lemon/network_simplex.h
changeset 664 cc61d09f053b
parent 643 f3792d5bb294
child 727 cab85bd7859b
child 729 be48a648d28f
child 888 5205145fabf6
equal deleted inserted replaced
14:48bb94977009 15:8729eb5cd438
    17  */
    17  */
    18 
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    21 
    22 /// \ingroup min_cost_flow
    22 /// \ingroup min_cost_flow_algs
    23 ///
    23 ///
    24 /// \file
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    26 
    27 #include <vector>
    27 #include <vector>
    31 #include <lemon/core.h>
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    32 #include <lemon/math.h>
    33 
    33 
    34 namespace lemon {
    34 namespace lemon {
    35 
    35 
    36   /// \addtogroup min_cost_flow
    36   /// \addtogroup min_cost_flow_algs
    37   /// @{
    37   /// @{
    38 
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    41   ///
   100     ///
   100     ///
   101     /// Enum type containing constants for selecting the supply type,
   101     /// Enum type containing constants for selecting the supply type,
   102     /// i.e. the direction of the inequalities in the supply/demand
   102     /// i.e. the direction of the inequalities in the supply/demand
   103     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   103     /// constraints of the \ref min_cost_flow "minimum cost flow problem".
   104     ///
   104     ///
   105     /// The default supply type is \c GEQ, since this form is supported
   105     /// The default supply type is \c GEQ, the \c LEQ type can be
   106     /// by other minimum cost flow algorithms and the \ref Circulation
   106     /// selected using \ref supplyType().
   107     /// algorithm, as well.
   107     /// The equality form is a special case of both supply types.
   108     /// The \c LEQ problem type can be selected using the \ref supplyType()
       
   109     /// function.
       
   110     ///
       
   111     /// Note that the equality form is a special case of both supply types.
       
   112     enum SupplyType {
   108     enum SupplyType {
   113 
       
   114       /// This option means that there are <em>"greater or equal"</em>
   109       /// This option means that there are <em>"greater or equal"</em>
   115       /// supply/demand constraints in the definition, i.e. the exact
   110       /// supply/demand constraints in the definition of the problem.
   116       /// formulation of the problem is the following.
       
   117       /**
       
   118           \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
       
   119           \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
       
   120               sup(u) \quad \forall u\in V \f]
       
   121           \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
       
   122       */
       
   123       /// It means that the total demand must be greater or equal to the 
       
   124       /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
       
   125       /// negative) and all the supplies have to be carried out from 
       
   126       /// the supply nodes, but there could be demands that are not 
       
   127       /// satisfied.
       
   128       GEQ,
   111       GEQ,
   129       /// It is just an alias for the \c GEQ option.
       
   130       CARRY_SUPPLIES = GEQ,
       
   131 
       
   132       /// This option means that there are <em>"less or equal"</em>
   112       /// This option means that there are <em>"less or equal"</em>
   133       /// supply/demand constraints in the definition, i.e. the exact
   113       /// supply/demand constraints in the definition of the problem.
   134       /// formulation of the problem is the following.
   114       LEQ
   135       /**
       
   136           \f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
       
   137           \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
       
   138               sup(u) \quad \forall u\in V \f]
       
   139           \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
       
   140       */
       
   141       /// It means that the total demand must be less or equal to the 
       
   142       /// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
       
   143       /// positive) and all the demands have to be satisfied, but there
       
   144       /// could be supplies that are not carried out from the supply
       
   145       /// nodes.
       
   146       LEQ,
       
   147       /// It is just an alias for the \c LEQ option.
       
   148       SATISFY_DEMANDS = LEQ
       
   149     };
   115     };
   150     
   116     
   151     /// \brief Constants for selecting the pivot rule.
   117     /// \brief Constants for selecting the pivot rule.
   152     ///
   118     ///
   153     /// Enum type containing constants for selecting the pivot rule for
   119     /// Enum type containing constants for selecting the pivot rule for
   213 
   179 
   214     // Data related to the underlying digraph
   180     // Data related to the underlying digraph
   215     const GR &_graph;
   181     const GR &_graph;
   216     int _node_num;
   182     int _node_num;
   217     int _arc_num;
   183     int _arc_num;
       
   184     int _all_arc_num;
       
   185     int _search_arc_num;
   218 
   186 
   219     // Parameters of the problem
   187     // Parameters of the problem
   220     bool _have_lower;
   188     bool _have_lower;
   221     SupplyType _stype;
   189     SupplyType _stype;
   222     Value _sum_supply;
   190     Value _sum_supply;
   275       const IntVector  &_target;
   243       const IntVector  &_target;
   276       const CostVector &_cost;
   244       const CostVector &_cost;
   277       const IntVector  &_state;
   245       const IntVector  &_state;
   278       const CostVector &_pi;
   246       const CostVector &_pi;
   279       int &_in_arc;
   247       int &_in_arc;
   280       int _arc_num;
   248       int _search_arc_num;
   281 
   249 
   282       // Pivot rule data
   250       // Pivot rule data
   283       int _next_arc;
   251       int _next_arc;
   284 
   252 
   285     public:
   253     public:
   286 
   254 
   287       // Constructor
   255       // Constructor
   288       FirstEligiblePivotRule(NetworkSimplex &ns) :
   256       FirstEligiblePivotRule(NetworkSimplex &ns) :
   289         _source(ns._source), _target(ns._target),
   257         _source(ns._source), _target(ns._target),
   290         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   258         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   291         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   259         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
       
   260         _next_arc(0)
   292       {}
   261       {}
   293 
   262 
   294       // Find next entering arc
   263       // Find next entering arc
   295       bool findEnteringArc() {
   264       bool findEnteringArc() {
   296         Cost c;
   265         Cost c;
   297         for (int e = _next_arc; e < _arc_num; ++e) {
   266         for (int e = _next_arc; e < _search_arc_num; ++e) {
   298           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   267           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   299           if (c < 0) {
   268           if (c < 0) {
   300             _in_arc = e;
   269             _in_arc = e;
   301             _next_arc = e + 1;
   270             _next_arc = e + 1;
   302             return true;
   271             return true;
   326       const IntVector  &_target;
   295       const IntVector  &_target;
   327       const CostVector &_cost;
   296       const CostVector &_cost;
   328       const IntVector  &_state;
   297       const IntVector  &_state;
   329       const CostVector &_pi;
   298       const CostVector &_pi;
   330       int &_in_arc;
   299       int &_in_arc;
   331       int _arc_num;
   300       int _search_arc_num;
   332 
   301 
   333     public:
   302     public:
   334 
   303 
   335       // Constructor
   304       // Constructor
   336       BestEligiblePivotRule(NetworkSimplex &ns) :
   305       BestEligiblePivotRule(NetworkSimplex &ns) :
   337         _source(ns._source), _target(ns._target),
   306         _source(ns._source), _target(ns._target),
   338         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   307         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   339         _in_arc(ns.in_arc), _arc_num(ns._arc_num)
   308         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
   340       {}
   309       {}
   341 
   310 
   342       // Find next entering arc
   311       // Find next entering arc
   343       bool findEnteringArc() {
   312       bool findEnteringArc() {
   344         Cost c, min = 0;
   313         Cost c, min = 0;
   345         for (int e = 0; e < _arc_num; ++e) {
   314         for (int e = 0; e < _search_arc_num; ++e) {
   346           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   315           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   347           if (c < min) {
   316           if (c < min) {
   348             min = c;
   317             min = c;
   349             _in_arc = e;
   318             _in_arc = e;
   350           }
   319           }
   365       const IntVector  &_target;
   334       const IntVector  &_target;
   366       const CostVector &_cost;
   335       const CostVector &_cost;
   367       const IntVector  &_state;
   336       const IntVector  &_state;
   368       const CostVector &_pi;
   337       const CostVector &_pi;
   369       int &_in_arc;
   338       int &_in_arc;
   370       int _arc_num;
   339       int _search_arc_num;
   371 
   340 
   372       // Pivot rule data
   341       // Pivot rule data
   373       int _block_size;
   342       int _block_size;
   374       int _next_arc;
   343       int _next_arc;
   375 
   344 
   377 
   346 
   378       // Constructor
   347       // Constructor
   379       BlockSearchPivotRule(NetworkSimplex &ns) :
   348       BlockSearchPivotRule(NetworkSimplex &ns) :
   380         _source(ns._source), _target(ns._target),
   349         _source(ns._source), _target(ns._target),
   381         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   350         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   382         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   351         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
       
   352         _next_arc(0)
   383       {
   353       {
   384         // The main parameters of the pivot rule
   354         // The main parameters of the pivot rule
   385         const double BLOCK_SIZE_FACTOR = 2.0;
   355         const double BLOCK_SIZE_FACTOR = 0.5;
   386         const int MIN_BLOCK_SIZE = 10;
   356         const int MIN_BLOCK_SIZE = 10;
   387 
   357 
   388         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   358         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   389                                     std::sqrt(double(_arc_num))),
   359                                     std::sqrt(double(_search_arc_num))),
   390                                 MIN_BLOCK_SIZE );
   360                                 MIN_BLOCK_SIZE );
   391       }
   361       }
   392 
   362 
   393       // Find next entering arc
   363       // Find next entering arc
   394       bool findEnteringArc() {
   364       bool findEnteringArc() {
   395         Cost c, min = 0;
   365         Cost c, min = 0;
   396         int cnt = _block_size;
   366         int cnt = _block_size;
   397         int e, min_arc = _next_arc;
   367         int e, min_arc = _next_arc;
   398         for (e = _next_arc; e < _arc_num; ++e) {
   368         for (e = _next_arc; e < _search_arc_num; ++e) {
   399           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   369           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   400           if (c < min) {
   370           if (c < min) {
   401             min = c;
   371             min = c;
   402             min_arc = e;
   372             min_arc = e;
   403           }
   373           }
   438       const IntVector  &_target;
   408       const IntVector  &_target;
   439       const CostVector &_cost;
   409       const CostVector &_cost;
   440       const IntVector  &_state;
   410       const IntVector  &_state;
   441       const CostVector &_pi;
   411       const CostVector &_pi;
   442       int &_in_arc;
   412       int &_in_arc;
   443       int _arc_num;
   413       int _search_arc_num;
   444 
   414 
   445       // Pivot rule data
   415       // Pivot rule data
   446       IntVector _candidates;
   416       IntVector _candidates;
   447       int _list_length, _minor_limit;
   417       int _list_length, _minor_limit;
   448       int _curr_length, _minor_count;
   418       int _curr_length, _minor_count;
   452 
   422 
   453       /// Constructor
   423       /// Constructor
   454       CandidateListPivotRule(NetworkSimplex &ns) :
   424       CandidateListPivotRule(NetworkSimplex &ns) :
   455         _source(ns._source), _target(ns._target),
   425         _source(ns._source), _target(ns._target),
   456         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   426         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   457         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   427         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
       
   428         _next_arc(0)
   458       {
   429       {
   459         // The main parameters of the pivot rule
   430         // The main parameters of the pivot rule
   460         const double LIST_LENGTH_FACTOR = 1.0;
   431         const double LIST_LENGTH_FACTOR = 1.0;
   461         const int MIN_LIST_LENGTH = 10;
   432         const int MIN_LIST_LENGTH = 10;
   462         const double MINOR_LIMIT_FACTOR = 0.1;
   433         const double MINOR_LIMIT_FACTOR = 0.1;
   463         const int MIN_MINOR_LIMIT = 3;
   434         const int MIN_MINOR_LIMIT = 3;
   464 
   435 
   465         _list_length = std::max( int(LIST_LENGTH_FACTOR *
   436         _list_length = std::max( int(LIST_LENGTH_FACTOR *
   466                                      std::sqrt(double(_arc_num))),
   437                                      std::sqrt(double(_search_arc_num))),
   467                                  MIN_LIST_LENGTH );
   438                                  MIN_LIST_LENGTH );
   468         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   439         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   469                                  MIN_MINOR_LIMIT );
   440                                  MIN_MINOR_LIMIT );
   470         _curr_length = _minor_count = 0;
   441         _curr_length = _minor_count = 0;
   471         _candidates.resize(_list_length);
   442         _candidates.resize(_list_length);
   498         }
   469         }
   499 
   470 
   500         // Major iteration: build a new candidate list
   471         // Major iteration: build a new candidate list
   501         min = 0;
   472         min = 0;
   502         _curr_length = 0;
   473         _curr_length = 0;
   503         for (e = _next_arc; e < _arc_num; ++e) {
   474         for (e = _next_arc; e < _search_arc_num; ++e) {
   504           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   475           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   505           if (c < 0) {
   476           if (c < 0) {
   506             _candidates[_curr_length++] = e;
   477             _candidates[_curr_length++] = e;
   507             if (c < min) {
   478             if (c < min) {
   508               min = c;
   479               min = c;
   544       const IntVector  &_target;
   515       const IntVector  &_target;
   545       const CostVector &_cost;
   516       const CostVector &_cost;
   546       const IntVector  &_state;
   517       const IntVector  &_state;
   547       const CostVector &_pi;
   518       const CostVector &_pi;
   548       int &_in_arc;
   519       int &_in_arc;
   549       int _arc_num;
   520       int _search_arc_num;
   550 
   521 
   551       // Pivot rule data
   522       // Pivot rule data
   552       int _block_size, _head_length, _curr_length;
   523       int _block_size, _head_length, _curr_length;
   553       int _next_arc;
   524       int _next_arc;
   554       IntVector _candidates;
   525       IntVector _candidates;
   572 
   543 
   573       // Constructor
   544       // Constructor
   574       AlteringListPivotRule(NetworkSimplex &ns) :
   545       AlteringListPivotRule(NetworkSimplex &ns) :
   575         _source(ns._source), _target(ns._target),
   546         _source(ns._source), _target(ns._target),
   576         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   547         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   577         _in_arc(ns.in_arc), _arc_num(ns._arc_num),
   548         _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
   578         _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
   549         _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
   579       {
   550       {
   580         // The main parameters of the pivot rule
   551         // The main parameters of the pivot rule
   581         const double BLOCK_SIZE_FACTOR = 1.5;
   552         const double BLOCK_SIZE_FACTOR = 1.5;
   582         const int MIN_BLOCK_SIZE = 10;
   553         const int MIN_BLOCK_SIZE = 10;
   583         const double HEAD_LENGTH_FACTOR = 0.1;
   554         const double HEAD_LENGTH_FACTOR = 0.1;
   584         const int MIN_HEAD_LENGTH = 3;
   555         const int MIN_HEAD_LENGTH = 3;
   585 
   556 
   586         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   557         _block_size = std::max( int(BLOCK_SIZE_FACTOR *
   587                                     std::sqrt(double(_arc_num))),
   558                                     std::sqrt(double(_search_arc_num))),
   588                                 MIN_BLOCK_SIZE );
   559                                 MIN_BLOCK_SIZE );
   589         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   560         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   590                                  MIN_HEAD_LENGTH );
   561                                  MIN_HEAD_LENGTH );
   591         _candidates.resize(_head_length + _block_size);
   562         _candidates.resize(_head_length + _block_size);
   592         _curr_length = 0;
   563         _curr_length = 0;
   608         // Extend the list
   579         // Extend the list
   609         int cnt = _block_size;
   580         int cnt = _block_size;
   610         int last_arc = 0;
   581         int last_arc = 0;
   611         int limit = _head_length;
   582         int limit = _head_length;
   612 
   583 
   613         for (int e = _next_arc; e < _arc_num; ++e) {
   584         for (int e = _next_arc; e < _search_arc_num; ++e) {
   614           _cand_cost[e] = _state[e] *
   585           _cand_cost[e] = _state[e] *
   615             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   586             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   616           if (_cand_cost[e] < 0) {
   587           if (_cand_cost[e] < 0) {
   617             _candidates[_curr_length++] = e;
   588             _candidates[_curr_length++] = e;
   618             last_arc = e;
   589             last_arc = e;
   676         
   647         
   677       // Resize vectors
   648       // Resize vectors
   678       _node_num = countNodes(_graph);
   649       _node_num = countNodes(_graph);
   679       _arc_num = countArcs(_graph);
   650       _arc_num = countArcs(_graph);
   680       int all_node_num = _node_num + 1;
   651       int all_node_num = _node_num + 1;
   681       int all_arc_num = _arc_num + _node_num;
   652       int max_arc_num = _arc_num + 2 * _node_num;
   682 
   653 
   683       _source.resize(all_arc_num);
   654       _source.resize(max_arc_num);
   684       _target.resize(all_arc_num);
   655       _target.resize(max_arc_num);
   685 
   656 
   686       _lower.resize(all_arc_num);
   657       _lower.resize(_arc_num);
   687       _upper.resize(all_arc_num);
   658       _upper.resize(_arc_num);
   688       _cap.resize(all_arc_num);
   659       _cap.resize(max_arc_num);
   689       _cost.resize(all_arc_num);
   660       _cost.resize(max_arc_num);
   690       _supply.resize(all_node_num);
   661       _supply.resize(all_node_num);
   691       _flow.resize(all_arc_num);
   662       _flow.resize(max_arc_num);
   692       _pi.resize(all_node_num);
   663       _pi.resize(all_node_num);
   693 
   664 
   694       _parent.resize(all_node_num);
   665       _parent.resize(all_node_num);
   695       _pred.resize(all_node_num);
   666       _pred.resize(all_node_num);
   696       _forward.resize(all_node_num);
   667       _forward.resize(all_node_num);
   697       _thread.resize(all_node_num);
   668       _thread.resize(all_node_num);
   698       _rev_thread.resize(all_node_num);
   669       _rev_thread.resize(all_node_num);
   699       _succ_num.resize(all_node_num);
   670       _succ_num.resize(all_node_num);
   700       _last_succ.resize(all_node_num);
   671       _last_succ.resize(all_node_num);
   701       _state.resize(all_arc_num);
   672       _state.resize(max_arc_num);
   702 
   673 
   703       // Copy the graph (store the arcs in a mixed order)
   674       // Copy the graph (store the arcs in a mixed order)
   704       int i = 0;
   675       int i = 0;
   705       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   676       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   706         _node_id[n] = i;
   677         _node_id[n] = i;
  1067       }
  1038       }
  1068 
  1039 
  1069       // Initialize artifical cost
  1040       // Initialize artifical cost
  1070       Cost ART_COST;
  1041       Cost ART_COST;
  1071       if (std::numeric_limits<Cost>::is_exact) {
  1042       if (std::numeric_limits<Cost>::is_exact) {
  1072         ART_COST = std::numeric_limits<Cost>::max() / 4 + 1;
  1043         ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
  1073       } else {
  1044       } else {
  1074         ART_COST = std::numeric_limits<Cost>::min();
  1045         ART_COST = std::numeric_limits<Cost>::min();
  1075         for (int i = 0; i != _arc_num; ++i) {
  1046         for (int i = 0; i != _arc_num; ++i) {
  1076           if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1047           if (_cost[i] > ART_COST) ART_COST = _cost[i];
  1077         }
  1048         }
  1091       _thread[_root] = 0;
  1062       _thread[_root] = 0;
  1092       _rev_thread[0] = _root;
  1063       _rev_thread[0] = _root;
  1093       _succ_num[_root] = _node_num + 1;
  1064       _succ_num[_root] = _node_num + 1;
  1094       _last_succ[_root] = _root - 1;
  1065       _last_succ[_root] = _root - 1;
  1095       _supply[_root] = -_sum_supply;
  1066       _supply[_root] = -_sum_supply;
  1096       _pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST;
  1067       _pi[_root] = 0;
  1097 
  1068 
  1098       // Add artificial arcs and initialize the spanning tree data structure
  1069       // Add artificial arcs and initialize the spanning tree data structure
  1099       for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1070       if (_sum_supply == 0) {
  1100         _parent[u] = _root;
  1071         // EQ supply constraints
  1101         _pred[u] = e;
  1072         _search_arc_num = _arc_num;
  1102         _thread[u] = u + 1;
  1073         _all_arc_num = _arc_num + _node_num;
  1103         _rev_thread[u + 1] = u;
  1074         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1104         _succ_num[u] = 1;
  1075           _parent[u] = _root;
  1105         _last_succ[u] = u;
  1076           _pred[u] = e;
  1106         _cost[e] = ART_COST;
  1077           _thread[u] = u + 1;
  1107         _cap[e] = INF;
  1078           _rev_thread[u + 1] = u;
  1108         _state[e] = STATE_TREE;
  1079           _succ_num[u] = 1;
  1109         if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
  1080           _last_succ[u] = u;
  1110           _flow[e] = _supply[u];
  1081           _cap[e] = INF;
  1111           _forward[u] = true;
  1082           _state[e] = STATE_TREE;
  1112           _pi[u] = -ART_COST + _pi[_root];
  1083           if (_supply[u] >= 0) {
  1113         } else {
  1084             _forward[u] = true;
  1114           _flow[e] = -_supply[u];
  1085             _pi[u] = 0;
  1115           _forward[u] = false;
  1086             _source[e] = u;
  1116           _pi[u] = ART_COST + _pi[_root];
  1087             _target[e] = _root;
  1117         }
  1088             _flow[e] = _supply[u];
       
  1089             _cost[e] = 0;
       
  1090           } else {
       
  1091             _forward[u] = false;
       
  1092             _pi[u] = ART_COST;
       
  1093             _source[e] = _root;
       
  1094             _target[e] = u;
       
  1095             _flow[e] = -_supply[u];
       
  1096             _cost[e] = ART_COST;
       
  1097           }
       
  1098         }
       
  1099       }
       
  1100       else if (_sum_supply > 0) {
       
  1101         // LEQ supply constraints
       
  1102         _search_arc_num = _arc_num + _node_num;
       
  1103         int f = _arc_num + _node_num;
       
  1104         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
       
  1105           _parent[u] = _root;
       
  1106           _thread[u] = u + 1;
       
  1107           _rev_thread[u + 1] = u;
       
  1108           _succ_num[u] = 1;
       
  1109           _last_succ[u] = u;
       
  1110           if (_supply[u] >= 0) {
       
  1111             _forward[u] = true;
       
  1112             _pi[u] = 0;
       
  1113             _pred[u] = e;
       
  1114             _source[e] = u;
       
  1115             _target[e] = _root;
       
  1116             _cap[e] = INF;
       
  1117             _flow[e] = _supply[u];
       
  1118             _cost[e] = 0;
       
  1119             _state[e] = STATE_TREE;
       
  1120           } else {
       
  1121             _forward[u] = false;
       
  1122             _pi[u] = ART_COST;
       
  1123             _pred[u] = f;
       
  1124             _source[f] = _root;
       
  1125             _target[f] = u;
       
  1126             _cap[f] = INF;
       
  1127             _flow[f] = -_supply[u];
       
  1128             _cost[f] = ART_COST;
       
  1129             _state[f] = STATE_TREE;
       
  1130             _source[e] = u;
       
  1131             _target[e] = _root;
       
  1132             _cap[e] = INF;
       
  1133             _flow[e] = 0;
       
  1134             _cost[e] = 0;
       
  1135             _state[e] = STATE_LOWER;
       
  1136             ++f;
       
  1137           }
       
  1138         }
       
  1139         _all_arc_num = f;
       
  1140       }
       
  1141       else {
       
  1142         // GEQ supply constraints
       
  1143         _search_arc_num = _arc_num + _node_num;
       
  1144         int f = _arc_num + _node_num;
       
  1145         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
       
  1146           _parent[u] = _root;
       
  1147           _thread[u] = u + 1;
       
  1148           _rev_thread[u + 1] = u;
       
  1149           _succ_num[u] = 1;
       
  1150           _last_succ[u] = u;
       
  1151           if (_supply[u] <= 0) {
       
  1152             _forward[u] = false;
       
  1153             _pi[u] = 0;
       
  1154             _pred[u] = e;
       
  1155             _source[e] = _root;
       
  1156             _target[e] = u;
       
  1157             _cap[e] = INF;
       
  1158             _flow[e] = -_supply[u];
       
  1159             _cost[e] = 0;
       
  1160             _state[e] = STATE_TREE;
       
  1161           } else {
       
  1162             _forward[u] = true;
       
  1163             _pi[u] = -ART_COST;
       
  1164             _pred[u] = f;
       
  1165             _source[f] = u;
       
  1166             _target[f] = _root;
       
  1167             _cap[f] = INF;
       
  1168             _flow[f] = _supply[u];
       
  1169             _state[f] = STATE_TREE;
       
  1170             _cost[f] = ART_COST;
       
  1171             _source[e] = _root;
       
  1172             _target[e] = u;
       
  1173             _cap[e] = INF;
       
  1174             _flow[e] = 0;
       
  1175             _cost[e] = 0;
       
  1176             _state[e] = STATE_LOWER;
       
  1177             ++f;
       
  1178           }
       
  1179         }
       
  1180         _all_arc_num = f;
  1118       }
  1181       }
  1119 
  1182 
  1120       return true;
  1183       return true;
  1121     }
  1184     }
  1122 
  1185 
  1372           updatePotential();
  1435           updatePotential();
  1373         }
  1436         }
  1374       }
  1437       }
  1375       
  1438       
  1376       // Check feasibility
  1439       // Check feasibility
  1377       if (_sum_supply < 0) {
  1440       for (int e = _search_arc_num; e != _all_arc_num; ++e) {
  1378         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1441         if (_flow[e] != 0) return INFEASIBLE;
  1379           if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE;
       
  1380         }
       
  1381       }
       
  1382       else if (_sum_supply > 0) {
       
  1383         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
       
  1384           if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE;
       
  1385         }
       
  1386       }
       
  1387       else {
       
  1388         for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
       
  1389           if (_flow[e] != 0) return INFEASIBLE;
       
  1390         }
       
  1391       }
  1442       }
  1392 
  1443 
  1393       // Transform the solution and the supply map to the original form
  1444       // Transform the solution and the supply map to the original form
  1394       if (_have_lower) {
  1445       if (_have_lower) {
  1395         for (int i = 0; i != _arc_num; ++i) {
  1446         for (int i = 0; i != _arc_num; ++i) {
  1399             _supply[_source[i]] += c;
  1450             _supply[_source[i]] += c;
  1400             _supply[_target[i]] -= c;
  1451             _supply[_target[i]] -= c;
  1401           }
  1452           }
  1402         }
  1453         }
  1403       }
  1454       }
       
  1455       
       
  1456       // Shift potentials to meet the requirements of the GEQ/LEQ type
       
  1457       // optimality conditions
       
  1458       if (_sum_supply == 0) {
       
  1459         if (_stype == GEQ) {
       
  1460           Cost max_pot = std::numeric_limits<Cost>::min();
       
  1461           for (int i = 0; i != _node_num; ++i) {
       
  1462             if (_pi[i] > max_pot) max_pot = _pi[i];
       
  1463           }
       
  1464           if (max_pot > 0) {
       
  1465             for (int i = 0; i != _node_num; ++i)
       
  1466               _pi[i] -= max_pot;
       
  1467           }
       
  1468         } else {
       
  1469           Cost min_pot = std::numeric_limits<Cost>::max();
       
  1470           for (int i = 0; i != _node_num; ++i) {
       
  1471             if (_pi[i] < min_pot) min_pot = _pi[i];
       
  1472           }
       
  1473           if (min_pot < 0) {
       
  1474             for (int i = 0; i != _node_num; ++i)
       
  1475               _pi[i] -= min_pot;
       
  1476           }
       
  1477         }
       
  1478       }
  1404 
  1479 
  1405       return OPTIMAL;
  1480       return OPTIMAL;
  1406     }
  1481     }
  1407 
  1482 
  1408   }; //class NetworkSimplex
  1483   }; //class NetworkSimplex