lemon/hao_orlin.h
changeset 410 eac19fb31a09
child 411 01c443515ad2
equal deleted inserted replaced
-1:000000000000 0:357526ef31c0
       
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_HAO_ORLIN_H
       
    20 #define LEMON_HAO_ORLIN_H
       
    21 
       
    22 #include <vector>
       
    23 #include <list>
       
    24 #include <limits>
       
    25 
       
    26 #include <lemon/maps.h>
       
    27 #include <lemon/core.h>
       
    28 #include <lemon/tolerance.h>
       
    29 
       
    30 /// \file
       
    31 /// \ingroup min_cut
       
    32 /// \brief Implementation of the Hao-Orlin algorithm.
       
    33 ///
       
    34 /// Implementation of the Hao-Orlin algorithm class for testing network
       
    35 /// reliability.
       
    36 
       
    37 namespace lemon {
       
    38 
       
    39   /// \ingroup min_cut
       
    40   ///
       
    41   /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
       
    42   ///
       
    43   /// Hao-Orlin calculates a minimum cut in a directed graph
       
    44   /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
       
    45   /// consists of two phases: in the first phase it determines a
       
    46   /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
       
    47   /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
       
    48   /// out-degree) and in the second phase it determines a minimum cut
       
    49   /// with \f$ source \f$ on the sink-side (i.e. a set
       
    50   /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
       
    51   /// out-degree). Obviously, the smaller of these two cuts will be a
       
    52   /// minimum cut of \f$ D \f$. The algorithm is a modified
       
    53   /// push-relabel preflow algorithm and our implementation calculates
       
    54   /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
       
    55   /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
       
    56   /// purpose of such algorithm is testing network reliability. For an
       
    57   /// undirected graph you can run just the first phase of the
       
    58   /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
       
    59   /// which solves the undirected problem in
       
    60   /// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the
       
    61   /// NagamochiIbaraki algorithm class.
       
    62   ///
       
    63   /// \param _Digraph is the graph type of the algorithm.
       
    64   /// \param _CapacityMap is an edge map of capacities which should
       
    65   /// be any numreric type. The default type is _Digraph::ArcMap<int>.
       
    66   /// \param _Tolerance is the handler of the inexact computation. The
       
    67   /// default type for this is Tolerance<CapacityMap::Value>.
       
    68 #ifdef DOXYGEN
       
    69   template <typename _Digraph, typename _CapacityMap, typename _Tolerance>
       
    70 #else
       
    71   template <typename _Digraph,
       
    72             typename _CapacityMap = typename _Digraph::template ArcMap<int>,
       
    73             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
       
    74 #endif
       
    75   class HaoOrlin {
       
    76   private:
       
    77 
       
    78     typedef _Digraph Digraph;
       
    79     typedef _CapacityMap CapacityMap;
       
    80     typedef _Tolerance Tolerance;
       
    81 
       
    82     typedef typename CapacityMap::Value Value;
       
    83 
       
    84     TEMPLATE_GRAPH_TYPEDEFS(Digraph);
       
    85 
       
    86     const Digraph& _graph;
       
    87     const CapacityMap* _capacity;
       
    88 
       
    89     typedef typename Digraph::template ArcMap<Value> FlowMap;
       
    90     FlowMap* _flow;
       
    91 
       
    92     Node _source;
       
    93 
       
    94     int _node_num;
       
    95 
       
    96     // Bucketing structure
       
    97     std::vector<Node> _first, _last;
       
    98     typename Digraph::template NodeMap<Node>* _next;
       
    99     typename Digraph::template NodeMap<Node>* _prev;
       
   100     typename Digraph::template NodeMap<bool>* _active;
       
   101     typename Digraph::template NodeMap<int>* _bucket;
       
   102 
       
   103     std::vector<bool> _dormant;
       
   104 
       
   105     std::list<std::list<int> > _sets;
       
   106     std::list<int>::iterator _highest;
       
   107 
       
   108     typedef typename Digraph::template NodeMap<Value> ExcessMap;
       
   109     ExcessMap* _excess;
       
   110 
       
   111     typedef typename Digraph::template NodeMap<bool> SourceSetMap;
       
   112     SourceSetMap* _source_set;
       
   113 
       
   114     Value _min_cut;
       
   115 
       
   116     typedef typename Digraph::template NodeMap<bool> MinCutMap;
       
   117     MinCutMap* _min_cut_map;
       
   118 
       
   119     Tolerance _tolerance;
       
   120 
       
   121   public:
       
   122 
       
   123     /// \brief Constructor
       
   124     ///
       
   125     /// Constructor of the algorithm class.
       
   126     HaoOrlin(const Digraph& graph, const CapacityMap& capacity,
       
   127              const Tolerance& tolerance = Tolerance()) :
       
   128       _graph(graph), _capacity(&capacity), _flow(0), _source(),
       
   129       _node_num(), _first(), _last(), _next(0), _prev(0),
       
   130       _active(0), _bucket(0), _dormant(), _sets(), _highest(),
       
   131       _excess(0), _source_set(0), _min_cut(), _min_cut_map(0),
       
   132       _tolerance(tolerance) {}
       
   133 
       
   134     ~HaoOrlin() {
       
   135       if (_min_cut_map) {
       
   136         delete _min_cut_map;
       
   137       }
       
   138       if (_source_set) {
       
   139         delete _source_set;
       
   140       }
       
   141       if (_excess) {
       
   142         delete _excess;
       
   143       }
       
   144       if (_next) {
       
   145         delete _next;
       
   146       }
       
   147       if (_prev) {
       
   148         delete _prev;
       
   149       }
       
   150       if (_active) {
       
   151         delete _active;
       
   152       }
       
   153       if (_bucket) {
       
   154         delete _bucket;
       
   155       }
       
   156       if (_flow) {
       
   157         delete _flow;
       
   158       }
       
   159     }
       
   160 
       
   161   private:
       
   162 
       
   163     void activate(const Node& i) {
       
   164       _active->set(i, true);
       
   165 
       
   166       int bucket = (*_bucket)[i];
       
   167 
       
   168       if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;
       
   169       //unlace
       
   170       _next->set((*_prev)[i], (*_next)[i]);
       
   171       if ((*_next)[i] != INVALID) {
       
   172         _prev->set((*_next)[i], (*_prev)[i]);
       
   173       } else {
       
   174         _last[bucket] = (*_prev)[i];
       
   175       }
       
   176       //lace
       
   177       _next->set(i, _first[bucket]);
       
   178       _prev->set(_first[bucket], i);
       
   179       _prev->set(i, INVALID);
       
   180       _first[bucket] = i;
       
   181     }
       
   182 
       
   183     void deactivate(const Node& i) {
       
   184       _active->set(i, false);
       
   185       int bucket = (*_bucket)[i];
       
   186 
       
   187       if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
       
   188 
       
   189       //unlace
       
   190       _prev->set((*_next)[i], (*_prev)[i]);
       
   191       if ((*_prev)[i] != INVALID) {
       
   192         _next->set((*_prev)[i], (*_next)[i]);
       
   193       } else {
       
   194         _first[bucket] = (*_next)[i];
       
   195       }
       
   196       //lace
       
   197       _prev->set(i, _last[bucket]);
       
   198       _next->set(_last[bucket], i);
       
   199       _next->set(i, INVALID);
       
   200       _last[bucket] = i;
       
   201     }
       
   202 
       
   203     void addItem(const Node& i, int bucket) {
       
   204       (*_bucket)[i] = bucket;
       
   205       if (_last[bucket] != INVALID) {
       
   206         _prev->set(i, _last[bucket]);
       
   207         _next->set(_last[bucket], i);
       
   208         _next->set(i, INVALID);
       
   209         _last[bucket] = i;
       
   210       } else {
       
   211         _prev->set(i, INVALID);
       
   212         _first[bucket] = i;
       
   213         _next->set(i, INVALID);
       
   214         _last[bucket] = i;
       
   215       }
       
   216     }
       
   217 
       
   218     void findMinCutOut() {
       
   219 
       
   220       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   221         _excess->set(n, 0);
       
   222       }
       
   223 
       
   224       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   225         _flow->set(a, 0);
       
   226       }
       
   227 
       
   228       int bucket_num = 1;
       
   229 
       
   230       {
       
   231         typename Digraph::template NodeMap<bool> reached(_graph, false);
       
   232 
       
   233         reached.set(_source, true);
       
   234 
       
   235         bool first_set = true;
       
   236 
       
   237         for (NodeIt t(_graph); t != INVALID; ++t) {
       
   238           if (reached[t]) continue;
       
   239           _sets.push_front(std::list<int>());
       
   240           _sets.front().push_front(bucket_num);
       
   241           _dormant[bucket_num] = !first_set;
       
   242 
       
   243           _bucket->set(t, bucket_num);
       
   244           _first[bucket_num] = _last[bucket_num] = t;
       
   245           _next->set(t, INVALID);
       
   246           _prev->set(t, INVALID);
       
   247 
       
   248           ++bucket_num;
       
   249 
       
   250           std::vector<Node> queue;
       
   251           queue.push_back(t);
       
   252           reached.set(t, true);
       
   253 
       
   254           while (!queue.empty()) {
       
   255             _sets.front().push_front(bucket_num);
       
   256             _dormant[bucket_num] = !first_set;
       
   257             _first[bucket_num] = _last[bucket_num] = INVALID;
       
   258 
       
   259             std::vector<Node> nqueue;
       
   260             for (int i = 0; i < int(queue.size()); ++i) {
       
   261               Node n = queue[i];
       
   262               for (InArcIt a(_graph, n); a != INVALID; ++a) {
       
   263                 Node u = _graph.source(a);
       
   264                 if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
       
   265                   reached.set(u, true);
       
   266                   addItem(u, bucket_num);
       
   267                   nqueue.push_back(u);
       
   268                 }
       
   269               }
       
   270             }
       
   271             queue.swap(nqueue);
       
   272             ++bucket_num;
       
   273           }
       
   274           _sets.front().pop_front();
       
   275           --bucket_num;
       
   276           first_set = false;
       
   277         }
       
   278 
       
   279         _bucket->set(_source, 0);
       
   280         _dormant[0] = true;
       
   281       }
       
   282       _source_set->set(_source, true);
       
   283 
       
   284       Node target = _last[_sets.back().back()];
       
   285       {
       
   286         for (OutArcIt a(_graph, _source); a != INVALID; ++a) {
       
   287           if (_tolerance.positive((*_capacity)[a])) {
       
   288             Node u = _graph.target(a);
       
   289             _flow->set(a, (*_capacity)[a]);
       
   290             _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
       
   291             if (!(*_active)[u] && u != _source) {
       
   292               activate(u);
       
   293             }
       
   294           }
       
   295         }
       
   296 
       
   297         if ((*_active)[target]) {
       
   298           deactivate(target);
       
   299         }
       
   300 
       
   301         _highest = _sets.back().begin();
       
   302         while (_highest != _sets.back().end() &&
       
   303                !(*_active)[_first[*_highest]]) {
       
   304           ++_highest;
       
   305         }
       
   306       }
       
   307 
       
   308       while (true) {
       
   309         while (_highest != _sets.back().end()) {
       
   310           Node n = _first[*_highest];
       
   311           Value excess = (*_excess)[n];
       
   312           int next_bucket = _node_num;
       
   313 
       
   314           int under_bucket;
       
   315           if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
       
   316             under_bucket = -1;
       
   317           } else {
       
   318             under_bucket = *(++std::list<int>::iterator(_highest));
       
   319           }
       
   320 
       
   321           for (OutArcIt a(_graph, n); a != INVALID; ++a) {
       
   322             Node v = _graph.target(a);
       
   323             if (_dormant[(*_bucket)[v]]) continue;
       
   324             Value rem = (*_capacity)[a] - (*_flow)[a];
       
   325             if (!_tolerance.positive(rem)) continue;
       
   326             if ((*_bucket)[v] == under_bucket) {
       
   327               if (!(*_active)[v] && v != target) {
       
   328                 activate(v);
       
   329               }
       
   330               if (!_tolerance.less(rem, excess)) {
       
   331                 _flow->set(a, (*_flow)[a] + excess);
       
   332                 _excess->set(v, (*_excess)[v] + excess);
       
   333                 excess = 0;
       
   334                 goto no_more_push;
       
   335               } else {
       
   336                 excess -= rem;
       
   337                 _excess->set(v, (*_excess)[v] + rem);
       
   338                 _flow->set(a, (*_capacity)[a]);
       
   339               }
       
   340             } else if (next_bucket > (*_bucket)[v]) {
       
   341               next_bucket = (*_bucket)[v];
       
   342             }
       
   343           }
       
   344 
       
   345           for (InArcIt a(_graph, n); a != INVALID; ++a) {
       
   346             Node v = _graph.source(a);
       
   347             if (_dormant[(*_bucket)[v]]) continue;
       
   348             Value rem = (*_flow)[a];
       
   349             if (!_tolerance.positive(rem)) continue;
       
   350             if ((*_bucket)[v] == under_bucket) {
       
   351               if (!(*_active)[v] && v != target) {
       
   352                 activate(v);
       
   353               }
       
   354               if (!_tolerance.less(rem, excess)) {
       
   355                 _flow->set(a, (*_flow)[a] - excess);
       
   356                 _excess->set(v, (*_excess)[v] + excess);
       
   357                 excess = 0;
       
   358                 goto no_more_push;
       
   359               } else {
       
   360                 excess -= rem;
       
   361                 _excess->set(v, (*_excess)[v] + rem);
       
   362                 _flow->set(a, 0);
       
   363               }
       
   364             } else if (next_bucket > (*_bucket)[v]) {
       
   365               next_bucket = (*_bucket)[v];
       
   366             }
       
   367           }
       
   368 
       
   369         no_more_push:
       
   370 
       
   371           _excess->set(n, excess);
       
   372 
       
   373           if (excess != 0) {
       
   374             if ((*_next)[n] == INVALID) {
       
   375               typename std::list<std::list<int> >::iterator new_set =
       
   376                 _sets.insert(--_sets.end(), std::list<int>());
       
   377               new_set->splice(new_set->end(), _sets.back(),
       
   378                               _sets.back().begin(), ++_highest);
       
   379               for (std::list<int>::iterator it = new_set->begin();
       
   380                    it != new_set->end(); ++it) {
       
   381                 _dormant[*it] = true;
       
   382               }
       
   383               while (_highest != _sets.back().end() &&
       
   384                      !(*_active)[_first[*_highest]]) {
       
   385                 ++_highest;
       
   386               }
       
   387             } else if (next_bucket == _node_num) {
       
   388               _first[(*_bucket)[n]] = (*_next)[n];
       
   389               _prev->set((*_next)[n], INVALID);
       
   390 
       
   391               std::list<std::list<int> >::iterator new_set =
       
   392                 _sets.insert(--_sets.end(), std::list<int>());
       
   393 
       
   394               new_set->push_front(bucket_num);
       
   395               _bucket->set(n, bucket_num);
       
   396               _first[bucket_num] = _last[bucket_num] = n;
       
   397               _next->set(n, INVALID);
       
   398               _prev->set(n, INVALID);
       
   399               _dormant[bucket_num] = true;
       
   400               ++bucket_num;
       
   401 
       
   402               while (_highest != _sets.back().end() &&
       
   403                      !(*_active)[_first[*_highest]]) {
       
   404                 ++_highest;
       
   405               }
       
   406             } else {
       
   407               _first[*_highest] = (*_next)[n];
       
   408               _prev->set((*_next)[n], INVALID);
       
   409 
       
   410               while (next_bucket != *_highest) {
       
   411                 --_highest;
       
   412               }
       
   413 
       
   414               if (_highest == _sets.back().begin()) {
       
   415                 _sets.back().push_front(bucket_num);
       
   416                 _dormant[bucket_num] = false;
       
   417                 _first[bucket_num] = _last[bucket_num] = INVALID;
       
   418                 ++bucket_num;
       
   419               }
       
   420               --_highest;
       
   421 
       
   422               _bucket->set(n, *_highest);
       
   423               _next->set(n, _first[*_highest]);
       
   424               if (_first[*_highest] != INVALID) {
       
   425                 _prev->set(_first[*_highest], n);
       
   426               } else {
       
   427                 _last[*_highest] = n;
       
   428               }
       
   429               _first[*_highest] = n;
       
   430             }
       
   431           } else {
       
   432 
       
   433             deactivate(n);
       
   434             if (!(*_active)[_first[*_highest]]) {
       
   435               ++_highest;
       
   436               if (_highest != _sets.back().end() &&
       
   437                   !(*_active)[_first[*_highest]]) {
       
   438                 _highest = _sets.back().end();
       
   439               }
       
   440             }
       
   441           }
       
   442         }
       
   443 
       
   444         if ((*_excess)[target] < _min_cut) {
       
   445           _min_cut = (*_excess)[target];
       
   446           for (NodeIt i(_graph); i != INVALID; ++i) {
       
   447             _min_cut_map->set(i, true);
       
   448           }
       
   449           for (std::list<int>::iterator it = _sets.back().begin();
       
   450                it != _sets.back().end(); ++it) {
       
   451             Node n = _first[*it];
       
   452             while (n != INVALID) {
       
   453               _min_cut_map->set(n, false);
       
   454               n = (*_next)[n];
       
   455             }
       
   456           }
       
   457         }
       
   458 
       
   459         {
       
   460           Node new_target;
       
   461           if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
       
   462             if ((*_next)[target] == INVALID) {
       
   463               _last[(*_bucket)[target]] = (*_prev)[target];
       
   464               new_target = (*_prev)[target];
       
   465             } else {
       
   466               _prev->set((*_next)[target], (*_prev)[target]);
       
   467               new_target = (*_next)[target];
       
   468             }
       
   469             if ((*_prev)[target] == INVALID) {
       
   470               _first[(*_bucket)[target]] = (*_next)[target];
       
   471             } else {
       
   472               _next->set((*_prev)[target], (*_next)[target]);
       
   473             }
       
   474           } else {
       
   475             _sets.back().pop_back();
       
   476             if (_sets.back().empty()) {
       
   477               _sets.pop_back();
       
   478               if (_sets.empty())
       
   479                 break;
       
   480               for (std::list<int>::iterator it = _sets.back().begin();
       
   481                    it != _sets.back().end(); ++it) {
       
   482                 _dormant[*it] = false;
       
   483               }
       
   484             }
       
   485             new_target = _last[_sets.back().back()];
       
   486           }
       
   487 
       
   488           _bucket->set(target, 0);
       
   489 
       
   490           _source_set->set(target, true);
       
   491           for (OutArcIt a(_graph, target); a != INVALID; ++a) {
       
   492             Value rem = (*_capacity)[a] - (*_flow)[a];
       
   493             if (!_tolerance.positive(rem)) continue;
       
   494             Node v = _graph.target(a);
       
   495             if (!(*_active)[v] && !(*_source_set)[v]) {
       
   496               activate(v);
       
   497             }
       
   498             _excess->set(v, (*_excess)[v] + rem);
       
   499             _flow->set(a, (*_capacity)[a]);
       
   500           }
       
   501 
       
   502           for (InArcIt a(_graph, target); a != INVALID; ++a) {
       
   503             Value rem = (*_flow)[a];
       
   504             if (!_tolerance.positive(rem)) continue;
       
   505             Node v = _graph.source(a);
       
   506             if (!(*_active)[v] && !(*_source_set)[v]) {
       
   507               activate(v);
       
   508             }
       
   509             _excess->set(v, (*_excess)[v] + rem);
       
   510             _flow->set(a, 0);
       
   511           }
       
   512 
       
   513           target = new_target;
       
   514           if ((*_active)[target]) {
       
   515             deactivate(target);
       
   516           }
       
   517 
       
   518           _highest = _sets.back().begin();
       
   519           while (_highest != _sets.back().end() &&
       
   520                  !(*_active)[_first[*_highest]]) {
       
   521             ++_highest;
       
   522           }
       
   523         }
       
   524       }
       
   525     }
       
   526 
       
   527     void findMinCutIn() {
       
   528 
       
   529       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   530         _excess->set(n, 0);
       
   531       }
       
   532 
       
   533       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   534         _flow->set(a, 0);
       
   535       }
       
   536 
       
   537       int bucket_num = 1;
       
   538 
       
   539       {
       
   540         typename Digraph::template NodeMap<bool> reached(_graph, false);
       
   541 
       
   542         reached.set(_source, true);
       
   543 
       
   544         bool first_set = true;
       
   545 
       
   546         for (NodeIt t(_graph); t != INVALID; ++t) {
       
   547           if (reached[t]) continue;
       
   548           _sets.push_front(std::list<int>());
       
   549           _sets.front().push_front(bucket_num);
       
   550           _dormant[bucket_num] = !first_set;
       
   551 
       
   552           _bucket->set(t, bucket_num);
       
   553           _first[bucket_num] = _last[bucket_num] = t;
       
   554           _next->set(t, INVALID);
       
   555           _prev->set(t, INVALID);
       
   556 
       
   557           ++bucket_num;
       
   558 
       
   559           std::vector<Node> queue;
       
   560           queue.push_back(t);
       
   561           reached.set(t, true);
       
   562 
       
   563           while (!queue.empty()) {
       
   564             _sets.front().push_front(bucket_num);
       
   565             _dormant[bucket_num] = !first_set;
       
   566             _first[bucket_num] = _last[bucket_num] = INVALID;
       
   567 
       
   568             std::vector<Node> nqueue;
       
   569             for (int i = 0; i < int(queue.size()); ++i) {
       
   570               Node n = queue[i];
       
   571               for (OutArcIt a(_graph, n); a != INVALID; ++a) {
       
   572                 Node u = _graph.target(a);
       
   573                 if (!reached[u] && _tolerance.positive((*_capacity)[a])) {
       
   574                   reached.set(u, true);
       
   575                   addItem(u, bucket_num);
       
   576                   nqueue.push_back(u);
       
   577                 }
       
   578               }
       
   579             }
       
   580             queue.swap(nqueue);
       
   581             ++bucket_num;
       
   582           }
       
   583           _sets.front().pop_front();
       
   584           --bucket_num;
       
   585           first_set = false;
       
   586         }
       
   587 
       
   588         _bucket->set(_source, 0);
       
   589         _dormant[0] = true;
       
   590       }
       
   591       _source_set->set(_source, true);
       
   592 
       
   593       Node target = _last[_sets.back().back()];
       
   594       {
       
   595         for (InArcIt a(_graph, _source); a != INVALID; ++a) {
       
   596           if (_tolerance.positive((*_capacity)[a])) {
       
   597             Node u = _graph.source(a);
       
   598             _flow->set(a, (*_capacity)[a]);
       
   599             _excess->set(u, (*_excess)[u] + (*_capacity)[a]);
       
   600             if (!(*_active)[u] && u != _source) {
       
   601               activate(u);
       
   602             }
       
   603           }
       
   604         }
       
   605         if ((*_active)[target]) {
       
   606           deactivate(target);
       
   607         }
       
   608 
       
   609         _highest = _sets.back().begin();
       
   610         while (_highest != _sets.back().end() &&
       
   611                !(*_active)[_first[*_highest]]) {
       
   612           ++_highest;
       
   613         }
       
   614       }
       
   615 
       
   616 
       
   617       while (true) {
       
   618         while (_highest != _sets.back().end()) {
       
   619           Node n = _first[*_highest];
       
   620           Value excess = (*_excess)[n];
       
   621           int next_bucket = _node_num;
       
   622 
       
   623           int under_bucket;
       
   624           if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
       
   625             under_bucket = -1;
       
   626           } else {
       
   627             under_bucket = *(++std::list<int>::iterator(_highest));
       
   628           }
       
   629 
       
   630           for (InArcIt a(_graph, n); a != INVALID; ++a) {
       
   631             Node v = _graph.source(a);
       
   632             if (_dormant[(*_bucket)[v]]) continue;
       
   633             Value rem = (*_capacity)[a] - (*_flow)[a];
       
   634             if (!_tolerance.positive(rem)) continue;
       
   635             if ((*_bucket)[v] == under_bucket) {
       
   636               if (!(*_active)[v] && v != target) {
       
   637                 activate(v);
       
   638               }
       
   639               if (!_tolerance.less(rem, excess)) {
       
   640                 _flow->set(a, (*_flow)[a] + excess);
       
   641                 _excess->set(v, (*_excess)[v] + excess);
       
   642                 excess = 0;
       
   643                 goto no_more_push;
       
   644               } else {
       
   645                 excess -= rem;
       
   646                 _excess->set(v, (*_excess)[v] + rem);
       
   647                 _flow->set(a, (*_capacity)[a]);
       
   648               }
       
   649             } else if (next_bucket > (*_bucket)[v]) {
       
   650               next_bucket = (*_bucket)[v];
       
   651             }
       
   652           }
       
   653 
       
   654           for (OutArcIt a(_graph, n); a != INVALID; ++a) {
       
   655             Node v = _graph.target(a);
       
   656             if (_dormant[(*_bucket)[v]]) continue;
       
   657             Value rem = (*_flow)[a];
       
   658             if (!_tolerance.positive(rem)) continue;
       
   659             if ((*_bucket)[v] == under_bucket) {
       
   660               if (!(*_active)[v] && v != target) {
       
   661                 activate(v);
       
   662               }
       
   663               if (!_tolerance.less(rem, excess)) {
       
   664                 _flow->set(a, (*_flow)[a] - excess);
       
   665                 _excess->set(v, (*_excess)[v] + excess);
       
   666                 excess = 0;
       
   667                 goto no_more_push;
       
   668               } else {
       
   669                 excess -= rem;
       
   670                 _excess->set(v, (*_excess)[v] + rem);
       
   671                 _flow->set(a, 0);
       
   672               }
       
   673             } else if (next_bucket > (*_bucket)[v]) {
       
   674               next_bucket = (*_bucket)[v];
       
   675             }
       
   676           }
       
   677 
       
   678         no_more_push:
       
   679 
       
   680           _excess->set(n, excess);
       
   681 
       
   682           if (excess != 0) {
       
   683             if ((*_next)[n] == INVALID) {
       
   684               typename std::list<std::list<int> >::iterator new_set =
       
   685                 _sets.insert(--_sets.end(), std::list<int>());
       
   686               new_set->splice(new_set->end(), _sets.back(),
       
   687                               _sets.back().begin(), ++_highest);
       
   688               for (std::list<int>::iterator it = new_set->begin();
       
   689                    it != new_set->end(); ++it) {
       
   690                 _dormant[*it] = true;
       
   691               }
       
   692               while (_highest != _sets.back().end() &&
       
   693                      !(*_active)[_first[*_highest]]) {
       
   694                 ++_highest;
       
   695               }
       
   696             } else if (next_bucket == _node_num) {
       
   697               _first[(*_bucket)[n]] = (*_next)[n];
       
   698               _prev->set((*_next)[n], INVALID);
       
   699 
       
   700               std::list<std::list<int> >::iterator new_set =
       
   701                 _sets.insert(--_sets.end(), std::list<int>());
       
   702 
       
   703               new_set->push_front(bucket_num);
       
   704               _bucket->set(n, bucket_num);
       
   705               _first[bucket_num] = _last[bucket_num] = n;
       
   706               _next->set(n, INVALID);
       
   707               _prev->set(n, INVALID);
       
   708               _dormant[bucket_num] = true;
       
   709               ++bucket_num;
       
   710 
       
   711               while (_highest != _sets.back().end() &&
       
   712                      !(*_active)[_first[*_highest]]) {
       
   713                 ++_highest;
       
   714               }
       
   715             } else {
       
   716               _first[*_highest] = (*_next)[n];
       
   717               _prev->set((*_next)[n], INVALID);
       
   718 
       
   719               while (next_bucket != *_highest) {
       
   720                 --_highest;
       
   721               }
       
   722               if (_highest == _sets.back().begin()) {
       
   723                 _sets.back().push_front(bucket_num);
       
   724                 _dormant[bucket_num] = false;
       
   725                 _first[bucket_num] = _last[bucket_num] = INVALID;
       
   726                 ++bucket_num;
       
   727               }
       
   728               --_highest;
       
   729 
       
   730               _bucket->set(n, *_highest);
       
   731               _next->set(n, _first[*_highest]);
       
   732               if (_first[*_highest] != INVALID) {
       
   733                 _prev->set(_first[*_highest], n);
       
   734               } else {
       
   735                 _last[*_highest] = n;
       
   736               }
       
   737               _first[*_highest] = n;
       
   738             }
       
   739           } else {
       
   740 
       
   741             deactivate(n);
       
   742             if (!(*_active)[_first[*_highest]]) {
       
   743               ++_highest;
       
   744               if (_highest != _sets.back().end() &&
       
   745                   !(*_active)[_first[*_highest]]) {
       
   746                 _highest = _sets.back().end();
       
   747               }
       
   748             }
       
   749           }
       
   750         }
       
   751 
       
   752         if ((*_excess)[target] < _min_cut) {
       
   753           _min_cut = (*_excess)[target];
       
   754           for (NodeIt i(_graph); i != INVALID; ++i) {
       
   755             _min_cut_map->set(i, false);
       
   756           }
       
   757           for (std::list<int>::iterator it = _sets.back().begin();
       
   758                it != _sets.back().end(); ++it) {
       
   759             Node n = _first[*it];
       
   760             while (n != INVALID) {
       
   761               _min_cut_map->set(n, true);
       
   762               n = (*_next)[n];
       
   763             }
       
   764           }
       
   765         }
       
   766 
       
   767         {
       
   768           Node new_target;
       
   769           if ((*_prev)[target] != INVALID || (*_next)[target] != INVALID) {
       
   770             if ((*_next)[target] == INVALID) {
       
   771               _last[(*_bucket)[target]] = (*_prev)[target];
       
   772               new_target = (*_prev)[target];
       
   773             } else {
       
   774               _prev->set((*_next)[target], (*_prev)[target]);
       
   775               new_target = (*_next)[target];
       
   776             }
       
   777             if ((*_prev)[target] == INVALID) {
       
   778               _first[(*_bucket)[target]] = (*_next)[target];
       
   779             } else {
       
   780               _next->set((*_prev)[target], (*_next)[target]);
       
   781             }
       
   782           } else {
       
   783             _sets.back().pop_back();
       
   784             if (_sets.back().empty()) {
       
   785               _sets.pop_back();
       
   786               if (_sets.empty())
       
   787                 break;
       
   788               for (std::list<int>::iterator it = _sets.back().begin();
       
   789                    it != _sets.back().end(); ++it) {
       
   790                 _dormant[*it] = false;
       
   791               }
       
   792             }
       
   793             new_target = _last[_sets.back().back()];
       
   794           }
       
   795 
       
   796           _bucket->set(target, 0);
       
   797 
       
   798           _source_set->set(target, true);
       
   799           for (InArcIt a(_graph, target); a != INVALID; ++a) {
       
   800             Value rem = (*_capacity)[a] - (*_flow)[a];
       
   801             if (!_tolerance.positive(rem)) continue;
       
   802             Node v = _graph.source(a);
       
   803             if (!(*_active)[v] && !(*_source_set)[v]) {
       
   804               activate(v);
       
   805             }
       
   806             _excess->set(v, (*_excess)[v] + rem);
       
   807             _flow->set(a, (*_capacity)[a]);
       
   808           }
       
   809 
       
   810           for (OutArcIt a(_graph, target); a != INVALID; ++a) {
       
   811             Value rem = (*_flow)[a];
       
   812             if (!_tolerance.positive(rem)) continue;
       
   813             Node v = _graph.target(a);
       
   814             if (!(*_active)[v] && !(*_source_set)[v]) {
       
   815               activate(v);
       
   816             }
       
   817             _excess->set(v, (*_excess)[v] + rem);
       
   818             _flow->set(a, 0);
       
   819           }
       
   820 
       
   821           target = new_target;
       
   822           if ((*_active)[target]) {
       
   823             deactivate(target);
       
   824           }
       
   825 
       
   826           _highest = _sets.back().begin();
       
   827           while (_highest != _sets.back().end() &&
       
   828                  !(*_active)[_first[*_highest]]) {
       
   829             ++_highest;
       
   830           }
       
   831         }
       
   832       }
       
   833     }
       
   834 
       
   835   public:
       
   836 
       
   837     /// \name Execution control
       
   838     /// The simplest way to execute the algorithm is to use
       
   839     /// one of the member functions called \c run(...).
       
   840     /// \n
       
   841     /// If you need more control on the execution,
       
   842     /// first you must call \ref init(), then the \ref calculateIn() or
       
   843     /// \ref calculateIn() functions.
       
   844 
       
   845     /// @{
       
   846 
       
   847     /// \brief Initializes the internal data structures.
       
   848     ///
       
   849     /// Initializes the internal data structures. It creates
       
   850     /// the maps, residual graph adaptors and some bucket structures
       
   851     /// for the algorithm.
       
   852     void init() {
       
   853       init(NodeIt(_graph));
       
   854     }
       
   855 
       
   856     /// \brief Initializes the internal data structures.
       
   857     ///
       
   858     /// Initializes the internal data structures. It creates
       
   859     /// the maps, residual graph adaptor and some bucket structures
       
   860     /// for the algorithm. Node \c source  is used as the push-relabel
       
   861     /// algorithm's source.
       
   862     void init(const Node& source) {
       
   863       _source = source;
       
   864 
       
   865       _node_num = countNodes(_graph);
       
   866 
       
   867       _first.resize(_node_num + 1);
       
   868       _last.resize(_node_num + 1);
       
   869 
       
   870       _dormant.resize(_node_num + 1);
       
   871 
       
   872       if (!_flow) {
       
   873         _flow = new FlowMap(_graph);
       
   874       }
       
   875       if (!_next) {
       
   876         _next = new typename Digraph::template NodeMap<Node>(_graph);
       
   877       }
       
   878       if (!_prev) {
       
   879         _prev = new typename Digraph::template NodeMap<Node>(_graph);
       
   880       }
       
   881       if (!_active) {
       
   882         _active = new typename Digraph::template NodeMap<bool>(_graph);
       
   883       }
       
   884       if (!_bucket) {
       
   885         _bucket = new typename Digraph::template NodeMap<int>(_graph);
       
   886       }
       
   887       if (!_excess) {
       
   888         _excess = new ExcessMap(_graph);
       
   889       }
       
   890       if (!_source_set) {
       
   891         _source_set = new SourceSetMap(_graph);
       
   892       }
       
   893       if (!_min_cut_map) {
       
   894         _min_cut_map = new MinCutMap(_graph);
       
   895       }
       
   896 
       
   897       _min_cut = std::numeric_limits<Value>::max();
       
   898     }
       
   899 
       
   900 
       
   901     /// \brief Calculates a minimum cut with \f$ source \f$ on the
       
   902     /// source-side.
       
   903     ///
       
   904     /// Calculates a minimum cut with \f$ source \f$ on the
       
   905     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source
       
   906     /// \in X \f$ and minimal out-degree).
       
   907     void calculateOut() {
       
   908       findMinCutOut();
       
   909     }
       
   910 
       
   911     /// \brief Calculates a minimum cut with \f$ source \f$ on the
       
   912     /// target-side.
       
   913     ///
       
   914     /// Calculates a minimum cut with \f$ source \f$ on the
       
   915     /// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source
       
   916     /// \in X \f$ and minimal out-degree).
       
   917     void calculateIn() {
       
   918       findMinCutIn();
       
   919     }
       
   920 
       
   921 
       
   922     /// \brief Runs the algorithm.
       
   923     ///
       
   924     /// Runs the algorithm. It finds nodes \c source and \c target
       
   925     /// arbitrarily and then calls \ref init(), \ref calculateOut()
       
   926     /// and \ref calculateIn().
       
   927     void run() {
       
   928       init();
       
   929       calculateOut();
       
   930       calculateIn();
       
   931     }
       
   932 
       
   933     /// \brief Runs the algorithm.
       
   934     ///
       
   935     /// Runs the algorithm. It uses the given \c source node, finds a
       
   936     /// proper \c target and then calls the \ref init(), \ref
       
   937     /// calculateOut() and \ref calculateIn().
       
   938     void run(const Node& s) {
       
   939       init(s);
       
   940       calculateOut();
       
   941       calculateIn();
       
   942     }
       
   943 
       
   944     /// @}
       
   945 
       
   946     /// \name Query Functions
       
   947     /// The result of the %HaoOrlin algorithm
       
   948     /// can be obtained using these functions.
       
   949     /// \n
       
   950     /// Before using these functions, either \ref run(), \ref
       
   951     /// calculateOut() or \ref calculateIn() must be called.
       
   952 
       
   953     /// @{
       
   954 
       
   955     /// \brief Returns the value of the minimum value cut.
       
   956     ///
       
   957     /// Returns the value of the minimum value cut.
       
   958     Value minCutValue() const {
       
   959       return _min_cut;
       
   960     }
       
   961 
       
   962 
       
   963     /// \brief Returns a minimum cut.
       
   964     ///
       
   965     /// Sets \c nodeMap to the characteristic vector of a minimum
       
   966     /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
       
   967     /// with minimal out-degree (i.e. \c nodeMap will be true exactly
       
   968     /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
       
   969     /// bool-valued node-map.
       
   970     template <typename NodeMap>
       
   971     Value minCutMap(NodeMap& nodeMap) const {
       
   972       for (NodeIt it(_graph); it != INVALID; ++it) {
       
   973         nodeMap.set(it, (*_min_cut_map)[it]);
       
   974       }
       
   975       return _min_cut;
       
   976     }
       
   977 
       
   978     /// @}
       
   979 
       
   980   }; //class HaoOrlin
       
   981 
       
   982 
       
   983 } //namespace lemon
       
   984 
       
   985 #endif //LEMON_HAO_ORLIN_H