lemon/fourary_heap.h
changeset 703 bb3392fe91f2
parent 701 d1a9224f1e30
child 705 39a5b48bcace
equal deleted inserted replaced
0:951b5faf9cfa 1:682ebd88bdf7
     1 /* -*- C++ -*-
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     4  *
     5  * Copyright (C) 2003-2008
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     8  *
     9  * Permission to use, modify and distribute this software is granted
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    10  * provided that this copyright notice appears in all copies. For
    17  */
    17  */
    18 
    18 
    19 #ifndef LEMON_FOURARY_HEAP_H
    19 #ifndef LEMON_FOURARY_HEAP_H
    20 #define LEMON_FOURARY_HEAP_H
    20 #define LEMON_FOURARY_HEAP_H
    21 
    21 
    22 ///\ingroup auxdat
    22 ///\ingroup heaps
    23 ///\file
    23 ///\file
    24 ///\brief 4ary Heap implementation.
    24 ///\brief Fourary heap implementation.
    25 
    25 
    26 #include <iostream>
       
    27 #include <vector>
    26 #include <vector>
    28 #include <utility>
    27 #include <utility>
    29 #include <functional>
    28 #include <functional>
    30 
    29 
    31 namespace lemon {
    30 namespace lemon {
    32 
    31 
    33   ///\ingroup auxdat
    32   /// \ingroup heaps
    34   ///
    33   ///
    35   ///\brief A 4ary Heap implementation.
    34   ///\brief Fourary heap data structure.
    36   ///
    35   ///
    37   ///This class implements the \e 4ary \e heap data structure. A \e heap
    36   /// This class implements the \e fourary \e heap data structure.
    38   ///is a data structure for storing items with specified values called \e
    37   /// It fully conforms to the \ref concepts::Heap "heap concept".
    39   ///priorities in such a way that finding the item with minimum priority is
    38   ///
    40   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    39   /// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap"
    41   ///one can change the priority of an item, add or erase an item, etc.
    40   /// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap",
    42   ///
    41   /// but its nodes have at most four children, instead of two.
    43   ///\param _Prio Type of the priority of the items.
    42   ///
    44   ///\param _ItemIntMap A read and writable Item int map, used internally
    43   /// \tparam PR Type of the priorities of the items.
    45   ///to handle the cross references.
    44   /// \tparam IM A read-writable item map with \c int values, used
    46   ///\param _Compare A class for the ordering of the priorities. The
    45   /// internally to handle the cross references.
    47   ///default is \c std::less<_Prio>.
    46   /// \tparam CMP A functor class for comparing the priorities.
    48   ///
    47   /// The default is \c std::less<PR>.
    49   ///\sa FibHeap
    48   ///
    50   ///\sa Dijkstra
    49   ///\sa BinHeap
    51   ///\author Dorian Batha
    50   ///\sa KaryHeap
    52 
    51 #ifdef DOXYGEN
    53   template <typename _Prio, typename _ItemIntMap,
    52   template <typename PR, typename IM, typename CMP>
    54             typename _Compare = std::less<_Prio> >
    53 #else
    55 
    54   template <typename PR, typename IM, typename CMP = std::less<PR> >
       
    55 #endif
    56   class FouraryHeap {
    56   class FouraryHeap {
    57 
       
    58   public:
    57   public:
    59     ///\e
    58     /// Type of the item-int map.
    60     typedef _ItemIntMap ItemIntMap;
    59     typedef IM ItemIntMap;
    61     ///\e
    60     /// Type of the priorities.
    62     typedef _Prio Prio;
    61     typedef PR Prio;
    63     ///\e
    62     /// Type of the items stored in the heap.
    64     typedef typename ItemIntMap::Key Item;
    63     typedef typename ItemIntMap::Key Item;
    65     ///\e
    64     /// Type of the item-priority pairs.
    66     typedef std::pair<Item,Prio> Pair;
    65     typedef std::pair<Item,Prio> Pair;
    67     ///\e
    66     /// Functor type for comparing the priorities.
    68     typedef _Compare Compare;
    67     typedef CMP Compare;
    69 
    68 
    70     /// \brief Type to represent the items states.
    69     /// \brief Type to represent the states of the items.
    71     ///
    70     ///
    72     /// Each Item element have a state associated to it. It may be "in heap",
    71     /// Each item has a state associated to it. It can be "in heap",
    73     /// "pre heap" or "post heap". The latter two are indifferent from the
    72     /// "pre-heap" or "post-heap". The latter two are indifferent from the
    74     /// heap's point of view, but may be useful to the user.
    73     /// heap's point of view, but may be useful to the user.
    75     ///
    74     ///
    76     /// The ItemIntMap \e should be initialized in such way that it maps
    75     /// The item-int map must be initialized in such way that it assigns
    77     /// PRE_HEAP (-1) to any element to be put in the heap...
    76     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    78     enum State {
    77     enum State {
    79       IN_HEAP = 0,
    78       IN_HEAP = 0,    ///< = 0.
    80       PRE_HEAP = -1,
    79       PRE_HEAP = -1,  ///< = -1.
    81       POST_HEAP = -2
    80       POST_HEAP = -2  ///< = -2.
    82     };
    81     };
    83 
    82 
    84   private:
    83   private:
    85     std::vector<Pair> data;
    84     std::vector<Pair> _data;
    86     Compare comp;
    85     Compare _comp;
    87     ItemIntMap &iim;
    86     ItemIntMap &_iim;
    88 
    87 
    89   public:
    88   public:
    90     /// \brief The constructor.
    89     /// \brief Constructor.
    91     ///
    90     ///
    92     /// The constructor.
    91     /// Constructor.
    93     /// \param _iim should be given to the constructor, since it is used
    92     /// \param map A map that assigns \c int values to the items.
    94     /// internally to handle the cross references. The value of the map
    93     /// It is used internally to handle the cross references.
    95     /// should be PRE_HEAP (-1) for each element.
    94     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
    96     explicit FouraryHeap(ItemIntMap &_iim) : iim(_iim) {}
    95     explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
    97 
    96 
    98     /// \brief The constructor.
    97     /// \brief Constructor.
    99     ///
    98     ///
   100     /// The constructor.
    99     /// Constructor.
   101     /// \param _iim should be given to the constructor, since it is used
   100     /// \param map A map that assigns \c int values to the items.
   102     /// internally to handle the cross references. The value of the map
   101     /// It is used internally to handle the cross references.
   103     /// should be PRE_HEAP (-1) for each element.
   102     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   104     ///
   103     /// \param comp The function object used for comparing the priorities.
   105     /// \param _comp The comparator function object.
   104     FouraryHeap(ItemIntMap &map, const Compare &comp)
   106     FouraryHeap(ItemIntMap &_iim, const Compare &_comp)
   105       : _iim(map), _comp(comp) {}
   107       : iim(_iim), comp(_comp) {}
   106 
   108 
   107     /// \brief The number of items stored in the heap.
   109     /// The number of items stored in the heap.
   108     ///
   110     ///
   109     /// This function returns the number of items stored in the heap.
   111     /// \brief Returns the number of items stored in the heap.
   110     int size() const { return _data.size(); }
   112     int size() const { return data.size(); }
   111 
   113 
   112     /// \brief Check if the heap is empty.
   114     /// \brief Checks if the heap stores no items.
   113     ///
   115     ///
   114     /// This function returns \c true if the heap is empty.
   116     /// Returns \c true if and only if the heap stores no items.
   115     bool empty() const { return _data.empty(); }
   117     bool empty() const { return data.empty(); }
   116 
   118 
   117     /// \brief Make the heap empty.
   119     /// \brief Make empty this heap.
   118     ///
   120     ///
   119     /// This functon makes the heap empty.
   121     /// Make empty this heap. It does not change the cross reference map.
   120     /// It does not change the cross reference map. If you want to reuse
   122     /// If you want to reuse what is not surely empty you should first clear
   121     /// a heap that is not surely empty, you should first clear it and
   123     /// the heap and after that you should set the cross reference map for
   122     /// then you should set the cross reference map to \c PRE_HEAP
   124     /// each item to \c PRE_HEAP.
   123     /// for each item.
   125     void clear() { data.clear(); }
   124     void clear() { _data.clear(); }
   126 
   125 
   127   private:
   126   private:
   128     static int parent(int i) { return (i-1)/4; }
   127     static int parent(int i) { return (i-1)/4; }
   129     static int firstChild(int i) { return 4*i+1; }
   128     static int firstChild(int i) { return 4*i+1; }
   130 
   129 
   131     bool less(const Pair &p1, const Pair &p2) const {
   130     bool less(const Pair &p1, const Pair &p2) const {
   132       return comp(p1.second, p2.second);
   131       return _comp(p1.second, p2.second);
   133     }
   132     }
   134 
   133 
   135     int find_min(const int child, const int length) {
   134     int findMin(const int child, const int length) {
   136       int min=child;
   135       int min=child;
   137       if( child+3<length ) {
   136       if( child+3<length ) {
   138         if( less(data[child+3], data[min]) )
   137         if( less(_data[child+3], _data[min]) )
   139           min=child+3;
   138           min=child+3;
   140         if( less(data[child+2], data[min]) )
   139         if( less(_data[child+2], _data[min]) )
   141           min=child+2;
   140           min=child+2;
   142         if( less(data[child+1], data[min]) )
   141         if( less(_data[child+1], _data[min]) )
   143           min=child+1;
   142           min=child+1;
   144       }
   143       }
   145       else if( child+2<length ) {
   144       else if( child+2<length ) {
   146         if( less(data[child+2], data[min]) )
   145         if( less(_data[child+2], _data[min]) )
   147           min=child+2;
   146           min=child+2;
   148         if( less(data[child+1], data[min]) )
   147         if( less(_data[child+1], _data[min]) )
   149           min=child+1;
   148           min=child+1;
   150       }
   149       }
   151       else if( child+1<length ) {
   150       else if( child+1<length ) {
   152         if( less(data[child+1], data[min]) )
   151         if( less(_data[child+1], _data[min]) )
   153           min=child+1;
   152           min=child+1;
   154       }
   153       }
   155       return min;
   154       return min;
   156     }
   155     }
   157 
   156 
   158     void bubble_up(int hole, Pair p) {
   157     void bubbleUp(int hole, Pair p) {
   159       int par = parent(hole);
   158       int par = parent(hole);
   160       while( hole>0 && less(p,data[par]) ) {
   159       while( hole>0 && less(p,_data[par]) ) {
   161         move(data[par],hole);
   160         move(_data[par],hole);
   162         hole = par;
   161         hole = par;
   163         par = parent(hole);
   162         par = parent(hole);
   164       }
   163       }
   165       move(p, hole);
   164       move(p, hole);
   166     }
   165     }
   167 
   166 
   168     void bubble_down(int hole, Pair p, int length) {
   167     void bubbleDown(int hole, Pair p, int length) {
   169       int child = firstChild(hole);
   168       int child = firstChild(hole);
   170       while( child<length && length>1 ) {
   169       while( child<length && length>1 ) {
   171         child = find_min(child,length);
   170         child = findMin(child,length);
   172         if( !less(data[child], p) )
   171         if( !less(_data[child], p) )
   173           goto ok;
   172           goto ok;
   174         move(data[child], hole);
   173         move(_data[child], hole);
   175         hole = child;
   174         hole = child;
   176         child = firstChild(hole);
   175         child = firstChild(hole);
   177       }
   176       }
   178     ok:
   177     ok:
   179       move(p, hole);
   178       move(p, hole);
   180     }
   179     }
   181 
   180 
   182     void move(const Pair &p, int i) {
   181     void move(const Pair &p, int i) {
   183       data[i] = p;
   182       _data[i] = p;
   184       iim.set(p.first, i);
   183       _iim.set(p.first, i);
   185     }
   184     }
   186 
   185 
   187   public:
   186   public:
   188 
       
   189     /// \brief Insert a pair of item and priority into the heap.
   187     /// \brief Insert a pair of item and priority into the heap.
   190     ///
   188     ///
   191     /// Adds \c p.first to the heap with priority \c p.second.
   189     /// This function inserts \c p.first to the heap with priority
       
   190     /// \c p.second.
   192     /// \param p The pair to insert.
   191     /// \param p The pair to insert.
       
   192     /// \pre \c p.first must not be stored in the heap.
   193     void push(const Pair &p) {
   193     void push(const Pair &p) {
   194       int n = data.size();
   194       int n = _data.size();
   195       data.resize(n+1);
   195       _data.resize(n+1);
   196       bubble_up(n, p);
   196       bubbleUp(n, p);
   197     }
   197     }
   198 
   198 
   199     /// \brief Insert an item into the heap with the given heap.
   199     /// \brief Insert an item into the heap with the given priority.
   200     ///
   200     ///
   201     /// Adds \c i to the heap with priority \c p.
   201     /// This function inserts the given item into the heap with the
       
   202     /// given priority.
   202     /// \param i The item to insert.
   203     /// \param i The item to insert.
   203     /// \param p The priority of the item.
   204     /// \param p The priority of the item.
       
   205     /// \pre \e i must not be stored in the heap.
   204     void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
   206     void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
   205 
   207 
   206     /// \brief Returns the item with minimum priority relative to \c Compare.
   208     /// \brief Return the item having minimum priority.
   207     ///
   209     ///
   208     /// This method returns the item with minimum priority relative to \c
   210     /// This function returns the item having minimum priority.
   209     /// Compare.
   211     /// \pre The heap must be non-empty.
   210     /// \pre The heap must be nonempty.
   212     Item top() const { return _data[0].first; }
   211     Item top() const { return data[0].first; }
   213 
   212 
   214     /// \brief The minimum priority.
   213     /// \brief Returns the minimum priority relative to \c Compare.
   215     ///
   214     ///
   216     /// This function returns the minimum priority.
   215     /// It returns the minimum priority relative to \c Compare.
   217     /// \pre The heap must be non-empty.
   216     /// \pre The heap must be nonempty.
   218     Prio prio() const { return _data[0].second; }
   217     Prio prio() const { return data[0].second; }
   219 
   218 
   220     /// \brief Remove the item having minimum priority.
   219     /// \brief Deletes the item with minimum priority relative to \c Compare.
   221     ///
   220     ///
   222     /// This function removes the item having minimum priority.
   221     /// This method deletes the item with minimum priority relative to \c
       
   222     /// Compare from the heap.
       
   223     /// \pre The heap must be non-empty.
   223     /// \pre The heap must be non-empty.
   224     void pop() {
   224     void pop() {
   225       int n = data.size()-1;
   225       int n = _data.size()-1;
   226       iim.set(data[0].first, POST_HEAP);
   226       _iim.set(_data[0].first, POST_HEAP);
   227       if (n>0) bubble_down(0, data[n], n);
   227       if (n>0) bubbleDown(0, _data[n], n);
   228       data.pop_back();
   228       _data.pop_back();
   229     }
   229     }
   230 
   230 
   231     /// \brief Deletes \c i from the heap.
   231     /// \brief Remove the given item from the heap.
   232     ///
   232     ///
   233     /// This method deletes item \c i from the heap.
   233     /// This function removes the given item from the heap if it is
   234     /// \param i The item to erase.
   234     /// already stored.
   235     /// \pre The item should be in the heap.
   235     /// \param i The item to delete.
       
   236     /// \pre \e i must be in the heap.
   236     void erase(const Item &i) {
   237     void erase(const Item &i) {
   237       int h = iim[i];
   238       int h = _iim[i];
   238       int n = data.size()-1;
   239       int n = _data.size()-1;
   239       iim.set(data[h].first, POST_HEAP);
   240       _iim.set(_data[h].first, POST_HEAP);
   240       if( h<n ) {
   241       if( h<n ) {
   241         if( less(data[parent(h)], data[n]) )
   242         if( less(_data[parent(h)], _data[n]) )
   242           bubble_down(h, data[n], n);
   243           bubbleDown(h, _data[n], n);
   243         else
   244         else
   244           bubble_up(h, data[n]);
   245           bubbleUp(h, _data[n]);
   245       }
   246       }
   246       data.pop_back();
   247       _data.pop_back();
   247     }
   248     }
   248 
   249 
   249     /// \brief Returns the priority of \c i.
   250     /// \brief The priority of the given item.
   250     ///
   251     ///
   251     /// This function returns the priority of item \c i.
   252     /// This function returns the priority of the given item.
   252     /// \pre \c i must be in the heap.
   253     /// \param i The item.
   253     /// \param i The item.
   254     /// \pre \e i must be in the heap.
   254     Prio operator[](const Item &i) const {
   255     Prio operator[](const Item &i) const {
   255       int idx = iim[i];
   256       int idx = _iim[i];
   256       return data[idx].second;
   257       return _data[idx].second;
   257     }
   258     }
   258 
   259 
   259     /// \brief \c i gets to the heap with priority \c p independently
   260     /// \brief Set the priority of an item or insert it, if it is
   260     /// if \c i was already there.
   261     /// not stored in the heap.
   261     ///
   262     ///
   262     /// This method calls \ref push(\c i, \c p) if \c i is not stored
   263     /// This method sets the priority of the given item if it is
   263     /// in the heap and sets the priority of \c i to \c p otherwise.
   264     /// already stored in the heap. Otherwise it inserts the given
       
   265     /// item into the heap with the given priority.
   264     /// \param i The item.
   266     /// \param i The item.
   265     /// \param p The priority.
   267     /// \param p The priority.
   266     void set(const Item &i, const Prio &p) {
   268     void set(const Item &i, const Prio &p) {
   267       int idx = iim[i];
   269       int idx = _iim[i];
   268       if( idx < 0 )
   270       if( idx < 0 )
   269         push(i,p);
   271         push(i,p);
   270       else if( comp(p, data[idx].second) )
   272       else if( _comp(p, _data[idx].second) )
   271         bubble_up(idx, Pair(i,p));
   273         bubbleUp(idx, Pair(i,p));
   272       else
   274       else
   273         bubble_down(idx, Pair(i,p), data.size());
   275         bubbleDown(idx, Pair(i,p), _data.size());
   274     }
   276     }
   275 
   277 
   276     /// \brief Decreases the priority of \c i to \c p.
   278     /// \brief Decrease the priority of an item to the given value.
   277     ///
   279     ///
   278     /// This method decreases the priority of item \c i to \c p.
   280     /// This function decreases the priority of an item to the given value.
   279     /// \pre \c i must be stored in the heap with priority at least \c
       
   280     /// p relative to \c Compare.
       
   281     /// \param i The item.
   281     /// \param i The item.
   282     /// \param p The priority.
   282     /// \param p The priority.
       
   283     /// \pre \e i must be stored in the heap with priority at least \e p.
   283     void decrease(const Item &i, const Prio &p) {
   284     void decrease(const Item &i, const Prio &p) {
   284       int idx = iim[i];
   285       int idx = _iim[i];
   285       bubble_up(idx, Pair(i,p));
   286       bubbleUp(idx, Pair(i,p));
   286     }
   287     }
   287 
   288 
   288     /// \brief Increases the priority of \c i to \c p.
   289     /// \brief Increase the priority of an item to the given value.
   289     ///
   290     ///
   290     /// This method sets the priority of item \c i to \c p.
   291     /// This function increases the priority of an item to the given value.
   291     /// \pre \c i must be stored in the heap with priority at most \c
       
   292     /// p relative to \c Compare.
       
   293     /// \param i The item.
   292     /// \param i The item.
   294     /// \param p The priority.
   293     /// \param p The priority.
       
   294     /// \pre \e i must be stored in the heap with priority at most \e p.
   295     void increase(const Item &i, const Prio &p) {
   295     void increase(const Item &i, const Prio &p) {
   296       int idx = iim[i];
   296       int idx = _iim[i];
   297       bubble_down(idx, Pair(i,p), data.size());
   297       bubbleDown(idx, Pair(i,p), _data.size());
   298     }
   298     }
   299 
   299 
   300     /// \brief Returns if \c item is in, has already been in, or has
   300     /// \brief Return the state of an item.
   301     /// never been in the heap.
   301     ///
   302     ///
   302     /// This method returns \c PRE_HEAP if the given item has never
   303     /// This method returns PRE_HEAP if \c item has never been in the
   303     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   304     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   304     /// and \c POST_HEAP otherwise.
   305     /// otherwise. In the latter case it is possible that \c item will
   305     /// In the latter case it is possible that the item will get back
   306     /// get back to the heap again.
   306     /// to the heap again.
   307     /// \param i The item.
   307     /// \param i The item.
   308     State state(const Item &i) const {
   308     State state(const Item &i) const {
   309       int s = iim[i];
   309       int s = _iim[i];
   310       if (s>=0) s=0;
   310       if (s>=0) s=0;
   311       return State(s);
   311       return State(s);
   312     }
   312     }
   313 
   313 
   314     /// \brief Sets the state of the \c item in the heap.
   314     /// \brief Set the state of an item in the heap.
   315     ///
   315     ///
   316     /// Sets the state of the \c item in the heap. It can be used to
   316     /// This function sets the state of the given item in the heap.
   317     /// manually clear the heap when it is important to achive the
   317     /// It can be used to manually clear the heap when it is important
   318     /// better time complexity.
   318     /// to achive better time complexity.
   319     /// \param i The item.
   319     /// \param i The item.
   320     /// \param st The state. It should not be \c IN_HEAP.
   320     /// \param st The state. It should not be \c IN_HEAP.
   321     void state(const Item& i, State st) {
   321     void state(const Item& i, State st) {
   322       switch (st) {
   322       switch (st) {
   323         case POST_HEAP:
   323         case POST_HEAP:
   324         case PRE_HEAP:
   324         case PRE_HEAP:
   325           if (state(i) == IN_HEAP) erase(i);
   325           if (state(i) == IN_HEAP) erase(i);
   326           iim[i] = st;
   326           _iim[i] = st;
   327           break;
   327           break;
   328         case IN_HEAP:
   328         case IN_HEAP:
   329           break;
   329           break;
   330       }
   330       }
   331     }
   331     }
   332 
   332 
   333     /// \brief Replaces an item in the heap.
   333     /// \brief Replace an item in the heap.
   334     ///
   334     ///
   335     /// The \c i item is replaced with \c j item. The \c i item should
   335     /// This function replaces item \c i with item \c j.
   336     /// be in the heap, while the \c j should be out of the heap. The
   336     /// Item \c i must be in the heap, while \c j must be out of the heap.
   337     /// \c i item will out of the heap and \c j will be in the heap
   337     /// After calling this method, item \c i will be out of the
   338     /// with the same prioriority as prevoiusly the \c i item.
   338     /// heap and \c j will be in the heap with the same prioriority
       
   339     /// as item \c i had before.
   339     void replace(const Item& i, const Item& j) {
   340     void replace(const Item& i, const Item& j) {
   340       int idx = iim[i];
   341       int idx = _iim[i];
   341       iim.set(i, iim[j]);
   342       _iim.set(i, _iim[j]);
   342       iim.set(j, idx);
   343       _iim.set(j, idx);
   343       data[idx].first = j;
   344       _data[idx].first = j;
   344     }
   345     }
   345 
   346 
   346   }; // class FouraryHeap
   347   }; // class FouraryHeap
   347 
   348 
   348 } // namespace lemon
   349 } // namespace lemon