913 for (int j = 0; j != limit; ++j) { |
933 for (int j = 0; j != limit; ++j) { |
914 if (!_forward[j]) _res_cap[j] += _lower[j]; |
934 if (!_forward[j]) _res_cap[j] += _lower[j]; |
915 } |
935 } |
916 } |
936 } |
917 } |
937 } |
|
938 |
|
939 // Initialize a cost scaling phase |
|
940 void initPhase() { |
|
941 // Saturate arcs not satisfying the optimality condition |
|
942 for (int u = 0; u != _res_node_num; ++u) { |
|
943 int last_out = _first_out[u+1]; |
|
944 LargeCost pi_u = _pi[u]; |
|
945 for (int a = _first_out[u]; a != last_out; ++a) { |
|
946 int v = _target[a]; |
|
947 if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
|
948 Value delta = _res_cap[a]; |
|
949 _excess[u] -= delta; |
|
950 _excess[v] += delta; |
|
951 _res_cap[a] = 0; |
|
952 _res_cap[_reverse[a]] += delta; |
|
953 } |
|
954 } |
|
955 } |
|
956 |
|
957 // Find active nodes (i.e. nodes with positive excess) |
|
958 for (int u = 0; u != _res_node_num; ++u) { |
|
959 if (_excess[u] > 0) _active_nodes.push_back(u); |
|
960 } |
|
961 |
|
962 // Initialize the next arcs |
|
963 for (int u = 0; u != _res_node_num; ++u) { |
|
964 _next_out[u] = _first_out[u]; |
|
965 } |
|
966 } |
|
967 |
|
968 // Early termination heuristic |
|
969 bool earlyTermination() { |
|
970 const double EARLY_TERM_FACTOR = 3.0; |
|
971 |
|
972 // Build a static residual graph |
|
973 _arc_vec.clear(); |
|
974 _cost_vec.clear(); |
|
975 for (int j = 0; j != _res_arc_num; ++j) { |
|
976 if (_res_cap[j] > 0) { |
|
977 _arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
978 _cost_vec.push_back(_cost[j] + 1); |
|
979 } |
|
980 } |
|
981 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
982 |
|
983 // Run Bellman-Ford algorithm to check if the current flow is optimal |
|
984 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
985 bf.init(0); |
|
986 bool done = false; |
|
987 int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
|
988 for (int i = 0; i < K && !done; ++i) { |
|
989 done = bf.processNextWeakRound(); |
|
990 } |
|
991 return done; |
|
992 } |
|
993 |
|
994 // Global potential update heuristic |
|
995 void globalUpdate() { |
|
996 int bucket_end = _root + 1; |
|
997 |
|
998 // Initialize buckets |
|
999 for (int r = 0; r != _max_rank; ++r) { |
|
1000 _buckets[r] = bucket_end; |
|
1001 } |
|
1002 Value total_excess = 0; |
|
1003 for (int i = 0; i != _res_node_num; ++i) { |
|
1004 if (_excess[i] < 0) { |
|
1005 _rank[i] = 0; |
|
1006 _bucket_next[i] = _buckets[0]; |
|
1007 _bucket_prev[_buckets[0]] = i; |
|
1008 _buckets[0] = i; |
|
1009 } else { |
|
1010 total_excess += _excess[i]; |
|
1011 _rank[i] = _max_rank; |
|
1012 } |
|
1013 } |
|
1014 if (total_excess == 0) return; |
|
1015 |
|
1016 // Search the buckets |
|
1017 int r = 0; |
|
1018 for ( ; r != _max_rank; ++r) { |
|
1019 while (_buckets[r] != bucket_end) { |
|
1020 // Remove the first node from the current bucket |
|
1021 int u = _buckets[r]; |
|
1022 _buckets[r] = _bucket_next[u]; |
|
1023 |
|
1024 // Search the incomming arcs of u |
|
1025 LargeCost pi_u = _pi[u]; |
|
1026 int last_out = _first_out[u+1]; |
|
1027 for (int a = _first_out[u]; a != last_out; ++a) { |
|
1028 int ra = _reverse[a]; |
|
1029 if (_res_cap[ra] > 0) { |
|
1030 int v = _source[ra]; |
|
1031 int old_rank_v = _rank[v]; |
|
1032 if (r < old_rank_v) { |
|
1033 // Compute the new rank of v |
|
1034 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
|
1035 int new_rank_v = old_rank_v; |
|
1036 if (nrc < LargeCost(_max_rank)) |
|
1037 new_rank_v = r + 1 + int(nrc); |
|
1038 |
|
1039 // Change the rank of v |
|
1040 if (new_rank_v < old_rank_v) { |
|
1041 _rank[v] = new_rank_v; |
|
1042 _next_out[v] = _first_out[v]; |
|
1043 |
|
1044 // Remove v from its old bucket |
|
1045 if (old_rank_v < _max_rank) { |
|
1046 if (_buckets[old_rank_v] == v) { |
|
1047 _buckets[old_rank_v] = _bucket_next[v]; |
|
1048 } else { |
|
1049 _bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
|
1050 _bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
|
1051 } |
|
1052 } |
|
1053 |
|
1054 // Insert v to its new bucket |
|
1055 _bucket_next[v] = _buckets[new_rank_v]; |
|
1056 _bucket_prev[_buckets[new_rank_v]] = v; |
|
1057 _buckets[new_rank_v] = v; |
|
1058 } |
|
1059 } |
|
1060 } |
|
1061 } |
|
1062 |
|
1063 // Finish search if there are no more active nodes |
|
1064 if (_excess[u] > 0) { |
|
1065 total_excess -= _excess[u]; |
|
1066 if (total_excess <= 0) break; |
|
1067 } |
|
1068 } |
|
1069 if (total_excess <= 0) break; |
|
1070 } |
|
1071 |
|
1072 // Relabel nodes |
|
1073 for (int u = 0; u != _res_node_num; ++u) { |
|
1074 int k = std::min(_rank[u], r); |
|
1075 if (k > 0) { |
|
1076 _pi[u] -= _epsilon * k; |
|
1077 _next_out[u] = _first_out[u]; |
|
1078 } |
|
1079 } |
|
1080 } |
918 |
1081 |
919 /// Execute the algorithm performing augment and relabel operations |
1082 /// Execute the algorithm performing augment and relabel operations |
920 void startAugment(int max_length = std::numeric_limits<int>::max()) { |
1083 void startAugment(int max_length = std::numeric_limits<int>::max()) { |
921 // Paramters for heuristics |
1084 // Paramters for heuristics |
922 const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
1085 const int EARLY_TERM_EPSILON_LIMIT = 1000; |
923 const int BF_HEURISTIC_BOUND_FACTOR = 3; |
1086 const double GLOBAL_UPDATE_FACTOR = 3.0; |
924 |
1087 |
|
1088 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
1089 (_res_node_num + _sup_node_num * _sup_node_num)); |
|
1090 int next_update_limit = global_update_freq; |
|
1091 |
|
1092 int relabel_cnt = 0; |
|
1093 |
925 // Perform cost scaling phases |
1094 // Perform cost scaling phases |
926 IntVector pred_arc(_res_node_num); |
1095 std::vector<int> path; |
927 std::vector<int> path_nodes; |
|
928 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1096 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
929 1 : _epsilon / _alpha ) |
1097 1 : _epsilon / _alpha ) |
930 { |
1098 { |
931 // "Early Termination" heuristic: use Bellman-Ford algorithm |
1099 // Early termination heuristic |
932 // to check if the current flow is optimal |
1100 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
933 if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { |
1101 if (earlyTermination()) break; |
934 _arc_vec.clear(); |
|
935 _cost_vec.clear(); |
|
936 for (int j = 0; j != _res_arc_num; ++j) { |
|
937 if (_res_cap[j] > 0) { |
|
938 _arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
939 _cost_vec.push_back(_cost[j] + 1); |
|
940 } |
|
941 } |
|
942 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
943 |
|
944 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
945 bf.init(0); |
|
946 bool done = false; |
|
947 int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
948 for (int i = 0; i < K && !done; ++i) |
|
949 done = bf.processNextWeakRound(); |
|
950 if (done) break; |
|
951 } |
|
952 |
|
953 // Saturate arcs not satisfying the optimality condition |
|
954 for (int a = 0; a != _res_arc_num; ++a) { |
|
955 if (_res_cap[a] > 0 && |
|
956 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
|
957 Value delta = _res_cap[a]; |
|
958 _excess[_source[a]] -= delta; |
|
959 _excess[_target[a]] += delta; |
|
960 _res_cap[a] = 0; |
|
961 _res_cap[_reverse[a]] += delta; |
|
962 } |
|
963 } |
1102 } |
964 |
1103 |
965 // Find active nodes (i.e. nodes with positive excess) |
1104 // Initialize current phase |
966 for (int u = 0; u != _res_node_num; ++u) { |
1105 initPhase(); |
967 if (_excess[u] > 0) _active_nodes.push_back(u); |
1106 |
968 } |
|
969 |
|
970 // Initialize the next arcs |
|
971 for (int u = 0; u != _res_node_num; ++u) { |
|
972 _next_out[u] = _first_out[u]; |
|
973 } |
|
974 |
|
975 // Perform partial augment and relabel operations |
1107 // Perform partial augment and relabel operations |
976 while (true) { |
1108 while (true) { |
977 // Select an active node (FIFO selection) |
1109 // Select an active node (FIFO selection) |
978 while (_active_nodes.size() > 0 && |
1110 while (_active_nodes.size() > 0 && |
979 _excess[_active_nodes.front()] <= 0) { |
1111 _excess[_active_nodes.front()] <= 0) { |
980 _active_nodes.pop_front(); |
1112 _active_nodes.pop_front(); |
981 } |
1113 } |
982 if (_active_nodes.size() == 0) break; |
1114 if (_active_nodes.size() == 0) break; |
983 int start = _active_nodes.front(); |
1115 int start = _active_nodes.front(); |
984 path_nodes.clear(); |
|
985 path_nodes.push_back(start); |
|
986 |
1116 |
987 // Find an augmenting path from the start node |
1117 // Find an augmenting path from the start node |
|
1118 path.clear(); |
988 int tip = start; |
1119 int tip = start; |
989 while (_excess[tip] >= 0 && |
1120 while (_excess[tip] >= 0 && int(path.size()) < max_length) { |
990 int(path_nodes.size()) <= max_length) { |
|
991 int u; |
1121 int u; |
992 LargeCost min_red_cost, rc; |
1122 LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
993 int last_out = _sum_supply < 0 ? |
1123 int last_out = _first_out[tip+1]; |
994 _first_out[tip+1] : _first_out[tip+1] - 1; |
|
995 for (int a = _next_out[tip]; a != last_out; ++a) { |
1124 for (int a = _next_out[tip]; a != last_out; ++a) { |
996 if (_res_cap[a] > 0 && |
1125 u = _target[a]; |
997 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
1126 if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { |
998 u = _target[a]; |
1127 path.push_back(a); |
999 pred_arc[u] = a; |
|
1000 _next_out[tip] = a; |
1128 _next_out[tip] = a; |
1001 tip = u; |
1129 tip = u; |
1002 path_nodes.push_back(tip); |
|
1003 goto next_step; |
1130 goto next_step; |
1004 } |
1131 } |
1005 } |
1132 } |
1006 |
1133 |
1007 // Relabel tip node |
1134 // Relabel tip node |
1008 min_red_cost = std::numeric_limits<LargeCost>::max() / 2; |
1135 min_red_cost = std::numeric_limits<LargeCost>::max(); |
|
1136 if (tip != start) { |
|
1137 int ra = _reverse[path.back()]; |
|
1138 min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
|
1139 } |
1009 for (int a = _first_out[tip]; a != last_out; ++a) { |
1140 for (int a = _first_out[tip]; a != last_out; ++a) { |
1010 rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]]; |
1141 rc = _cost[a] + pi_tip - _pi[_target[a]]; |
1011 if (_res_cap[a] > 0 && rc < min_red_cost) { |
1142 if (_res_cap[a] > 0 && rc < min_red_cost) { |
1012 min_red_cost = rc; |
1143 min_red_cost = rc; |
1013 } |
1144 } |
1014 } |
1145 } |
1015 _pi[tip] -= min_red_cost + _epsilon; |
1146 _pi[tip] -= min_red_cost + _epsilon; |
1016 |
|
1017 // Reset the next arc of tip |
|
1018 _next_out[tip] = _first_out[tip]; |
1147 _next_out[tip] = _first_out[tip]; |
|
1148 ++relabel_cnt; |
1019 |
1149 |
1020 // Step back |
1150 // Step back |
1021 if (tip != start) { |
1151 if (tip != start) { |
1022 path_nodes.pop_back(); |
1152 tip = _source[path.back()]; |
1023 tip = path_nodes.back(); |
1153 path.pop_back(); |
1024 } |
1154 } |
1025 |
1155 |
1026 next_step: ; |
1156 next_step: ; |
1027 } |
1157 } |
1028 |
1158 |
1029 // Augment along the found path (as much flow as possible) |
1159 // Augment along the found path (as much flow as possible) |
1030 Value delta; |
1160 Value delta; |
1031 int u, v = path_nodes.front(), pa; |
1161 int pa, u, v = start; |
1032 for (int i = 1; i < int(path_nodes.size()); ++i) { |
1162 for (int i = 0; i != int(path.size()); ++i) { |
|
1163 pa = path[i]; |
1033 u = v; |
1164 u = v; |
1034 v = path_nodes[i]; |
1165 v = _target[pa]; |
1035 pa = pred_arc[v]; |
|
1036 delta = std::min(_res_cap[pa], _excess[u]); |
1166 delta = std::min(_res_cap[pa], _excess[u]); |
1037 _res_cap[pa] -= delta; |
1167 _res_cap[pa] -= delta; |
1038 _res_cap[_reverse[pa]] += delta; |
1168 _res_cap[_reverse[pa]] += delta; |
1039 _excess[u] -= delta; |
1169 _excess[u] -= delta; |
1040 _excess[v] += delta; |
1170 _excess[v] += delta; |
1041 if (_excess[v] > 0 && _excess[v] <= delta) |
1171 if (_excess[v] > 0 && _excess[v] <= delta) |
1042 _active_nodes.push_back(v); |
1172 _active_nodes.push_back(v); |
1043 } |
1173 } |
|
1174 |
|
1175 // Global update heuristic |
|
1176 if (relabel_cnt >= next_update_limit) { |
|
1177 globalUpdate(); |
|
1178 next_update_limit += global_update_freq; |
|
1179 } |
1044 } |
1180 } |
1045 } |
1181 } |
1046 } |
1182 } |
1047 |
1183 |
1048 /// Execute the algorithm performing push and relabel operations |
1184 /// Execute the algorithm performing push and relabel operations |
1049 void startPush() { |
1185 void startPush() { |
1050 // Paramters for heuristics |
1186 // Paramters for heuristics |
1051 const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
1187 const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1052 const int BF_HEURISTIC_BOUND_FACTOR = 3; |
1188 const double GLOBAL_UPDATE_FACTOR = 2.0; |
1053 |
1189 |
|
1190 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
1191 (_res_node_num + _sup_node_num * _sup_node_num)); |
|
1192 int next_update_limit = global_update_freq; |
|
1193 |
|
1194 int relabel_cnt = 0; |
|
1195 |
1054 // Perform cost scaling phases |
1196 // Perform cost scaling phases |
1055 BoolVector hyper(_res_node_num, false); |
1197 BoolVector hyper(_res_node_num, false); |
|
1198 LargeCostVector hyper_cost(_res_node_num); |
1056 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1199 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1057 1 : _epsilon / _alpha ) |
1200 1 : _epsilon / _alpha ) |
1058 { |
1201 { |
1059 // "Early Termination" heuristic: use Bellman-Ford algorithm |
1202 // Early termination heuristic |
1060 // to check if the current flow is optimal |
1203 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1061 if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { |
1204 if (earlyTermination()) break; |
1062 _arc_vec.clear(); |
1205 } |
1063 _cost_vec.clear(); |
1206 |
1064 for (int j = 0; j != _res_arc_num; ++j) { |
1207 // Initialize current phase |
1065 if (_res_cap[j] > 0) { |
1208 initPhase(); |
1066 _arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
1067 _cost_vec.push_back(_cost[j] + 1); |
|
1068 } |
|
1069 } |
|
1070 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
1071 |
|
1072 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
1073 bf.init(0); |
|
1074 bool done = false; |
|
1075 int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
1076 for (int i = 0; i < K && !done; ++i) |
|
1077 done = bf.processNextWeakRound(); |
|
1078 if (done) break; |
|
1079 } |
|
1080 |
|
1081 // Saturate arcs not satisfying the optimality condition |
|
1082 for (int a = 0; a != _res_arc_num; ++a) { |
|
1083 if (_res_cap[a] > 0 && |
|
1084 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
|
1085 Value delta = _res_cap[a]; |
|
1086 _excess[_source[a]] -= delta; |
|
1087 _excess[_target[a]] += delta; |
|
1088 _res_cap[a] = 0; |
|
1089 _res_cap[_reverse[a]] += delta; |
|
1090 } |
|
1091 } |
|
1092 |
|
1093 // Find active nodes (i.e. nodes with positive excess) |
|
1094 for (int u = 0; u != _res_node_num; ++u) { |
|
1095 if (_excess[u] > 0) _active_nodes.push_back(u); |
|
1096 } |
|
1097 |
|
1098 // Initialize the next arcs |
|
1099 for (int u = 0; u != _res_node_num; ++u) { |
|
1100 _next_out[u] = _first_out[u]; |
|
1101 } |
|
1102 |
1209 |
1103 // Perform push and relabel operations |
1210 // Perform push and relabel operations |
1104 while (_active_nodes.size() > 0) { |
1211 while (_active_nodes.size() > 0) { |
1105 LargeCost min_red_cost, rc; |
1212 LargeCost min_red_cost, rc, pi_n; |
1106 Value delta; |
1213 Value delta; |
1107 int n, t, a, last_out = _res_arc_num; |
1214 int n, t, a, last_out = _res_arc_num; |
1108 |
1215 |
|
1216 next_node: |
1109 // Select an active node (FIFO selection) |
1217 // Select an active node (FIFO selection) |
1110 next_node: |
|
1111 n = _active_nodes.front(); |
1218 n = _active_nodes.front(); |
1112 last_out = _sum_supply < 0 ? |
1219 last_out = _first_out[n+1]; |
1113 _first_out[n+1] : _first_out[n+1] - 1; |
1220 pi_n = _pi[n]; |
1114 |
1221 |
1115 // Perform push operations if there are admissible arcs |
1222 // Perform push operations if there are admissible arcs |
1116 if (_excess[n] > 0) { |
1223 if (_excess[n] > 0) { |
1117 for (a = _next_out[n]; a != last_out; ++a) { |
1224 for (a = _next_out[n]; a != last_out; ++a) { |
1118 if (_res_cap[a] > 0 && |
1225 if (_res_cap[a] > 0 && |
1119 _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) { |
1226 _cost[a] + pi_n - _pi[_target[a]] < 0) { |
1120 delta = std::min(_res_cap[a], _excess[n]); |
1227 delta = std::min(_res_cap[a], _excess[n]); |
1121 t = _target[a]; |
1228 t = _target[a]; |
1122 |
1229 |
1123 // Push-look-ahead heuristic |
1230 // Push-look-ahead heuristic |
1124 Value ahead = -_excess[t]; |
1231 Value ahead = -_excess[t]; |
1125 int last_out_t = _sum_supply < 0 ? |
1232 int last_out_t = _first_out[t+1]; |
1126 _first_out[t+1] : _first_out[t+1] - 1; |
1233 LargeCost pi_t = _pi[t]; |
1127 for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1234 for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1128 if (_res_cap[ta] > 0 && |
1235 if (_res_cap[ta] > 0 && |
1129 _cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0) |
1236 _cost[ta] + pi_t - _pi[_target[ta]] < 0) |
1130 ahead += _res_cap[ta]; |
1237 ahead += _res_cap[ta]; |
1131 if (ahead >= delta) break; |
1238 if (ahead >= delta) break; |
1132 } |
1239 } |
1133 if (ahead < 0) ahead = 0; |
1240 if (ahead < 0) ahead = 0; |
1134 |
1241 |
1135 // Push flow along the arc |
1242 // Push flow along the arc |
1136 if (ahead < delta) { |
1243 if (ahead < delta && !hyper[t]) { |
1137 _res_cap[a] -= ahead; |
1244 _res_cap[a] -= ahead; |
1138 _res_cap[_reverse[a]] += ahead; |
1245 _res_cap[_reverse[a]] += ahead; |
1139 _excess[n] -= ahead; |
1246 _excess[n] -= ahead; |
1140 _excess[t] += ahead; |
1247 _excess[t] += ahead; |
1141 _active_nodes.push_front(t); |
1248 _active_nodes.push_front(t); |
1142 hyper[t] = true; |
1249 hyper[t] = true; |
|
1250 hyper_cost[t] = _cost[a] + pi_n - pi_t; |
1143 _next_out[n] = a; |
1251 _next_out[n] = a; |
1144 goto next_node; |
1252 goto next_node; |
1145 } else { |
1253 } else { |
1146 _res_cap[a] -= delta; |
1254 _res_cap[a] -= delta; |
1147 _res_cap[_reverse[a]] += delta; |
1255 _res_cap[_reverse[a]] += delta; |