ///
       
   369     /// Construct a new ConArcIt iterating on the arcs which
       
   370     /// connects the \c u and \c v node.
       
   371     ConArcIt(const Graph& g, Node u, Node v) : _graph(g) {
       
   372       Parent::operator=(findArc(_graph, u, v));
       
   373     }
       
   374 
       
   375     /// \brief Constructor.
       
   376     ///
       
   377     /// Construct a new ConArcIt which continues the iterating from
       
   378     /// the \c e arc.
       
   379     ConArcIt(const Graph& g, Arc a) : Parent(a), _graph(g) {}
       
   380 
       
   381     /// \brief Increment operator.
       
   382     ///
       
   383     /// It increments the iterator and gives back the next arc.
       
   384     ConArcIt& operator++() {
       
   385       Parent::operator=(findArc(_graph, _graph.source(*this),
       
   386                                 _graph.target(*this), *this));
       
   387       return *this;
       
   388     }
       
   389   private:
       
   390     const Graph& _graph;
       
   391   };
       
   392 
       
   393   namespace _graph_utils_bits {
       
   394 
       
   395     template <typename Graph, typename Enable = void>
       
   396     struct FindEdgeSelector {
       
   397       typedef typename Graph::Node Node;
       
   398       typedef typename Graph::Edge Edge;
       
   399       static Edge find(const Graph &g, Node u, Node v, Edge e) {
       
   400         bool b;
       
   401         if (u != v) {
       
   402           if (e == INVALID) {
       
   403             g.firstInc(e, b, u);
       
   404           } else {
       
   405             b = g.u(e) == u;
       
   406             g.nextInc(e, b);
       
   407           }
       
   408           while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
       
   409             g.nextInc(e, b);
       
   410           }
       
   411         } else {
       
   412           if (e == INVALID) {
       
   413             g.firstInc(e, b, u);
       
   414           } else {
       
   415             b = true;
       
   416             g.nextInc(e, b);
       
   417           }
       
   418           while (e != INVALID && (!b || g.v(e) != v)) {
       
   419             g.nextInc(e, b);
       
   420           }
       
   421         }
       
   422         return e;
       
   423       }
       
   424     };
       
   425 
       
   426     template <typename Graph>
       
   427     struct FindEdgeSelector<
       
   428       Graph,
       
   429       typename enable_if<typename Graph::FindEdgeTag, void>::type>
       
   430     {
       
   431       typedef typename Graph::Node Node;
       
   432       typedef typename Graph::Edge Edge;
       
   433       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
       
   434         return g.findEdge(u, v, prev);
       
   435       }
       
   436     };
       
   437   }
       
   438 
       
   439   /// \brief Finds an edge between two nodes of a graph.
       
   440   ///
       
   441   /// Finds an edge from node \c u to node \c v in graph \c g.
       
   442   /// If the node \c u and node \c v is equal then each loop edge
       
   443   /// will be enumerated once.
       
   444   ///
       
   445   /// If \c prev is \ref INVALID (this is the default value), then
       
   446   /// it finds the first arc from \c u to \c v. Otherwise it looks for
       
   447   /// the next arc from \c u to \c v after \c prev.
       
   448   /// \return The found arc or \ref INVALID if there is no such an arc.
       
   449   ///
       
   450   /// Thus you can iterate through each arc from \c u to \c v as it follows.
       
   451   ///\code
       
   452   /// for(Edge e = findEdge(g,u,v); e != INVALID;
       
   453   ///     e = findEdge(g,u,v,e)) {
       
   454   ///   ...
       
   455   /// }
       
   456   ///\endcode
       
   457   ///
       
   458   ///\sa ConEdgeIt
       
   459 
       
   460   template <typename Graph>
       
   461   inline typename Graph::Edge
       
   462   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
       
   463             typename Graph::Edge p = INVALID) {
       
   464     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
       
   465   }
       
   466 
       
   467   /// \brief Iterator for iterating on edges connected the same nodes.
       
   468   ///
       
   469   /// Iterator for iterating on edges connected the same nodes. It is
       
   470   /// higher level interface for the findEdge() function. You can
       
   471   /// use it the following way:
       
   472   ///\code
       
   473   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
       
   474   ///   ...
       
   475   /// }
       
   476   ///\endcode
       
   477   ///
       
   478   ///\sa findEdge()
       
   479   template <typename _Graph>
       
   480   class ConEdgeIt : public _Graph::Edge {
       
   481   public:
       
   482 
       
   483     typedef _Graph Graph;
       
   484     typedef typename Graph::Edge Parent;
       
   485 
       
   486     typedef typename Graph::Edge Edge;
       
   487     typedef typename Graph::Node Node;
       
   488 
       
   489     /// \brief Constructor.
       
   490     ///
       
   491     /// Construct a new ConEdgeIt iterating on the edges which
       
   492     /// connects the \c u and \c v node.
       
   493     ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
       
   494       Parent::operator=(findEdge(_graph, u, v));
       
   495     }
       
   496 
       
   497     /// \brief Constructor.
       
   498     ///
       
   499     /// Construct a new ConEdgeIt which continues the iterating from
       
   500     /// the \c e edge.
       
   501     ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
       
   502 
       
   503     /// \brief Increment operator.
       
   504     ///
       
   505     /// It increments the iterator and gives back the next edge.
       
   506     ConEdgeIt& operator++() {
       
   507       Parent::operator=(findEdge(_graph, _graph.u(*this),
       
   508                                  _graph.v(*this), *this));
       
   509       return *this;
       
   510     }
       
   511   private:
       
   512     const Graph& _graph;
       
   513   };
       
   514 
       
   515   namespace _graph_utils_bits {
       
   516 
       
   517     template <typename Digraph, typename Item, typename RefMap>
       
   518     class MapCopyBase {
       
   519     public:
       
   520       virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
       
   521 
       
   522       virtual ~MapCopyBase() {}
       
   523     };
       
   524 
       
   525     template <typename Digraph, typename Item, typename RefMap,
       
   526               typename ToMap, typename FromMap>
       
   527     class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
       
   528     public:
       
   529 
       
   530       MapCopy(ToMap& tmap, const FromMap& map)
       
   531         : _tmap(tmap), _map(map) {}
       
   532 
       
   533       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
       
   534         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
       
   535         for (ItemIt it(digraph); it != INVALID; ++it) {
       
   536           _tmap.set(refMap[it], _map[it]);
       
   537         }
       
   538       }
       
   539 
       
   540     private:
       
   541       ToMap& _tmap;
       
   542       const FromMap& _map;
       
   543     };
       
   544 
       
   545     template <typename Digraph, typename Item, typename RefMap, typename It>
       
   546     class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
       
   547     public:
       
   548 
       
   549       ItemCopy(It& it, const Item& item) : _it(it), _item(item) {}
       
   550 
       
   551       virtual void copy(const Digraph&, const RefMap& refMap) {
       
   552         _it = refMap[_item];
       
   553       }
       
   554 
       
   555     private:
       
   556       It& _it;
       
   557       Item _item;
       
   558     };
       
   559 
       
   560     template <typename Digraph, typename Item, typename RefMap, typename Ref>
       
   561     class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
       
   562     public:
       
   563 
       
   564       RefCopy(Ref& map) : _map(map) {}
       
   565 
       
   566       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
       
   567         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
       
   568         for (ItemIt it(digraph); it != INVALID; ++it) {
       
   569           _map.set(it, refMap[it]);
       
   570         }
       
   571       }
       
   572 
       
   573     private:
       
   574       Ref& _map;
       
   575     };
       
   576 
       
   577     template <typename Digraph, typename Item, typename RefMap,
       
   578               typename CrossRef>
       
   579     class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
       
   580     public:
       
   581 
       
   582       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
       
   583 
       
   584       virtual void copy(const Digraph& digraph, const RefMap& refMap) {
       
   585         typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
       
   586         for (ItemIt it(digraph); it != INVALID; ++it) {
       
   587           _cmap.set(refMap[it], it);
       
   588         }
       
   589       }
       
   590 
       
   591     private:
       
   592       CrossRef& _cmap;
       
   593     };
       
   594 
       
   595     template <typename Digraph, typename Enable = void>
       
   596     struct DigraphCopySelector {
       
   597       template <typename From, typename NodeRefMap, typename ArcRefMap>
       
   598       static void copy(Digraph &to, const From& from,
       
   599                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
       
   600         for (typename From::NodeIt it(from); it != INVALID; ++it) {
       
   601           nodeRefMap[it] = to.addNode();
       
   602         }
       
   603         for (typename From::ArcIt it(from); it != INVALID; ++it) {
       
   604           arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
       
   605                                     nodeRefMap[from.target(it)]);
       
   606         }
       
   607       }
       
   608     };
       
   609 
       
   610     template <typename Digraph>
       
   611     struct DigraphCopySelector<
       
   612       Digraph,
       
   613       typename enable_if<typename Digraph::BuildTag, void>::type>
       
   614     {
       
   615       template <typename From, typename NodeRefMap, typename ArcRefMap>
       
   616       static void copy(Digraph &to, const From& from,
       
   617                        NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
       
   618         to.build(from, nodeRefMap, arcRefMap);
       
   619       }
       
   620     };
       
   621 
       
   622     template <typename Graph, typename Enable = void>
       
   623     struct GraphCopySelector {
       
   624       template <typename From, typename NodeRefMap, typename EdgeRefMap>
       
   625       static void copy(Graph &to, const From& from,
       
   626                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
       
   627         for (typename From::NodeIt it(from); it != INVALID; ++it) {
       
   628           nodeRefMap[it] = to.addNode();
       
   629         }
       
   630         for (typename From::EdgeIt it(from); it != INVALID; ++it) {
       
   631           edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
       
   632                                       nodeRefMap[from.v(it)]);
       
   633         }
       
   634       }
       
   635     };
       
   636 
       
   637     template <typename Graph>
       
   638     struct GraphCopySelector<
       
   639       Graph,
       
   640       typename enable_if<typename Graph::BuildTag, void>::type>
       
   641     {
       
   642       template <typename From, typename NodeRefMap, typename EdgeRefMap>
       
   643       static void copy(Graph &to, const From& from,
       
   644                        NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
       
   645         to.build(from, nodeRefMap, edgeRefMap);
       
   646       }
       
   647     };
       
   648 
       
   649   }
       
   650 
       
   651   /// \brief Class to copy a digraph.
       
   652   ///
       
   653   /// Class to copy a digraph to another digraph (duplicate a digraph). The
       
   654   /// simplest way of using it is through the \c copyDigraph() function.
       
   655   ///
       
   656   /// This class not just make a copy of a graph, but it can create
       
   657   /// references and cross references between the nodes and arcs of
       
   658   /// the two graphs, it can copy maps for use with the newly created
       
   659   /// graph and copy nodes and arcs.
       
   660   ///
       
   661   /// To make a copy from a graph, first an instance of DigraphCopy
       
   662   /// should be created, then the data belongs to the graph should
       
   663   /// assigned to copy. In the end, the \c run() member should be
       
   664   /// called.
       
   665   ///
       
   666   /// The next code copies a graph with several data:
       
   667   ///\code
       
   668   ///  DigraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
       
   669   ///  // create a reference for the nodes
       
   670   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
       
   671   ///  dc.nodeRef(nr);
       
   672   ///  // create a cross reference (inverse) for the arcs
       
   673   ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
       
   674   ///  dc.arcCrossRef(acr);
       
   675   ///  // copy an arc map
       
   676   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
       
   677   ///  NewGraph::ArcMap<double> namap(new_graph);
       
   678   ///  dc.arcMap(namap, oamap);
       
   679   ///  // copy a node
       
   680   ///  OrigGraph::Node on;
       
   681   ///  NewGraph::Node nn;
       
   682   ///  dc.node(nn, on);
       
   683   ///  // Executions of copy
       
   684   ///  dc.run();
       
   685   ///\endcode
       
   686   template <typename To, typename From>
       
   687   class DigraphCopy {
       
   688   private:
       
   689 
       
   690     typedef typename From::Node Node;
       
   691     typedef typename From::NodeIt NodeIt;
       
   692     typedef typename From::Arc Arc;
       
   693     typedef typename From::ArcIt ArcIt;
       
   694 
       
   695     typedef typename To::Node TNode;
       
   696     typedef typename To::Arc TArc;
       
   697 
       
   698     typedef typename From::template NodeMap<TNode> NodeRefMap;
       
   699     typedef typename From::template ArcMap<TArc> ArcRefMap;
       
   700 
       
   701 
       
   702   public:
       
   703 
       
   704 
       
   705     /// \brief Constructor for the DigraphCopy.
       
   706     ///
       
   707     /// It copies the content of the \c _from digraph into the
       
   708     /// \c _to digraph.
       
   709     DigraphCopy(To& to, const From& from)
       
   710       : _from(from), _to(to) {}
       
   711 
       
   712     /// \brief Destructor of the DigraphCopy
       
   713     ///
       
   714     /// Destructor of the DigraphCopy
       
   715     ~DigraphCopy() {
       
   716       for (int i = 0; i < int(_node_maps.size()); ++i) {
       
   717         delete _node_maps[i];
       
   718       }
       
   719       for (int i = 0; i < int(_arc_maps.size()); ++i) {
       
   720         delete _arc_maps[i];
       
   721       }
       
   722 
       
   723     }
       
   724 
       
   725     /// \brief Copies the node references into the given map.
       
   726     ///
       
   727     /// Copies the node references into the given map. The parameter
       
   728     /// should be a map, which key type is the Node type of the source
       
   729     /// graph, while the value type is the Node type of the
       
   730     /// destination graph.
       
   731     template <typename NodeRef>
       
   732     DigraphCopy& nodeRef(NodeRef& map) {
       
   733       _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node,
       
   734                            NodeRefMap, NodeRef>(map));
       
   735       return *this;
       
   736     }
       
   737 
       
   738     /// \brief Copies the node cross references into the given map.
       
   739     ///
       
   740     ///  Copies the node cross references (reverse references) into
       
   741     ///  the given map. The parameter should be a map, which key type
       
   742     ///  is the Node type of the destination graph, while the value type is
       
   743     ///  the Node type of the source graph.
       
   744     template <typename NodeCrossRef>
       
   745     DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
       
   746       _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
       
   747                            NodeRefMap, NodeCrossRef>(map));
       
   748       return *this;
       
   749     }
       
   750 
       
   751     /// \brief Make copy of the given map.
       
   752     ///
       
   753     /// Makes copy of the given map for the newly created digraph.
       
   754     /// The new map's key type is the destination graph's node type,
       
   755     /// and the copied map's key type is the source graph's node type.
       
   756     template <typename ToMap, typename FromMap>
       
   757     DigraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
       
   758       _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node,
       
   759                            NodeRefMap, ToMap, FromMap>(tmap, map));
       
   760       return *this;
       
   761     }
       
   762 
       
   763     /// \brief Make a copy of the given node.
       
   764     ///
       
   765     /// Make a copy of the given node.
       
   766     DigraphCopy& node(TNode& tnode, const Node& snode) {
       
   767       _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node,
       
   768                            NodeRefMap, TNode>(tnode, snode));
       
   769       return *this;
       
   770     }
       
   771 
       
   772     /// \brief Copies the arc references into the given map.
       
   773     ///
       
   774     /// Copies the arc references into the given map.
       
   775     template <typename ArcRef>
       
   776     DigraphCopy& arcRef(ArcRef& map) {
       
   777       _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc,
       
   778                           ArcRefMap, ArcRef>(map));
       
   779       return *this;
       
   780     }
       
   781 
       
   782     /// \brief Copies the arc cross references into the given map.
       
   783     ///
       
   784     ///  Copies the arc cross references (reverse references) into
       
   785     ///  the given map.
       
   786     template <typename ArcCrossRef>
       
   787     DigraphCopy& arcCrossRef(ArcCrossRef& map) {
       
   788       _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
       
   789                           ArcRefMap, ArcCrossRef>(map));
       
   790       return *this;
       
   791     }
       
   792 
       
   793     /// \brief Make copy of the given map.
       
   794     ///
       
   795     /// Makes copy of the given map for the newly created digraph.
       
   796     /// The new map's key type is the to digraph's arc type,
       
   797     /// and the copied map's key type is the from digraph's arc
       
   798     /// type.
       
   799     template <typename ToMap, typename FromMap>
       
   800     DigraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
       
   801       _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc,
       
   802                           ArcRefMap, ToMap, FromMap>(tmap, map));
       
   803       return *this;
       
   804     }
       
   805 
       
   806     /// \brief Make a copy of the given arc.
       
   807     ///
       
   808     /// Make a copy of the given arc.
       
   809     DigraphCopy& arc(TArc& tarc, const Arc& sarc) {
       
   810       _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc,
       
   811                           ArcRefMap, TArc>(tarc, sarc));
       
   812       return *this;
       
   813     }
       
   814 
       
   815     /// \brief Executes the copies.
       
   816     ///
       
   817     /// Executes the copies.
       
   818     void run() {
       
   819       NodeRefMap nodeRefMap(_from);
       
   820       ArcRefMap arcRefMap(_from);
       
   821       _graph_utils_bits::DigraphCopySelector<To>::
       
   822         copy(_to, _from, nodeRefMap, arcRefMap);
       
   823       for (int i = 0; i < int(_node_maps.size()); ++i) {
       
   824         _node_maps[i]->copy(_from, nodeRefMap);
       
   825       }
       
   826       for (int i = 0; i < int(_arc_maps.size()); ++i) {
       
   827         _arc_maps[i]->copy(_from, arcRefMap);
       
   828       }
       
   829     }
       
   830 
       
   831   protected:
       
   832 
       
   833 
       
   834     const From& _from;
       
   835     To& _to;
       
   836 
       
   837     std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
       
   838     _node_maps;
       
   839 
       
   840     std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
       
   841     _arc_maps;
       
   842 
       
   843   };
       
   844 
       
   845   /// \brief Copy a digraph to another digraph.
       
   846   ///
       
   847   /// Copy a digraph to another digraph. The complete usage of the
       
   848   /// function is detailed in the DigraphCopy class, but a short
       
   849   /// example shows a basic work:
       
   850   ///\code
       
   851   /// copyDigraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
       
   852   ///\endcode
       
   853   ///
       
   854   /// After the copy the \c nr map will contain the mapping from the
       
   855   /// nodes of the \c from digraph to the nodes of the \c to digraph and
       
   856   /// \c ecr will contain the mapping from the arcs of the \c to digraph
       
   857   /// to the arcs of the \c from digraph.
       
   858   ///
       
   859   /// \see DigraphCopy
       
   860   template <typename To, typename From>
       
   861   DigraphCopy<To, From> copyDigraph(To& to, const From& from) {
       
   862     return DigraphCopy<To, From>(to, from);
       
   863   }
       
   864 
       
   865   /// \brief Class to copy a graph.
       
   866   ///
       
   867   /// Class to copy a graph to another graph (duplicate a graph). The
       
   868   /// simplest way of using it is through the \c copyGraph() function.
       
   869   ///
       
   870   /// This class not just make a copy of a graph, but it can create
       
   871   /// references and cross references between the nodes, edges and arcs of
       
   872   /// the two graphs, it can copy maps for use with the newly created
       
   873   /// graph and copy nodes, edges and arcs.
       
   874   ///
       
   875   /// To make a copy from a graph, first an instance of GraphCopy
       
   876   /// should be created, then the data belongs to the graph should
       
   877   /// assigned to copy. In the end, the \c run() member should be
       
   878   /// called.
       
   879   ///
       
   880   /// The next code copies a graph with several data:
       
   881   ///\code
       
   882   ///  GraphCopy<NewGraph, OrigGraph> dc(new_graph, orig_graph);
       
   883   ///  // create a reference for the nodes
       
   884   ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
       
   885   ///  dc.nodeRef(nr);
       
   886   ///  // create a cross reference (inverse) for the edges
       
   887   ///  NewGraph::EdgeMap<OrigGraph::Arc> ecr(new_graph);
       
   888   ///  dc.edgeCrossRef(ecr);
       
   889   ///  // copy an arc map
       
   890   ///  OrigGraph::ArcMap<double> oamap(orig_graph);
       
   891   ///  NewGraph::ArcMap<double> namap(new_graph);
       
   892   ///  dc.arcMap(namap, oamap);
       
   893   ///  // copy a node
       
   894   ///  OrigGraph::Node on;
       
   895   ///  NewGraph::Node nn;
       
   896   ///  dc.node(nn, on);
       
   897   ///  // Executions of copy
       
   898   ///  dc.run();
       
   899   ///\endcode
       
   900   template <typename To, typename From>
       
   901   class GraphCopy {
       
   902   private:
       
   903 
       
   904     typedef typename From::Node Node;
       
   905     typedef typename From::NodeIt NodeIt;
       
   906     typedef typename From::Arc Arc;
       
   907     typedef typename From::ArcIt ArcIt;
       
   908     typedef typename From::Edge Edge;
       
   909     typedef typename From::EdgeIt EdgeIt;
       
   910 
       
   911     typedef typename To::Node TNode;
       
   912     typedef typename To::Arc TArc;
       
   913     typedef typename To::Edge TEdge;
       
   914 
       
   915     typedef typename From::template NodeMap<TNode> NodeRefMap;
       
   916     typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
       
   917 
       
   918     struct ArcRefMap {
       
   919       ArcRefMap(const To& to, const From& from,
       
   920                 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
       
   921         : _to(to), _from(from),
       
   922           _edge_ref(edge_ref), _node_ref(node_ref) {}
       
   923 
       
   924       typedef typename From::Arc Key;
       
   925       typedef typename To::Arc Value;
       
   926 
       
   927       Value operator[](const Key& key) const {
       
   928         bool forward = _from.u(key) != _from.v(key) ?
       
   929           _node_ref[_from.source(key)] ==
       
   930           _to.source(_to.direct(_edge_ref[key], true)) :
       
   931           _from.direction(key);
       
   932         return _to.direct(_edge_ref[key], forward);
       
   933       }
       
   934 
       
   935       const To& _to;
       
   936       const From& _from;
       
   937       const EdgeRefMap& _edge_ref;
       
   938       const NodeRefMap& _node_ref;
       
   939     };
       
   940 
       
   941 
       
   942   public:
       
   943 
       
   944 
       
   945     /// \brief Constructor for the GraphCopy.
       
   946     ///
       
   947     /// It copies the content of the \c _from graph into the
       
   948     /// \c _to graph.
       
   949     GraphCopy(To& to, const From& from)
       
   950       : _from(from), _to(to) {}
       
   951 
       
   952     /// \brief Destructor of the GraphCopy
       
   953     ///
       
   954     /// Destructor of the GraphCopy
       
   955     ~GraphCopy() {
       
   956       for (int i = 0; i < int(_node_maps.size()); ++i) {
       
   957         delete _node_maps[i];
       
   958       }
       
   959       for (int i = 0; i < int(_arc_maps.size()); ++i) {
       
   960         delete _arc_maps[i];
       
   961       }
       
   962       for (int i = 0; i < int(_edge_maps.size()); ++i) {
       
   963         delete _edge_maps[i];
       
   964       }
       
   965 
       
   966     }
       
   967 
       
   968     /// \brief Copies the node references into the given map.
       
   969     ///
       
   970     /// Copies the node references into the given map.
       
   971     template <typename NodeRef>
       
   972     GraphCopy& nodeRef(NodeRef& map) {
       
   973       _node_maps.push_back(new _graph_utils_bits::RefCopy<From, Node,
       
   974                            NodeRefMap, NodeRef>(map));
       
   975       return *this;
       
   976     }
       
   977 
       
   978     /// \brief Copies the node cross references into the given map.
       
   979     ///
       
   980     ///  Copies the node cross references (reverse references) into
       
   981     ///  the given map.
       
   982     template <typename NodeCrossRef>
       
   983     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
       
   984       _node_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Node,
       
   985                            NodeRefMap, NodeCrossRef>(map));
       
   986       return *this;
       
   987     }
       
   988 
       
   989     /// \brief Make copy of the given map.
       
   990     ///
       
   991     /// Makes copy of the given map for the newly created graph.
       
   992     /// The new map's key type is the to graph's node type,
       
   993     /// and the copied map's key type is the from graph's node
       
   994     /// type.
       
   995     template <typename ToMap, typename FromMap>
       
   996     GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) {
       
   997       _node_maps.push_back(new _graph_utils_bits::MapCopy<From, Node,
       
   998                            NodeRefMap, ToMap, FromMap>(tmap, map));
       
   999       return *this;
       
  1000     }
       
  1001 
       
  1002     /// \brief Make a copy of the given node.
       
  1003     ///
       
  1004     /// Make a copy of the given node.
       
  1005     GraphCopy& node(TNode& tnode, const Node& snode) {
       
  1006       _node_maps.push_back(new _graph_utils_bits::ItemCopy<From, Node,
       
  1007                            NodeRefMap, TNode>(tnode, snode));
       
  1008       return *this;
       
  1009     }
       
  1010 
       
  1011     /// \brief Copies the arc references into the given map.
       
  1012     ///
       
  1013     /// Copies the arc references into the given map.
       
  1014     template <typename ArcRef>
       
  1015     GraphCopy& arcRef(ArcRef& map) {
       
  1016       _arc_maps.push_back(new _graph_utils_bits::RefCopy<From, Arc,
       
  1017                           ArcRefMap, ArcRef>(map));
       
  1018       return *this;
       
  1019     }
       
  1020 
       
  1021     /// \brief Copies the arc cross references into the given map.
       
  1022     ///
       
  1023     ///  Copies the arc cross references (reverse references) into
       
  1024     ///  the given map.
       
  1025     template <typename ArcCrossRef>
       
  1026     GraphCopy& arcCrossRef(ArcCrossRef& map) {
       
  1027       _arc_maps.push_back(new _graph_utils_bits::CrossRefCopy<From, Arc,
       
  1028                           ArcRefMap, ArcCrossRef>(map));
       
  1029       return *this;
       
  1030     }
       
  1031 
       
  1032     /// \brief Make copy of the given map.
       
  1033     ///
       
  1034     /// Makes copy of the given map for the newly created graph.
       
  1035     /// The new map's key type is the to graph's arc type,
       
  1036     /// and the copied map's key type is the from graph's arc
       
  1037     /// type.
       
  1038     template <typename ToMap, typename FromMap>
       
  1039     GraphCopy& arcMap(ToMap& tmap, const FromMap& map) {
       
  1040       _arc_maps.push_back(new _graph_utils_bits::MapCopy<From, Arc,
       
  1041                           ArcRefMap, ToMap, FromMap>(tmap, map));
       
  1042       return *this;
       
  1043     }
       
  1044 
       
  1045     /// \brief Make a copy of the given arc.
       
  1046     ///
       
  1047     /// Make a copy of the given arc.
       
  1048     GraphCopy& arc(TArc& tarc, const Arc& sarc) {
       
  1049       _arc_maps.push_back(new _graph_utils_bits::ItemCopy<From, Arc,
       
  1050                           ArcRefMap, TArc>(tarc, sarc));
       
  1051       return *this;
       
  1052     }
       
  1053 
       
  1054     /// \brief Copies the edge references into the given map.
       
  1055     ///
       
  1056     /// Copies the edge references into the given map.
       
  1057     template <typename EdgeRef>
       
  1058     GraphCopy& edgeRef(EdgeRef& map) {
       
  1059       _edge_maps.push_back(new _graph_utils_bits::RefCopy<From, Edge,
       
  1060                            EdgeRefMap, EdgeRef>(map));
       
  1061       return *this;
       
  1062     }
       
  1063 
       
  1064     /// \brief Copies the edge cross references into the given map.
       
  1065     ///
       
  1066     /// Copies the edge cross references (reverse
       
  1067     /// references) into the given map.
       
  1068     template <typename EdgeCrossRef>
       
  1069     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
       
  1070       _edge_maps.push_back(new _graph_utils_bits::CrossRefCopy<From,
       
  1071                            Edge, EdgeRefMap, EdgeCrossRef>(map));
       
  1072       return *this;
       
  1073     }
       
  1074 
       
  1075     /// \brief Make copy of the given map.
       
  1076     ///
       
  1077     /// Makes copy of the given map for the newly created graph.
       
  1078     /// The new map's key type is the to graph's edge type,
       
  1079     /// and the copied map's key type is the from graph's edge
       
  1080     /// type.
       
  1081     template <typename ToMap, typename FromMap>
       
  1082     GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) {
       
  1083       _edge_maps.push_back(new _graph_utils_bits::MapCopy<From, Edge,
       
  1084                            EdgeRefMap, ToMap, FromMap>(tmap, map));
       
  1085       return *this;
       
  1086     }
       
  1087 
       
  1088     /// \brief Make a copy of the given edge.
       
  1089     ///
       
  1090     /// Make a copy of the given edge.
       
  1091     GraphCopy& edge(TEdge& tedge, const Edge& sedge) {
       
  1092       _edge_maps.push_back(new _graph_utils_bits::ItemCopy<From, Edge,
       
  1093                            EdgeRefMap, TEdge>(tedge, sedge));
       
  1094       return *this;
       
  1095     }
       
  1096 
       
  1097     /// \brief Executes the copies.
       
  1098     ///
       
  1099     /// Executes the copies.
       
  1100     void run() {
       
  1101       NodeRefMap nodeRefMap(_from);
       
  1102       EdgeRefMap edgeRefMap(_from);
       
  1103       ArcRefMap arcRefMap(_to, _from, edgeRefMap, nodeRefMap);
       
  1104       _graph_utils_bits::GraphCopySelector<To>::
       
  1105         copy(_to, _from, nodeRefMap, edgeRefMap);
       
  1106       for (int i = 0; i < int(_node_maps.size()); ++i) {
       
  1107         _node_maps[i]->copy(_from, nodeRefMap);
       
  1108       }
       
  1109       for (int i = 0; i < int(_edge_maps.size()); ++i) {
       
  1110         _edge_maps[i]->copy(_from, edgeRefMap);
       
  1111       }
       
  1112       for (int i = 0; i < int(_arc_maps.size()); ++i) {
       
  1113         _arc_maps[i]->copy(_from, arcRefMap);
       
  1114       }
       
  1115     }
       
  1116 
       
  1117   private:
       
  1118 
       
  1119     const From& _from;
       
  1120     To& _to;
       
  1121 
       
  1122     std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* >
       
  1123     _node_maps;
       
  1124 
       
  1125     std::vector<_graph_utils_bits::MapCopyBase<From, Arc, ArcRefMap>* >
       
  1126     _arc_maps;
       
  1127 
       
  1128     std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
       
  1129     _edge_maps;
       
  1130 
       
  1131   };
       
  1132 
       
  1133   /// \brief Copy a graph to another graph.
       
  1134   ///
       
  1135   /// Copy a graph to another graph. The complete usage of the
       
  1136   /// function is detailed in the GraphCopy class, but a short
       
  1137   /// example shows a basic work:
       
  1138   ///\code
       
  1139   /// copyGraph(trg, src).nodeRef(nr).arcCrossRef(ecr).run();
       
  1140   ///\endcode
       
  1141   ///
       
  1142   /// After the copy the \c nr map will contain the mapping from the
       
  1143   /// nodes of the \c from graph to the nodes of the \c to graph and
       
  1144   /// \c ecr will contain the mapping from the arcs of the \c to graph
       
  1145   /// to the arcs of the \c from graph.
       
  1146   ///
       
  1147   /// \see GraphCopy
       
  1148   template <typename To, typename From>
       
  1149   GraphCopy<To, From>
       
  1150   copyGraph(To& to, const From& from) {
       
  1151     return GraphCopy<To, From>(to, from);
       
  1152   }
       
  1153 
       
  1154   /// @}
       
  1155 
       
  1156   /// \addtogroup graph_maps
       
  1157   /// @{
       
  1158 
       
  1159   /// Provides an immutable and unique id for each item in the graph.
       
  1160 
       
  1161   /// The IdMap class provides a unique and immutable id for each item of the
       
  1162   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
       
  1163   /// different items (nodes) get different ids <li>\b immutable: the id of an
       
  1164   /// item (node) does not change (even if you delete other nodes).  </ul>
       
  1165   /// Through this map you get access (i.e. can read) the inner id values of
       
  1166   /// the items stored in the graph. This map can be inverted with its member
       
  1167   /// class \c InverseMap or with the \c operator() member.
       
  1168   ///
       
  1169   template <typename _Graph, typename _Item>
       
  1170   class IdMap {
       
  1171   public:
       
  1172     typedef _Graph Graph;
       
  1173     typedef int Value;
       
  1174     typedef _Item Item;
       
  1175     typedef _Item Key;
       
  1176 
       
  1177     /// \brief Constructor.
       
  1178     ///
       
  1179     /// Constructor of the map.
       
  1180     explicit IdMap(const Graph& graph) : _graph(&graph) {}
       
  1181 
       
  1182     /// \brief Gives back the \e id of the item.
       
  1183     ///
       
  1184     /// Gives back the immutable and unique \e id of the item.
       
  1185     int operator[](const Item& item) const { return _graph->id(item);}
       
  1186 
       
  1187     /// \brief Gives back the item by its id.
       
  1188     ///
       
  1189     /// Gives back the item by its id.
       
  1190     Item operator()(int id) { return _graph->fromId(id, Item()); }
       
  1191 
       
  1192   private:
       
  1193     const Graph* _graph;
       
  1194 
       
  1195   public:
       
  1196 
       
  1197     /// \brief The class represents the inverse of its owner (IdMap).
       
  1198     ///
       
  1199     /// The class represents the inverse of its owner (IdMap).
       
  1200     /// \see inverse()
       
  1201     class InverseMap {
       
  1202     public:
       
  1203 
       
  1204       /// \brief Constructor.
       
  1205       ///
       
  1206       /// Constructor for creating an id-to-item map.
       
  1207       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
       
  1208 
       
  1209       /// \brief Constructor.
       
  1210       ///
       
  1211       /// Constructor for creating an id-to-item map.
       
  1212       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
       
  1213 
       
  1214       /// \brief Gives back the given item from its id.
       
  1215       ///
       
  1216       /// Gives back the given item from its id.
       
  1217       ///
       
  1218       Item operator[](int id) const { return _graph->fromId(id, Item());}
       
  1219 
       
  1220     private:
       
  1221       const Graph* _graph;
       
  1222     };
       
  1223 
       
  1224     /// \brief Gives back the inverse of the map.
       
  1225     ///
       
  1226     /// Gives back the inverse of the IdMap.
       
  1227     InverseMap inverse() const { return InverseMap(*_graph);}
       
  1228 
       
  1229   };
       
  1230 
       
  1231 
       
  1232   /// \brief General invertable graph-map type.
       
  1233 
       
  1234   /// This type provides simple invertable graph-maps.
       
  1235   /// The InvertableMap wraps an arbitrary ReadWriteMap
       
  1236   /// and if a key is set to a new value then store it
       
  1237   /// in the inverse map.
       
  1238   ///
       
  1239   /// The values of the map can be accessed
       
  1240   /// with stl compatible forward iterator.
       
  1241   ///
       
  1242   /// \tparam _Graph The graph type.
       
  1243   /// \tparam _Item The item type of the graph.
       
  1244   /// \tparam _Value The value type of the map.
       
  1245   ///
       
  1246   /// \see IterableValueMap
       
  1247   template <typename _Graph, typename _Item, typename _Value>
       
  1248   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
       
  1249   private:
       
  1250 
       
  1251     typedef DefaultMap<_Graph, _Item, _Value> Map;
       
  1252     typedef _Graph Graph;
       
  1253 
       
  1254     typedef std::map<_Value, _Item> Container;
       
  1255     Container _inv_map;
       
  1256 
       
  1257   public:
       
  1258 
       
  1259     /// The key type of InvertableMap (Node, Arc, Edge).
       
  1260     typedef typename Map::Key Key;
       
  1261     /// The value type of the InvertableMap.
       
  1262     typedef typename Map::Value Value;
       
  1263 
       
  1264 
       
  1265 
       
  1266     /// \brief Constructor.
       
  1267     ///
       
  1268     /// Construct a new InvertableMap for the graph.
       
  1269     ///
       
  1270     explicit InvertableMap(const Graph& graph) : Map(graph) {}
       
  1271 
       
  1272     /// \brief Forward iterator for values.
       
  1273     ///
       
  1274     /// This iterator is an stl compatible forward
       
  1275     /// iterator on the values of the map. The values can
       
  1276     /// be accessed in the [beginValue, endValue) range.
       
  1277     ///
       
  1278     class ValueIterator
       
  1279       : public std::iterator<std::forward_iterator_tag, Value> {
       
  1280       friend class InvertableMap;
       
  1281     private:
       
  1282       ValueIterator(typename Container::const_iterator _it)
       
  1283         : it(_it) {}
       
  1284     public:
       
  1285 
       
  1286       ValueIterator() {}
       
  1287 
       
  1288       ValueIterator& operator++() { ++it; return *this; }
       
  1289       ValueIterator operator++(int) {
       
  1290         ValueIterator tmp(*this);
       
  1291         operator++();
       
  1292         return tmp;
       
  1293       }
       
  1294 
       
  1295       const Value& operator*() const { return it->first; }
       
  1296       const Value* operator->() const { return &(it->first); }
       
  1297 
       
  1298       bool operator==(ValueIterator jt) const { return it == jt.it; }
       
  1299       bool operator!=(ValueIterator jt) const { return it != jt.it; }
       
  1300 
       
  1301     private:
       
  1302       typename Container::const_iterator it;
       
  1303     };
       
  1304 
       
  1305     /// \brief Returns an iterator to the first value.
       
  1306     ///
       
  1307     /// Returns an stl compatible iterator to the
       
  1308     /// first value of the map. The values of the
       
  1309     /// map can be accessed in the [beginValue, endValue)
       
  1310     /// range.
       
  1311     ValueIterator beginValue() const {
       
  1312       return ValueIterator(_inv_map.begin());
       
  1313     }
       
  1314 
       
  1315     /// \brief Returns an iterator after the last value.
       
  1316     ///
       
  1317     /// Returns an stl compatible iterator after the
       
  1318     /// last value of the map. The values of the
       
  1319     /// map can be accessed in the [beginValue, endValue)
       
  1320     /// range.
       
  1321     ValueIterator endValue() const {
       
  1322       return ValueIterator(_inv_map.end());
       
  1323     }
       
  1324 
       
  1325     /// \brief The setter function of the map.
       
  1326     ///
       
  1327     /// Sets the mapped value.
       
  1328     void set(const Key& key, const Value& val) {
       
  1329       Value oldval = Map::operator[](key);
       
  1330       typename Container::iterator it = _inv_map.find(oldval);
       
  1331       if (it != _inv_map.end() && it->second == key) {
       
  1332         _inv_map.erase(it);
       
  1333       }
       
  1334       _inv_map.insert(make_pair(val, key));
       
  1335       Map::set(key, val);
       
  1336     }
       
  1337 
       
  1338     /// \brief The getter function of the map.
       
  1339     ///
       
  1340     /// It gives back the value associated with the key.
       
  1341     typename MapTraits<Map>::ConstReturnValue
       
  1342     operator[](const Key& key) const {
       
  1343       return Map::operator[](key);
       
  1344     }
       
  1345 
       
  1346     /// \brief Gives back the item by its value.
       
  1347     ///
       
  1348     /// Gives back the item by its value.
       
  1349     Key operator()(const Value& key) const {
       
  1350       typename Container::const_iterator it = _inv_map.find(key);
       
  1351       return it != _inv_map.end() ? it->second : INVALID;
       
  1352     }
       
  1353 
       
  1354   protected:
       
  1355 
       
  1356     /// \brief Erase the key from the map.
       
  1357     ///
       
  1358     /// Erase the key to the map. It is called by the
       
  1359     /// \c AlterationNotifier.
       
  1360     virtual void erase(const Key& key) {
       
  1361       Value val = Map::operator[](key);
       
  1362       typename Container::iterator it = _inv_map.find(val);
       
  1363       if (it != _inv_map.end() && it->second == key) {
       
  1364         _inv_map.erase(it);
       
  1365       }
       
  1366       Map::erase(key);
       
  1367     }
       
  1368 
       
  1369     /// \brief Erase more keys from the map.
       
  1370     ///
       
  1371     /// Erase more keys from the map. It is called by the
       
  1372     /// \c AlterationNotifier.
       
  1373     virtual void erase(const std::vector<Key>& keys) {
       
  1374       for (int i = 0; i < int(keys.size()); ++i) {
       
  1375         Value val = Map::operator[](keys[i]);
       
  1376         typename Container::iterator it = _inv_map.find(val);
       
  1377         if (it != _inv_map.end() && it->second == keys[i]) {
       
  1378           _inv_map.erase(it);
       
  1379         }
       
  1380       }
       
  1381       Map::erase(keys);
       
  1382     }
       
  1383 
       
  1384     /// \brief Clear the keys from the map and inverse map.
       
  1385     ///
       
  1386     /// Clear the keys from the map and inverse map. It is called by the
       
  1387     /// \c AlterationNotifier.
       
  1388     virtual void clear() {
       
  1389       _inv_map.clear();
       
  1390       Map::clear();
       
  1391     }
       
  1392 
       
  1393   public:
       
  1394 
       
  1395     /// \brief The inverse map type.
       
  1396     ///
       
  1397     /// The inverse of this map. The subscript operator of the map
       
  1398     /// gives back always the item what was last assigned to the value.
       
  1399     class InverseMap {
       
  1400     public:
       
  1401       /// \brief Constructor of the InverseMap.
       
  1402       ///
       
  1403       /// Constructor of the InverseMap.
       
  1404       explicit InverseMap(const InvertableMap& inverted)
       
  1405         : _inverted(inverted) {}
       
  1406 
       
  1407       /// The value type of the InverseMap.
       
  1408       typedef typename InvertableMap::Key Value;
       
  1409       /// The key type of the InverseMap.
       
  1410       typedef typename InvertableMap::Value Key;
       
  1411 
       
  1412       /// \brief Subscript operator.
       
  1413       ///
       
  1414       /// Subscript operator. It gives back always the item
       
  1415       /// what was last assigned to the value.
       
  1416       Value operator[](const Key& key) const {
       
  1417         return _inverted(key);
       
  1418       }
       
  1419 
       
  1420     private:
       
  1421       const InvertableMap& _inverted;
       
  1422     };
       
  1423 
       
  1424     /// \brief It gives back the just readable inverse map.
       
  1425     ///
       
  1426     /// It gives back the just readable inverse map.
       
  1427     InverseMap inverse() const {
       
  1428       return InverseMap(*this);
       
  1429     }
       
  1430 
       
  1431 
       
  1432 
       
  1433   };
       
  1434 
       
  1435   /// \brief Provides a mutable, continuous and unique descriptor for each
       
  1436   /// item in the graph.
       
  1437   ///
       
  1438   /// The DescriptorMap class provides a unique and continuous (but mutable)
       
  1439   /// descriptor (id) for each item of the same type (e.g. node) in the
       
  1440   /// graph. This id is <ul><li>\b unique: different items (nodes) get
       
  1441   /// different ids <li>\b continuous: the range of the ids is the set of
       
  1442   /// integers between 0 and \c n-1, where \c n is the number of the items of
       
  1443   /// this type (e.g. nodes) (so the id of a node can change if you delete an
       
  1444   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
       
  1445   /// with its member class \c InverseMap, or with the \c operator() member.
       
  1446   ///
       
  1447   /// \tparam _Graph The graph class the \c DescriptorMap belongs to.
       
  1448   /// \tparam _Item The Item is the Key of the Map. It may be Node, Arc or
       
  1449   /// Edge.
       
  1450   template <typename _Graph, typename _Item>
       
  1451   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
       
  1452 
       
  1453     typedef _Item Item;
       
  1454     typedef DefaultMap<_Graph, _Item, int> Map;
       
  1455 
       
  1456   public:
       
  1457     /// The graph class of DescriptorMap.
       
  1458     typedef _Graph Graph;
       
  1459 
       
  1460     /// The key type of DescriptorMap (Node, Arc, Edge).
       
  1461     typedef typename Map::Key Key;
       
  1462     /// The value type of DescriptorMap.
       
  1463     typedef typename Map::Value Value;
       
  1464 
       
  1465     /// \brief Constructor.
       
  1466     ///
       
  1467     /// Constructor for descriptor map.
       
  1468     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
       
  1469       Item it;
       
  1470       const typename Map::Notifier* nf = Map::notifier();
       
  1471       for (nf->first(it); it != INVALID; nf->next(it)) {
       
  1472         Map::set(it, _inv_map.size());
       
  1473         _inv_map.push_back(it);
       
  1474       }
       
  1475     }
       
  1476 
       
  1477   protected:
       
  1478 
       
  1479     /// \brief Add a new key to the map.
       
  1480     ///
       
  1481     /// Add a new key to the map. It is called by the
       
  1482     /// \c AlterationNotifier.
       
  1483     virtual void add(const Item& item) {
       
  1484       Map::add(item);
       
  1485       Map::set(item, _inv_map.size());
       
  1486       _inv_map.push_back(item);
       
  1487     }
       
  1488 
       
  1489     /// \brief Add more new keys to the map.
       
  1490     ///
       
  1491     /// Add more new keys to the map. It is called by the
       
  1492     /// \c AlterationNotifier.
       
  1493     virtual void add(const std::vector<Item>& items) {
       
  1494       Map::add(items);
       
  1495       for (int i = 0; i < int(items.size()); ++i) {
       
  1496         Map::set(items[i], _inv_map.size());
       
  1497         _inv_map.push_back(items[i]);
       
  1498       }
       
  1499     }
       
  1500 
       
  1501     /// \brief Erase the key from the map.
       
  1502     ///
       
  1503     /// Erase the key from the map. It is called by the
       
  1504     /// \c AlterationNotifier.
       
  1505     virtual void erase(const Item& item) {
       
  1506       Map::set(_inv_map.back(), Map::operator[](item));
       
  1507       _inv_map[Map::operator[](item)] = _inv_map.back();
       
  1508       _inv_map.pop_back();
       
  1509       Map::erase(item);
       
  1510     }
       
  1511 
       
  1512     /// \brief Erase more keys from the map.
       
  1513     ///
       
  1514     /// Erase more keys from the map. It is called by the
       
  1515     /// \c AlterationNotifier.
       
  1516     virtual void erase(const std::vector<Item>& items) {
       
  1517       for (int i = 0; i < int(items.size()); ++i) {
       
  1518         Map::set(_inv_map.back(), Map::operator[](items[i]));
       
  1519         _inv_map[Map::operator[](items[i])] = _inv_map.back();
       
  1520         _inv_map.pop_back();
       
  1521       }
       
  1522       Map::erase(items);
       
  1523     }
       
  1524 
       
  1525     /// \brief Build the unique map.
       
  1526     ///
       
  1527     /// Build the unique map. It is called by the
       
  1528     /// \c AlterationNotifier.
       
  1529     virtual void build() {
       
  1530       Map::build();
       
  1531       Item it;
       
  1532       const typename Map::Notifier* nf = Map::notifier();
       
  1533       for (nf->first(it); it != INVALID; nf->next(it)) {
       
  1534         Map::set(it, _inv_map.size());
       
  1535         _inv_map.push_back(it);
       
  1536       }
       
  1537     }
       
  1538 
       
  1539     /// \brief Clear the keys from the map.
       
  1540     ///
       
  1541     /// Clear the keys from the map. It is called by the
       
  1542     /// \c AlterationNotifier.
       
  1543     virtual void clear() {
       
  1544       _inv_map.clear();
       
  1545       Map::clear();
       
  1546     }
       
  1547 
       
  1548   public:
       
  1549 
       
  1550     /// \brief Returns the maximal value plus one.
       
  1551     ///
       
  1552     /// Returns the maximal value plus one in the map.
       
  1553     unsigned int size() const {
       
  1554       return _inv_map.size();
       
  1555     }
       
  1556 
       
  1557     /// \brief Swaps the position of the two items in the map.
       
  1558     ///
       
  1559     /// Swaps the position of the two items in the map.
       
  1560     void swap(const Item& p, const Item& q) {
       
  1561       int pi = Map::operator[](p);
       
  1562       int qi = Map::operator[](q);
       
  1563       Map::set(p, qi);
       
  1564       _inv_map[qi] = p;
       
  1565       Map::set(q, pi);
       
  1566       _inv_map[pi] = q;
       
  1567     }
       
  1568 
       
  1569     /// \brief Gives back the \e descriptor of the item.
       
  1570     ///
       
  1571     /// Gives back the mutable and unique \e descriptor of the map.
       
  1572     int operator[](const Item& item) const {
       
  1573       return Map::operator[](item);
       
  1574     }
       
  1575 
       
  1576     /// \brief Gives back the item by its descriptor.
       
  1577     ///
       
  1578     /// Gives back th item by its descriptor.
       
  1579     Item operator()(int id) const {
       
  1580       return _inv_map[id];
       
  1581     }
       
  1582 
       
  1583   private:
       
  1584 
       
  1585     typedef std::vector<Item> Container;
       
  1586     Container _inv_map;
       
  1587 
       
  1588   public:
       
  1589     /// \brief The inverse map type of DescriptorMap.
       
  1590     ///
       
  1591     /// The inverse map type of DescriptorMap.
       
  1592     class InverseMap {
       
  1593     public:
       
  1594       /// \brief Constructor of the InverseMap.
       
  1595       ///
       
  1596       /// Constructor of the InverseMap.
       
  1597       explicit InverseMap(const DescriptorMap& inverted)
       
  1598         : _inverted(inverted) {}
       
  1599 
       
  1600 
       
  1601       /// The value type of the InverseMap.
       
  1602       typedef typename DescriptorMap::Key Value;
       
  1603       /// The key type of the InverseMap.
       
  1604       typedef typename DescriptorMap::Value Key;
       
  1605 
       
  1606       /// \brief Subscript operator.
       
  1607       ///
       
  1608       /// Subscript operator. It gives back the item
       
  1609       /// that the descriptor belongs to currently.
       
  1610       Value operator[](const Key& key) const {
       
  1611         return _inverted(key);
       
  1612       }
       
  1613 
       
  1614       /// \brief Size of the map.
       
  1615       ///
       
  1616       /// Returns the size of the map.
       
  1617       unsigned int size() const {
       
  1618         return _inverted.size();
       
  1619       }
       
  1620 
       
  1621     private:
       
  1622       const DescriptorMap& _inverted;
       
  1623     };
       
  1624 
       
  1625     /// \brief Gives back the inverse of the map.
       
  1626     ///
       
  1627     /// Gives back the inverse of the map.
       
  1628     const InverseMap inverse() const {
       
  1629       return InverseMap(*this);
       
  1630     }
       
  1631   };
       
  1632 
       
  1633   /// \brief Returns the source of the given arc.
       
  1634   ///
       
  1635   /// The SourceMap gives back the source Node of the given arc.
       
  1636   /// \see TargetMap
       
  1637   template <typename Digraph>
       
  1638   class SourceMap {
       
  1639   public:
       
  1640 
       
  1641     typedef typename Digraph::Node Value;
       
  1642     typedef typename Digraph::Arc Key;
       
  1643 
       
  1644     /// \brief Constructor
       
  1645     ///
       
  1646     /// Constructor
       
  1647     /// \param _digraph The digraph that the map belongs to.
       
  1648     explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
       
  1649 
       
  1650     /// \brief The subscript operator.
       
  1651     ///
       
  1652     /// The subscript operator.
       
  1653     /// \param arc The arc
       
  1654     /// \return The source of the arc
       
  1655     Value operator[](const Key& arc) const {
       
  1656       return _digraph.source(arc);
       
  1657     }
       
  1658 
       
  1659   private:
       
  1660     const Digraph& _digraph;
       
  1661   };
       
  1662 
       
  1663   /// \brief Returns a \ref SourceMap class.
       
  1664   ///
       
  1665   /// This function just returns an \ref SourceMap class.
       
  1666   /// \relates SourceMap
       
  1667   template <typename Digraph>
       
  1668   inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
       
  1669     return SourceMap<Digraph>(digraph);
       
  1670   }
       
  1671 
       
  1672   /// \brief Returns the target of the given arc.
       
  1673   ///
       
  1674   /// The TargetMap gives back the target Node of the given arc.
       
  1675   /// \see SourceMap
       
  1676   template <typename Digraph>
       
  1677   class TargetMap {
       
  1678   public:
       
  1679 
       
  1680     typedef typename Digraph::Node Value;
       
  1681     typedef typename Digraph::Arc Key;
       
  1682 
       
  1683     /// \brief Constructor
       
  1684     ///
       
  1685     /// Constructor
       
  1686     /// \param _digraph The digraph that the map belongs to.
       
  1687     explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
       
  1688 
       
  1689     /// \brief The subscript operator.
       
  1690     ///
       
  1691     /// The subscript operator.
       
  1692     /// \param e The arc
       
  1693     /// \return The target of the arc
       
  1694     Value operator[](const Key& e) const {
       
  1695       return _digraph.target(e);
       
  1696     }
       
  1697 
       
  1698   private:
       
  1699     const Digraph& _digraph;
       
  1700   };
       
  1701 
       
  1702   /// \brief Returns a \ref TargetMap class.
       
  1703   ///
       
  1704   /// This function just returns a \ref TargetMap class.
       
  1705   /// \relates TargetMap
       
  1706   template <typename Digraph>
       
  1707   inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
       
  1708     return TargetMap<Digraph>(digraph);
       
  1709   }
       
  1710 
       
  1711   /// \brief Returns the "forward" directed arc view of an edge.
       
  1712   ///
       
  1713   /// Returns the "forward" directed arc view of an edge.
       
  1714   /// \see BackwardMap
       
  1715   template <typename Graph>
       
  1716   class ForwardMap {
       
  1717   public:
       
  1718 
       
  1719     typedef typename Graph::Arc Value;
       
  1720     typedef typename Graph::Edge Key;
       
  1721 
       
  1722     /// \brief Constructor
       
  1723     ///
       
  1724     /// Constructor
       
  1725     /// \param _graph The graph that the map belongs to.
       
  1726     explicit ForwardMap(const Graph& graph) : _graph(graph) {}
       
  1727 
       
  1728     /// \brief The subscript operator.
       
  1729     ///
       
  1730     /// The subscript operator.
       
  1731     /// \param key An edge
       
  1732     /// \return The "forward" directed arc view of edge
       
  1733     Value operator[](const Key& key) const {
       
  1734       return _graph.direct(key, true);
       
  1735     }
       
  1736 
       
  1737   private:
       
  1738     const Graph& _graph;
       
  1739   };
       
  1740 
       
  1741   /// \brief Returns a \ref ForwardMap class.
       
  1742   ///
       
  1743   /// This function just returns an \ref ForwardMap class.
       
  1744   /// \relates ForwardMap
       
  1745   template <typename Graph>
       
  1746   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
       
  1747     return ForwardMap<Graph>(graph);
       
  1748   }
       
  1749 
       
  1750   /// \brief Returns the "backward" directed arc view of an edge.
       
  1751   ///
       
  1752   /// Returns the "backward" directed arc view of an edge.
       
  1753   /// \see ForwardMap
       
  1754   template <typename Graph>
       
  1755   class BackwardMap {
       
  1756   public:
       
  1757 
       
  1758     typedef typename Graph::Arc Value;
       
  1759     typedef typename Graph::Edge Key;
       
  1760 
       
  1761     /// \brief Constructor
       
  1762     ///
       
  1763     /// Constructor
       
  1764     /// \param _graph The graph that the map belongs to.
       
  1765     explicit BackwardMap(const Graph& graph) : _graph(graph) {}
       
  1766 
       
  1767     /// \brief The subscript operator.
       
  1768     ///
       
  1769     /// The subscript operator.
       
  1770     /// \param key An edge
       
  1771     /// \return The "backward" directed arc view of edge
       
  1772     Value operator[](const Key& key) const {
       
  1773       return _graph.direct(key, false);
       
  1774     }
       
  1775 
       
  1776   private:
       
  1777     const Graph& _graph;
       
  1778   };
       
  1779 
       
  1780   /// \brief Returns a \ref BackwardMap class
       
  1781 
       
  1782   /// This function just returns a \ref BackwardMap class.
       
  1783   /// \relates BackwardMap
       
  1784   template <typename Graph>
       
  1785   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
       
  1786     return BackwardMap<Graph>(graph);
       
  1787   }
       
  1788 
       
  1789   /// \brief Potential difference map
       
  1790   ///
       
  1791   /// If there is an potential map on the nodes then we
       
  1792   /// can get an arc map as we get the substraction of the
       
  1793   /// values of the target and source.
       
  1794   template <typename Digraph, typename NodeMap>
       
  1795   class PotentialDifferenceMap {
       
  1796   public:
       
  1797     typedef typename Digraph::Arc Key;
       
  1798     typedef typename NodeMap::Value Value;
       
  1799 
       
  1800     /// \brief Constructor
       
  1801     ///
       
  1802     /// Contructor of the map
       
  1803     explicit PotentialDifferenceMap(const Digraph& digraph,
       
  1804                                     const NodeMap& potential)
       
  1805       : _digraph(digraph), _potential(potential) {}
       
  1806 
       
  1807     /// \brief Const subscription operator
       
  1808     ///
       
  1809     /// Const subscription operator
       
  1810     Value operator[](const Key& arc) const {
       
  1811       return _potential[_digraph.target(arc)] -
       
  1812         _potential[_digraph.source(arc)];
       
  1813     }
       
  1814 
       
  1815   private:
       
  1816     const Digraph& _digraph;
       
  1817     const NodeMap& _potential;
       
  1818   };
       
  1819 
       
  1820   /// \brief Returns a PotentialDifferenceMap.
       
  1821   ///
       
  1822   /// This function just returns a PotentialDifferenceMap.
       
  1823   /// \relates PotentialDifferenceMap
       
  1824   template <typename Digraph, typename NodeMap>
       
  1825   PotentialDifferenceMap<Digraph, NodeMap>
       
  1826   potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
       
  1827     return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
       
  1828   }
       
  1829 
       
  1830   /// \brief Map of the node in-degrees.
       
  1831   ///
       
  1832   /// This map returns the in-degree of a node. Once it is constructed,
       
  1833   /// the degrees are stored in a standard NodeMap, so each query is done
       
  1834   /// in constant time. On the other hand, the values are updated automatically
       
  1835   /// whenever the digraph changes.
       
  1836   ///
       
  1837   /// \warning Besides addNode() and addArc(), a digraph structure may provide
       
  1838   /// alternative ways to modify the digraph. The correct behavior of InDegMap
       
  1839   /// is not guarantied if these additional features are used. For example
       
  1840   /// the functions \ref ListDigraph::changeSource() "changeSource()",
       
  1841   /// \ref ListDigraph::changeTarget() "changeTarget()" and
       
  1842   /// \ref ListDigraph::reverseArc() "reverseArc()"
       
  1843   /// of \ref ListDigraph will \e not update the degree values correctly.
       
  1844   ///
       
  1845   /// \sa OutDegMap
       
  1846 
       
  1847   template <typename _Digraph>
       
  1848   class InDegMap
       
  1849     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
       
  1850       ::ItemNotifier::ObserverBase {
       
  1851 
       
  1852   public:
       
  1853 
       
  1854     typedef _Digraph Digraph;
       
  1855     typedef int Value;
       
  1856     typedef typename Digraph::Node Key;
       
  1857 
       
  1858     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
       
  1859     ::ItemNotifier::ObserverBase Parent;
       
  1860 
       
  1861   private:
       
  1862 
       
  1863     class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
       
  1864     public:
       
  1865 
       
  1866       typedef DefaultMap<Digraph, Key, int> Parent;
       
  1867 
       
  1868       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
       
  1869 
       
  1870       virtual void add(const Key& key) {
       
  1871         Parent::add(key);
       
  1872         Parent::set(key, 0);
       
  1873       }
       
  1874 
       
  1875       virtual void add(const std::vector<Key>& keys) {
       
  1876         Parent::add(keys);
       
  1877         for (int i = 0; i < int(keys.size()); ++i) {
       
  1878           Parent::set(keys[i], 0);
       
  1879         }
       
  1880       }
       
  1881 
       
  1882       virtual void build() {
       
  1883         Parent::build();
       
  1884         Key it;
       
  1885         typename Parent::Notifier* nf = Parent::notifier();
       
  1886         for (nf->first(it); it != INVALID; nf->next(it)) {
       
  1887           Parent::set(it, 0);
       
  1888         }
       
  1889       }
       
  1890     };
       
  1891 
       
  1892   public:
       
  1893 
       
  1894     /// \brief Constructor.
       
  1895     ///
       
  1896     /// Constructor for creating in-degree map.
       
  1897     explicit InDegMap(const Digraph& digraph)
       
  1898       : _digraph(digraph), _deg(digraph) {
       
  1899       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
       
  1900 
       
  1901       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
       
  1902         _deg[it] = countInArcs(_digraph, it);
       
  1903       }
       
  1904     }
       
  1905 
       
  1906     /// Gives back the in-degree of a Node.
       
  1907     int operator[](const Key& key) const {
       
  1908       return _deg[key];
       
  1909     }
       
  1910 
       
  1911   protected:
       
  1912 
       
  1913     typedef typename Digraph::Arc Arc;
       
  1914 
       
  1915     virtual void add(const Arc& arc) {
       
  1916       ++_deg[_digraph.target(arc)];
       
  1917     }
       
  1918 
       
  1919     virtual void add(const std::vector<Arc>& arcs) {
       
  1920       for (int i = 0; i < int(arcs.size()); ++i) {
       
  1921         ++_deg[_digraph.target(arcs[i])];
       
  1922       }
       
  1923     }
       
  1924 
       
  1925     virtual void erase(const Arc& arc) {
       
  1926       --_deg[_digraph.target(arc)];
       
  1927     }
       
  1928 
       
  1929     virtual void erase(const std::vector<Arc>& arcs) {
       
  1930       for (int i = 0; i < int(arcs.size()); ++i) {
       
  1931         --_deg[_digraph.target(arcs[i])];
       
  1932       }
       
  1933     }
       
  1934 
       
  1935     virtual void build() {
       
  1936       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
       
  1937         _deg[it] = countInArcs(_digraph, it);
       
  1938       }
       
  1939     }
       
  1940 
       
  1941     virtual void clear() {
       
  1942       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
       
  1943         _deg[it] = 0;
       
  1944       }
       
  1945     }
       
  1946   private:
       
  1947 
       
  1948     const Digraph& _digraph;
       
  1949     AutoNodeMap _deg;
       
  1950   };
       
  1951 
       
  1952   /// \brief Map of the node out-degrees.
       
  1953   ///
       
  1954   /// This map returns the out-degree of a node. Once it is constructed,
       
  1955   /// the degrees are stored in a standard NodeMap, so each query is done
       
  1956   /// in constant time. On the other hand, the values are updated automatically
       
  1957   /// whenever the digraph changes.
       
  1958   ///
       
  1959   /// \warning Besides addNode() and addArc(), a digraph structure may provide
       
  1960   /// alternative ways to modify the digraph. The correct behavior of OutDegMap
       
  1961   /// is not guarantied if these additional features are used. For example
       
  1962   /// the functions \ref ListDigraph::changeSource() "changeSource()",
       
  1963   /// \ref ListDigraph::changeTarget() "changeTarget()" and
       
  1964   /// \ref ListDigraph::reverseArc() "reverseArc()"
       
  1965   /// of \ref ListDigraph will \e not update the degree values correctly.
       
  1966   ///
       
  1967   /// \sa InDegMap
       
  1968 
       
  1969   template <typename _Digraph>
       
  1970   class OutDegMap
       
  1971     : protected ItemSetTraits<_Digraph, typename _Digraph::Arc>
       
  1972       ::ItemNotifier::ObserverBase {
       
  1973 
       
  1974   public:
       
  1975 
       
  1976     typedef _Digraph Digraph;
       
  1977     typedef int Value;
       
  1978     typedef typename Digraph::Node Key;
       
  1979 
       
  1980     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
       
  1981     ::ItemNotifier::ObserverBase Parent;
       
  1982 
       
  1983   private:
       
  1984 
       
  1985     class AutoNodeMap : public DefaultMap<Digraph, Key, int> {
       
  1986     public:
       
  1987 
       
  1988       typedef DefaultMap<Digraph, Key, int> Parent;
       
  1989 
       
  1990       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
       
  1991 
       
  1992       virtual void add(const Key& key) {
       
  1993         Parent::add(key);
       
  1994         Parent::set(key, 0);
       
  1995       }
       
  1996       virtual void add(const std::vector<Key>& keys) {
       
  1997         Parent::add(keys);
       
  1998         for (int i = 0; i < int(keys.size()); ++i) {
       
  1999           Parent::set(keys[i], 0);
       
  2000         }
       
  2001       }
       
  2002       virtual void build() {
       
  2003         Parent::build();
       
  2004         Key it;
       
  2005         typename Parent::Notifier* nf = Parent::notifier();
       
  2006         for (nf->first(it); it != INVALID; nf->next(it)) {
       
  2007           Parent::set(it, 0);
       
  2008         }
       
  2009       }
       
  2010     };
       
  2011 
       
  2012   public:
       
  2013 
       
  2014     /// \brief Constructor.
       
  2015     ///
       
  2016     /// Constructor for creating out-degree map.
       
  2017     explicit OutDegMap(const Digraph& digraph)
       
  2018       : _digraph(digraph), _deg(digraph) {
       
  2019       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
       
  2020 
       
  2021       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
       
  2022         _deg[it] = countOutArcs(_digraph, it);
       
  2023       }
       
  2024     }
       
  2025 
       
  2026     /// Gives back the out-degree of a Node.
       
  2027     int operator[](const Key& key) const {
       
  2028       return _deg[key];
       
  2029     }
       
  2030 
       
  2031   protected:
       
  2032 
       
  2033     typedef typename Digraph::Arc Arc;
       
  2034 
       
  2035     virtual void add(const Arc& arc) {
       
  2036       ++_deg[_digraph.source(arc)];
       
  2037     }
       
  2038 
       
  2039     virtual void add(const std::vector<Arc>& arcs) {
       
  2040       for (int i = 0; i < int(arcs.size()); ++i) {
       
  2041         ++_deg[_digraph.source(arcs[i])];
       
  2042       }
       
  2043     }
       
  2044 
       
  2045     virtual void erase(const Arc& arc) {
       
  2046       --_deg[_digraph.source(arc)];
       
  2047     }
       
  2048 
       
  2049     virtual void erase(const std::vector<Arc>& arcs) {
       
  2050       for (int i = 0; i < int(arcs.size()); ++i) {
       
  2051         --_deg[_digraph.source(arcs[i])];
       
  2052       }
       
  2053     }
       
  2054 
       
  2055     virtual void build() {
       
  2056       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
       
  2057         _deg[it] = countOutArcs(_digraph, it);
       
  2058       }
       
  2059     }
       
  2060 
       
  2061     virtual void clear() {
       
  2062       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
       
  2063         _deg[it] = 0;
       
  2064       }
       
  2065     }
       
  2066   private:
       
  2067 
       
  2068     const Digraph& _digraph;
       
  2069     AutoNodeMap _deg;
       
  2070   };
       
  2071 
       
  2072 
       
  2073   ///Dynamic arc look up between given endpoints.
       
  2074 
       
  2075   ///\ingroup gutils
       
  2076   ///Using this class, you can find an arc in a digraph from a given
       
  2077   ///source to a given target in amortized time <em>O(log d)</em>,
       
  2078   ///where <em>d</em> is the out-degree of the source node.
       
  2079   ///
       
  2080   ///It is possible to find \e all parallel arcs between two nodes with
       
  2081   ///the \c findFirst() and \c findNext() members.
       
  2082   ///
       
  2083   ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
       
  2084   ///digraph is not changed so frequently.
       
  2085   ///
       
  2086   ///This class uses a self-adjusting binary search tree, Sleator's
       
  2087   ///and Tarjan's Splay tree for guarantee the logarithmic amortized
       
  2088   ///time bound for arc lookups. This class also guarantees the
       
  2089   ///optimal time bound in a constant factor for any distribution of
       
  2090   ///queries.
       
  2091   ///
       
  2092   ///\tparam G The type of the underlying digraph.
       
  2093   ///
       
  2094   ///\sa ArcLookUp
       
  2095   ///\sa AllArcLookUp
       
  2096   template<class G>
       
  2097   class DynArcLookUp
       
  2098     : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
       
  2099   {
       
  2100   public:
       
  2101     typedef typename ItemSetTraits<G, typename G::Arc>
       
  2102     ::ItemNotifier::ObserverBase Parent;
       
  2103 
       
  2104     TEMPLATE_DIGRAPH_TYPEDEFS(G);
       
  2105     typedef G Digraph;
       
  2106 
       
  2107   protected:
       
  2108 
       
  2109     class AutoNodeMap : public DefaultMap<G, Node, Arc> {
       
  2110     public:
       
  2111 
       
  2112       typedef DefaultMap<G, Node, Arc> Parent;
       
  2113 
       
  2114       AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
       
  2115 
       
  2116       virtual void add(const Node& node) {
       
  2117         Parent::add(node);
       
  2118         Parent::set(node, INVALID);
       
  2119       }
       
  2120 
       
  2121       virtual void add(const std::vector<Node>& nodes) {
       
  2122         Parent::add(nodes);
       
  2123         for (int i = 0; i < int(nodes.size()); ++i) {
       
  2124           Parent::set(nodes[i], INVALID);
       
  2125         }
       
  2126       }
       
  2127 
       
  2128       virtual void build() {
       
  2129         Parent::build();
       
  2130         Node it;
       
  2131         typename Parent::Notifier* nf = Parent::notifier();
       
  2132         for (nf->first(it); it != INVALID; nf->next(it)) {
       
  2133           Parent::set(it, INVALID);
       
  2134         }
       
  2135       }
       
  2136     };
       
  2137 
       
  2138     const Digraph &_g;
       
  2139     AutoNodeMap _head;
       
  2140     typename Digraph::template ArcMap<Arc> _parent;
       
  2141     typename Digraph::template ArcMap<Arc> _left;
       
  2142     typename Digraph::template ArcMap<Arc> _right;
       
  2143 
       
  2144     class ArcLess {
       
  2145       const Digraph &g;
       
  2146     public:
       
  2147       ArcLess(const Digraph &_g) : g(_g) {}
       
  2148       bool operator()(Arc a,Arc b) const
       
  2149       {
       
  2150         return g.target(a)<g.target(b);
       
  2151       }
       
  2152     };
       
  2153 
       
  2154   public:
       
  2155 
       
  2156     ///Constructor
       
  2157 
       
  2158     ///Constructor.
       
  2159     ///
       
  2160     ///It builds up the search database.
       
  2161     DynArcLookUp(const Digraph &g)
       
  2162       : _g(g),_head(g),_parent(g),_left(g),_right(g)
       
  2163     {
       
  2164       Parent::attach(_g.notifier(typename Digraph::Arc()));
       
  2165       refresh();
       
  2166     }
       
  2167 
       
  2168   protected:
       
  2169 
       
  2170     virtual void add(const Arc& arc) {
       
  2171       insert(arc);
       
  2172     }
       
  2173 
       
  2174     virtual void add(const std::vector<Arc>& arcs) {
       
  2175       for (int i = 0; i < int(arcs.size()); ++i) {
       
  2176         insert(arcs[i]);
       
  2177       }
       
  2178     }
       
  2179 
       
  2180     virtual void erase(const Arc& arc) {
       
  2181       remove(arc);
       
  2182     }
       
  2183 
       
  2184     virtual void erase(const std::vector<Arc>& arcs) {
       
  2185       for (int i = 0; i < int(arcs.size()); ++i) {
       
  2186         remove(arcs[i]);
       
  2187       }
       
  2188     }
       
  2189 
       
  2190     virtual void build() {
       
  2191       refresh();
       
  2192     }
       
  2193 
       
  2194     virtual void clear() {
       
  2195       for(NodeIt n(_g);n!=INVALID;++n) {
       
  2196         _head.set(n, INVALID);
       
  2197       }
       
  2198     }
       
  2199 
       
  2200     void insert(Arc arc) {
       
  2201       Node s = _g.source(arc);
       
  2202       Node t = _g.target(arc);
       
  2203       _left.set(arc, INVALID);
       
  2204       _right.set(arc, INVALID);
       
  2205 
       
  2206       Arc e = _head[s];
       
  2207       if (e == INVALID) {
       
  2208         _head.set(s, arc);
       
  2209         _parent.set(arc, INVALID);
       
  2210         return;
       
  2211       }
       
  2212       while (true) {
       
  2213         if (t < _g.target(e)) {
       
  2214           if (_left[e] == INVALID) {
       
  2215             _left.set(e, arc);
       
  2216             _parent.set(arc, e);
       
  2217             splay(arc);
       
  2218             return;
       
  2219           } else {
       
  2220             e = _left[e];
       
  2221           }
       
  2222         } else {
       
  2223           if (_right[e] == INVALID) {
       
  2224             _right.set(e, arc);
       
  2225             _parent.set(arc, e);
       
  2226             splay(arc);
       
  2227             return;
       
  2228           } else {
       
  2229             e = _right[e];
       
  2230           }
       
  2231         }
       
  2232       }
       
  2233     }
       
  2234 
       
  2235     void remove(Arc arc) {
       
  2236       if (_left[arc] == INVALID) {
       
  2237         if (_right[arc] != INVALID) {
       
  2238           _parent.set(_right[arc], _parent[arc]);
       
  2239         }
       
  2240         if (_parent[arc] != INVALID) {
       
  2241           if (_left[_parent[arc]] == arc) {
       
  2242             _left.set(_parent[arc], _right[arc]);
       
  2243           } else {
       
  2244             _right.set(_parent[arc], _right[arc]);
       
  2245           }
       
  2246         } else {
       
  2247           _head.set(_g.source(arc), _right[arc]);
       
  2248         }
       
  2249       } else if (_right[arc] == INVALID) {
       
  2250         _parent.set(_left[arc], _parent[arc]);
       
  2251         if (_parent[arc] != INVALID) {
       
  2252           if (_left[_parent[arc]] == arc) {
       
  2253             _left.set(_parent[arc], _left[arc]);
       
  2254           } else {
       
  2255             _right.set(_parent[arc], _left[arc]);
       
  2256           }
       
  2257         } else {
       
  2258           _head.set(_g.source(arc), _left[arc]);
       
  2259         }
       
  2260       } else {
       
  2261         Arc e = _left[arc];
       
  2262         if (_right[e] != INVALID) {
       
  2263           e = _right[e];
       
  2264           while (_right[e] != INVALID) {
       
  2265             e = _right[e];
       
  2266           }
       
  2267           Arc s = _parent[e];
       
  2268           _right.set(_parent[e], _left[e]);
       
  2269           if (_left[e] != INVALID) {
       
  2270             _parent.set(_left[e], _parent[e]);
       
  2271           }
       
  2272 
       
  2273           _left.set(e, _left[arc]);
       
  2274           _parent.set(_left[arc], e);
       
  2275           _right.set(e, _right[arc]);
       
  2276           _parent.set(_right[arc], e);
       
  2277 
       
  2278           _parent.set(e, _parent[arc]);
       
  2279           if (_parent[arc] != INVALID) {
       
  2280             if (_left[_parent[arc]] == arc) {
       
  2281               _left.set(_parent[arc], e);
       
  2282             } else {
       
  2283               _right.set(_parent[arc], e);
       
  2284             }
       
  2285           }
       
  2286           splay(s);
       
  2287         } else {
       
  2288           _right.set(e, _right[arc]);
       
  2289           _parent.set(_right[arc], e);
       
  2290 
       
  2291           if (_parent[arc] != INVALID) {
       
  2292             if (_left[_parent[arc]] == arc) {
       
  2293               _left.set(_parent[arc], e);
       
  2294             } else {
       
  2295               _right.set(_parent[arc], e);
       
  2296             }
       
  2297           } else {
       
  2298             _head.set(_g.source(arc), e);
       
  2299           }
       
  2300         }
       
  2301       }
       
  2302     }
       
  2303 
       
  2304     Arc refreshRec(std::vector<Arc> &v,int a,int b)
       
  2305     {
       
  2306       int m=(a+b)/2;
       
  2307       Arc me=v[m];
       
  2308       if (a < m) {
       
  2309         Arc left = refreshRec(v,a,m-1);
       
  2310         _left.set(me, left);
       
  2311         _parent.set(left, me);
       
  2312       } else {
       
  2313         _left.set(me, INVALID);
       
  2314       }
       
  2315       if (m < b) {
       
  2316         Arc right = refreshRec(v,m+1,b);
       
  2317         _right.set(me, right);
       
  2318         _parent.set(right, me);
       
  2319       } else {
       
  2320         _right.set(me, INVALID);
       
  2321       }
       
  2322       return me;
       
  2323     }
       
  2324 
       
  2325     void refresh() {
       
  2326       for(NodeIt n(_g);n!=INVALID;++n) {
       
  2327         std::vector<Arc> v;
       
  2328         for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
       
  2329         if(v.size()) {
       
  2330           std::sort(v.begin(),v.end(),ArcLess(_g));
       
  2331           Arc head = refreshRec(v,0,v.size()-1);
       
  2332           _head.set(n, head);
       
  2333           _parent.set(head, INVALID);
       
  2334         }
       
  2335         else _head.set(n, INVALID);
       
  2336       }
       
  2337     }
       
  2338 
       
  2339     void zig(Arc v) {
       
  2340       Arc w = _parent[v];
       
  2341       _parent.set(v, _parent[w]);
       
  2342       _parent.set(w, v);
       
  2343       _left.set(w, _right[v]);
       
  2344       _right.set(v, w);
       
  2345       if (_parent[v] != INVALID) {
       
  2346         if (_right[_parent[v]] == w) {
       
  2347           _right.set(_parent[v], v);
       
  2348         } else {
       
  2349           _left.set(_parent[v], v);
       
  2350         }
       
  2351       }
       
  2352       if (_left[w] != INVALID){
       
  2353         _parent.set(_left[w], w);
       
  2354       }
       
  2355     }
       
  2356 
       
  2357     void zag(Arc v) {
       
  2358       Arc w = _parent[v];
       
  2359       _parent.set(v, _parent[w]);
       
  2360       _parent.set(w, v);
       
  2361       _right.set(w, _left[v]);
       
  2362       _left.set(v, w);
       
  2363       if (_parent[v] != INVALID){
       
  2364         if (_left[_parent[v]] == w) {
       
  2365           _left.set(_parent[v], v);
       
  2366         } else {
       
  2367           _right.set(_parent[v], v);
       
  2368         }
       
  2369       }
       
  2370       if (_right[w] != INVALID){
       
  2371         _parent.set(_right[w], w);
       
  2372       }
       
  2373     }
       
  2374 
       
  2375     void splay(Arc v) {
       
  2376       while (_parent[v] != INVALID) {
       
  2377         if (v == _left[_parent[v]]) {
       
  2378           if (_parent[_parent[v]] == INVALID) {
       
  2379             zig(v);
       
  2380           } else {
       
  2381             if (_parent[v] == _left[_parent[_parent[v]]]) {
       
  2382               zig(_parent[v]);
       
  2383               zig(v);
       
  2384             } else {
       
  2385               zig(v);
       
  2386               zag(v);
       
  2387             }
       
  2388           }
       
  2389         } else {
       
  2390           if (_parent[_parent[v]] == INVALID) {
       
  2391             zag(v);
       
  2392           } else {
       
  2393             if (_parent[v] == _left[_parent[_parent[v]]]) {
       
  2394               zag(v);
       
  2395               zig(v);
       
  2396             } else {
       
  2397               zag(_parent[v]);
       
  2398               zag(v);
       
  2399             }
       
  2400           }
       
  2401         }
       
  2402       }
       
  2403       _head[_g.source(v)] = v;
       
  2404     }
       
  2405 
       
  2406 
       
  2407   public:
       
  2408 
       
  2409     ///Find an arc between two nodes.
       
  2410 
       
  2411     ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
       
  2412     /// <em>d</em> is the number of outgoing arcs of \c s.
       
  2413     ///\param s The source node
       
  2414     ///\param t The target node
       
  2415     ///\return An arc from \c s to \c t if there exists,
       
  2416     ///\ref INVALID otherwise.
       
  2417     Arc operator()(Node s, Node t) const
       
  2418     {
       
  2419       Arc a = _head[s];
       
  2420       while (true) {
       
  2421         if (_g.target(a) == t) {
       
  2422           const_cast<DynArcLookUp&>(*this).splay(a);
       
  2423           return a;
       
  2424         } else if (t < _g.target(a)) {
       
  2425           if (_left[a] == INVALID) {
       
  2426             const_cast<DynArcLookUp&>(*this).splay(a);
       
  2427             return INVALID;
       
  2428           } else {
       
  2429             a = _left[a];
       
  2430           }
       
  2431         } else  {
       
  2432           if (_right[a] == INVALID) {
       
  2433             const_cast<DynArcLookUp&>(*this).splay(a);
       
  2434             return INVALID;
       
  2435           } else {
       
  2436             a = _right[a];
       
  2437           }
       
  2438         }
       
  2439       }
       
  2440     }
       
  2441 
       
  2442     ///Find the first arc between two nodes.
       
  2443 
       
  2444     ///Find the first arc between two nodes in time
       
  2445     /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
       
  2446     /// outgoing arcs of \c s.
       
  2447     ///\param s The source node
       
  2448     ///\param t The target node
       
  2449     ///\return An arc from \c s to \c t if there exists, \ref INVALID
       
  2450     /// otherwise.
       
  2451     Arc findFirst(Node s, Node t) const
       
  2452     {
       
  2453       Arc a = _head[s];
       
  2454       Arc r = INVALID;
       
  2455       while (true) {
       
  2456         if (_g.target(a) < t) {
       
  2457           if (_right[a] == INVALID) {
       
  2458             const_cast<DynArcLookUp&>(*this).splay(a);
       
  2459             return r;
       
  2460           } else {
       
  2461             a = _right[a];
       
  2462           }
       
  2463         } else {
       
  2464           if (_g.target(a) == t) {
       
  2465             r = a;
       
  2466           }
       
  2467           if (_left[a] == INVALID) {
       
  2468             const_cast<DynArcLookUp&>(*this).splay(a);
       
  2469             return r;
       
  2470           } else {
       
  2471             a = _left[a];
       
  2472           }
       
  2473         }
       
  2474       }
       
  2475     }
       
  2476 
       
  2477     ///Find the next arc between two nodes.
       
  2478 
       
  2479     ///Find the next arc between two nodes in time
       
  2480     /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
       
  2481     /// outgoing arcs of \c s.
       
  2482     ///\param s The source node
       
  2483     ///\param t The target node
       
  2484     ///\return An arc from \c s to \c t if there exists, \ref INVALID
       
  2485     /// otherwise.
       
  2486 
       
  2487     ///\note If \c e is not the result of the previous \c findFirst()
       
  2488     ///operation then the amorized time bound can not be guaranteed.
       
  2489 #ifdef DOXYGEN
       
  2490     Arc findNext(Node s, Node t, Arc a) const
       
  2491 #else
       
  2492     Arc findNext(Node, Node t, Arc a) const
       
  2493 #endif
       
  2494     {
       
  2495       if (_right[a] != INVALID) {
       
  2496         a = _right[a];
       
  2497         while (_left[a] != INVALID) {
       
  2498           a = _left[a];
       
  2499         }
       
  2500         const_cast<DynArcLookUp&>(*this).splay(a);
       
  2501       } else {
       
  2502         while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
       
  2503           a = _parent[a];
       
  2504         }
       
  2505         if (_parent[a] == INVALID) {
       
  2506           return INVALID;
       
  2507         } else {
       
  2508           a = _parent[a];
       
  2509           const_cast<DynArcLookUp&>(*this).splay(a);
       
  2510         }
       
  2511       }
       
  2512       if (_g.target(a) == t) return a;
       
  2513       else return INVALID;
       
  2514     }
       
  2515 
       
  2516   };
       
  2517 
       
  2518   ///Fast arc look up between given endpoints.
       
  2519 
       
  2520   ///\ingroup gutils
       
  2521   ///Using this class, you can find an arc in a digraph from a given
       
  2522   ///source to a given target in time <em>O(log d)</em>,
       
  2523   ///where <em>d</em> is the out-degree of the source node.
       
  2524   ///
       
  2525   ///It is not possible to find \e all parallel arcs between two nodes.
       
  2526   ///Use \ref AllArcLookUp for this purpose.
       
  2527   ///
       
  2528   ///\warning This class is static, so you should refresh() (or at least
       
  2529   ///refresh(Node)) this data structure
       
  2530   ///whenever the digraph changes. This is a time consuming (superlinearly
       
  2531   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
       
  2532   ///
       
  2533   ///\tparam G The type of the underlying digraph.
       
  2534   ///
       
  2535   ///\sa DynArcLookUp
       
  2536   ///\sa AllArcLookUp
       
  2537   template<class G>
       
  2538   class ArcLookUp
       
  2539   {
       
  2540   public:
       
  2541     TEMPLATE_DIGRAPH_TYPEDEFS(G);
       
  2542     typedef G Digraph;
       
  2543 
       
  2544   protected:
       
  2545     const Digraph &_g;
       
  2546     typename Digraph::template NodeMap<Arc> _head;
       
  2547     typename Digraph::template ArcMap<Arc> _left;
       
  2548     typename Digraph::template ArcMap<Arc> _right;
       
  2549 
       
  2550     class ArcLess {
       
  2551       const Digraph &g;
       
  2552     public:
       
  2553       ArcLess(const Digraph &_g) : g(_g) {}
       
  2554       bool operator()(Arc a,Arc b) const
       
  2555       {
       
  2556         return g.target(a)<g.target(b);
       
  2557       }
       
  2558     };
       
  2559 
       
  2560   public:
       
  2561 
       
  2562     ///Constructor
       
  2563 
       
  2564     ///Constructor.
       
  2565     ///
       
  2566     ///It builds up the search database, which remains valid until the digraph
       
  2567     ///changes.
       
  2568     ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
       
  2569 
       
  2570   private:
       
  2571     Arc refreshRec(std::vector<Arc> &v,int a,int b)
       
  2572     {
       
  2573       int m=(a+b)/2;
       
  2574       Arc me=v[m];
       
  2575       _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
       
  2576       _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
       
  2577       return me;
       
  2578     }
       
  2579   public:
       
  2580     ///Refresh the data structure at a node.
       
  2581 
       
  2582     ///Build up the search database of node \c n.
       
  2583     ///
       
  2584     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
       
  2585     ///the number of the outgoing arcs of \c n.
       
  2586     void refresh(Node n)
       
  2587     {
       
  2588       std::vector<Arc> v;
       
  2589       for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
       
  2590       if(v.size()) {
       
  2591         std::sort(v.begin(),v.end(),ArcLess(_g));
       
  2592         _head[n]=refreshRec(v,0,v.size()-1);
       
  2593       }
       
  2594       else _head[n]=INVALID;
       
  2595     }
       
  2596     ///Refresh the full data structure.
       
  2597 
       
  2598     ///Build up the full search database. In fact, it simply calls
       
  2599     ///\ref refresh(Node) "refresh(n)" for each node \c n.
       
  2600     ///
       
  2601     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
       
  2602     ///the number of the arcs of \c n and <em>D</em> is the maximum
       
  2603     ///out-degree of the digraph.
       
  2604 
       
  2605     void refresh()
       
  2606     {
       
  2607       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
       
  2608     }
       
  2609 
       
  2610     ///Find an arc between two nodes.
       
  2611 
       
  2612     ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
       
  2613     /// <em>d</em> is the number of outgoing arcs of \c s.
       
  2614     ///\param s The source node
       
  2615     ///\param t The target node
       
  2616     ///\return An arc from \c s to \c t if there exists,
       
  2617     ///\ref INVALID otherwise.
       
  2618     ///
       
  2619     ///\warning If you change the digraph, refresh() must be called before using
       
  2620     ///this operator. If you change the outgoing arcs of
       
  2621     ///a single node \c n, then
       
  2622     ///\ref refresh(Node) "refresh(n)" is enough.
       
  2623     ///
       
  2624     Arc operator()(Node s, Node t) const
       
  2625     {
       
  2626       Arc e;
       
  2627       for(e=_head[s];
       
  2628           e!=INVALID&&_g.target(e)!=t;
       
  2629           e = t < _g.target(e)?_left[e]:_right[e]) ;
       
  2630       return e;
       
  2631     }
       
  2632 
       
  2633   };
       
  2634 
       
  2635   ///Fast look up of all arcs between given endpoints.
       
  2636 
       
  2637   ///\ingroup gutils
       
  2638   ///This class is the same as \ref ArcLookUp, with the addition
       
  2639   ///that it makes it possible to find all arcs between given endpoints.
       
  2640   ///
       
  2641   ///\warning This class is static, so you should refresh() (or at least
       
  2642   ///refresh(Node)) this data structure
       
  2643   ///whenever the digraph changes. This is a time consuming (superlinearly
       
  2644   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
       
  2645   ///
       
  2646   ///\tparam G The type of the underlying digraph.
       
  2647   ///
       
  2648   ///\sa DynArcLookUp
       
  2649   ///\sa ArcLookUp
       
  2650   template<class G>
       
  2651   class AllArcLookUp : public ArcLookUp<G>
       
  2652   {
       
  2653     using ArcLookUp<G>::_g;
       
  2654     using ArcLookUp<G>::_right;
       
  2655     using ArcLookUp<G>::_left;
       
  2656     using ArcLookUp<G>::_head;
       
  2657 
       
  2658     TEMPLATE_DIGRAPH_TYPEDEFS(G);
       
  2659     typedef G Digraph;
       
  2660 
       
  2661     typename Digraph::template ArcMap<Arc> _next;
       
  2662 
       
  2663     Arc refreshNext(Arc head,Arc next=INVALID)
       
  2664     {
       
  2665       if(head==INVALID) return next;
       
  2666       else {
       
  2667         next=refreshNext(_right[head],next);
       
  2668 //         _next[head]=next;
       
  2669         _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
       
  2670           ? next : INVALID;
       
  2671         return refreshNext(_left[head],head);
       
  2672       }
       
  2673     }
       
  2674 
       
  2675     void refreshNext()
       
  2676     {
       
  2677       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
       
  2678     }
       
  2679 
       
  2680   public:
       
  2681     ///Constructor
       
  2682 
       
  2683     ///Constructor.
       
  2684     ///
       
  2685     ///It builds up the search database, which remains valid until the digraph
       
  2686     ///changes.
       
  2687     AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
       
  2688 
       
  2689     ///Refresh the data structure at a node.
       
  2690 
       
  2691     ///Build up the search database of node \c n.
       
  2692     ///
       
  2693     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
       
  2694     ///the number of the outgoing arcs of \c n.
       
  2695 
       
  2696     void refresh(Node n)
       
  2697     {
       
  2698       ArcLookUp<G>::refresh(n);
       
  2699       refreshNext(_head[n]);
       
  2700     }
       
  2701 
       
  2702     ///Refresh the full data structure.
       
  2703 
       
  2704     ///Build up the full search database. In fact, it simply calls
       
  2705     ///\ref refresh(Node) "refresh(n)" for each node \c n.
       
  2706     ///
       
  2707     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
       
  2708     ///the number of the arcs of \c n and <em>D</em> is the maximum
       
  2709     ///out-degree of the digraph.
       
  2710 
       
  2711     void refresh()
       
  2712     {
       
  2713       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
       
  2714     }
       
  2715 
       
  2716     ///Find an arc between two nodes.
       
  2717 
       
  2718     ///Find an arc between two nodes.
       
  2719     ///\param s The source node
       
  2720     ///\param t The target node
       
  2721     ///\param prev The previous arc between \c s and \c t. It it is INVALID or
       
  2722     ///not given, the operator finds the first appropriate arc.
       
  2723     ///\return An arc from \c s to \c t after \c prev or
       
  2724     ///\ref INVALID if there is no more.
       
  2725     ///
       
  2726     ///For example, you can count the number of arcs from \c u to \c v in the
       
  2727     ///following way.
       
  2728     ///\code
       
  2729     ///AllArcLookUp<ListDigraph> ae(g);
       
  2730     ///...
       
  2731     ///int n=0;
       
  2732     ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
       
  2733     ///\endcode
       
  2734     ///
       
  2735     ///Finding the first arc take <em>O(</em>log<em>d)</em> time, where
       
  2736     /// <em>d</em> is the number of outgoing arcs of \c s. Then, the
       
  2737     ///consecutive arcs are found in constant time.
       
  2738     ///
       
  2739     ///\warning If you change the digraph, refresh() must be called before using
       
  2740     ///this operator. If you change the outgoing arcs of
       
  2741     ///a single node \c n, then
       
  2742     ///\ref refresh(Node) "refresh(n)" is enough.
       
  2743     ///
       
  2744 #ifdef DOXYGEN
       
  2745     Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
       
  2746 #else
       
  2747     using ArcLookUp<G>::operator() ;
       
  2748     Arc operator()(Node s, Node t, Arc prev) const
       
  2749     {
       
  2750       return prev==INVALID?(*this)(s,t):_next[prev];
       
  2751     }
       
  2752 #endif
       
  2753 
       
  2754   };
       
  2755 
       
  2756   /// @}
       
  2757 
       
  2758 } //END OF NAMESPACE LEMON
       
  2759 
       
  2760 #endif