lemon/cost_scaling.h
changeset 1034 ef200e268af2
parent 863 a93f1a27d831
child 919 e0cef67fe565
child 921 140c953ad5d1
child 931 f112c18bc304
equal deleted inserted replaced
12:e4a4a854f962 13:c18b7e8e2d31
     1 /* -*- C++ -*-
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     4  *
     5  * Copyright (C) 2003-2008
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     8  *
     9  * Permission to use, modify and distribute this software is granted
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    10  * provided that this copyright notice appears in all copies. For
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient. 
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
    99   ///
   100   /// Most of the parameters of the problem (except for the digraph)
   100   /// Most of the parameters of the problem (except for the digraph)
   187       /// admissible arc at once.
   187       /// admissible arc at once.
   188       PUSH,
   188       PUSH,
   189       /// Augment operations are used, i.e. flow is moved on admissible
   189       /// Augment operations are used, i.e. flow is moved on admissible
   190       /// paths from a node with excess to a node with deficit.
   190       /// paths from a node with excess to a node with deficit.
   191       AUGMENT,
   191       AUGMENT,
   192       /// Partial augment operations are used, i.e. flow is moved on 
   192       /// Partial augment operations are used, i.e. flow is moved on
   193       /// admissible paths started from a node with excess, but the
   193       /// admissible paths started from a node with excess, but the
   194       /// lengths of these paths are limited. This method can be viewed
   194       /// lengths of these paths are limited. This method can be viewed
   195       /// as a combined version of the previous two operations.
   195       /// as a combined version of the previous two operations.
   196       PARTIAL_AUGMENT
   196       PARTIAL_AUGMENT
   197     };
   197     };
   206     typedef std::vector<LargeCost> LargeCostVector;
   206     typedef std::vector<LargeCost> LargeCostVector;
   207     typedef std::vector<char> BoolVector;
   207     typedef std::vector<char> BoolVector;
   208     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   208     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   209 
   209 
   210   private:
   210   private:
   211   
   211 
   212     template <typename KT, typename VT>
   212     template <typename KT, typename VT>
   213     class StaticVectorMap {
   213     class StaticVectorMap {
   214     public:
   214     public:
   215       typedef KT Key;
   215       typedef KT Key;
   216       typedef VT Value;
   216       typedef VT Value;
   217       
   217 
   218       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   218       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   219       
   219 
   220       const Value& operator[](const Key& key) const {
   220       const Value& operator[](const Key& key) const {
   221         return _v[StaticDigraph::id(key)];
   221         return _v[StaticDigraph::id(key)];
   222       }
   222       }
   223 
   223 
   224       Value& operator[](const Key& key) {
   224       Value& operator[](const Key& key) {
   225         return _v[StaticDigraph::id(key)];
   225         return _v[StaticDigraph::id(key)];
   226       }
   226       }
   227       
   227 
   228       void set(const Key& key, const Value& val) {
   228       void set(const Key& key, const Value& val) {
   229         _v[StaticDigraph::id(key)] = val;
   229         _v[StaticDigraph::id(key)] = val;
   230       }
   230       }
   231 
   231 
   232     private:
   232     private:
   281     IntVector _buckets;
   281     IntVector _buckets;
   282     IntVector _bucket_next;
   282     IntVector _bucket_next;
   283     IntVector _bucket_prev;
   283     IntVector _bucket_prev;
   284     IntVector _rank;
   284     IntVector _rank;
   285     int _max_rank;
   285     int _max_rank;
   286   
   286 
   287     // Data for a StaticDigraph structure
   287     // Data for a StaticDigraph structure
   288     typedef std::pair<int, int> IntPair;
   288     typedef std::pair<int, int> IntPair;
   289     StaticDigraph _sgr;
   289     StaticDigraph _sgr;
   290     std::vector<IntPair> _arc_vec;
   290     std::vector<IntPair> _arc_vec;
   291     std::vector<LargeCost> _cost_vec;
   291     std::vector<LargeCost> _cost_vec;
   292     LargeCostArcMap _cost_map;
   292     LargeCostArcMap _cost_map;
   293     LargeCostNodeMap _pi_map;
   293     LargeCostNodeMap _pi_map;
   294   
   294 
   295   public:
   295   public:
   296   
   296 
   297     /// \brief Constant for infinite upper bounds (capacities).
   297     /// \brief Constant for infinite upper bounds (capacities).
   298     ///
   298     ///
   299     /// Constant for infinite upper bounds (capacities).
   299     /// Constant for infinite upper bounds (capacities).
   300     /// It is \c std::numeric_limits<Value>::infinity() if available,
   300     /// It is \c std::numeric_limits<Value>::infinity() if available,
   301     /// \c std::numeric_limits<Value>::max() otherwise.
   301     /// \c std::numeric_limits<Value>::max() otherwise.
   346       // Check the number types
   346       // Check the number types
   347       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   347       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   348         "The flow type of CostScaling must be signed");
   348         "The flow type of CostScaling must be signed");
   349       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   349       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   350         "The cost type of CostScaling must be signed");
   350         "The cost type of CostScaling must be signed");
   351       
   351 
   352       // Reset data structures
   352       // Reset data structures
   353       reset();
   353       reset();
   354     }
   354     }
   355 
   355 
   356     /// \name Parameters
   356     /// \name Parameters
   462       }
   462       }
   463       _supply[_node_id[s]] =  k;
   463       _supply[_node_id[s]] =  k;
   464       _supply[_node_id[t]] = -k;
   464       _supply[_node_id[t]] = -k;
   465       return *this;
   465       return *this;
   466     }
   466     }
   467     
   467 
   468     /// @}
   468     /// @}
   469 
   469 
   470     /// \name Execution control
   470     /// \name Execution control
   471     /// The algorithm can be executed using \ref run().
   471     /// The algorithm can be executed using \ref run().
   472 
   472 
   564       for (int j = limit; j != _res_arc_num; ++j) {
   564       for (int j = limit; j != _res_arc_num; ++j) {
   565         _lower[j] = 0;
   565         _lower[j] = 0;
   566         _upper[j] = INF;
   566         _upper[j] = INF;
   567         _scost[j] = 0;
   567         _scost[j] = 0;
   568         _scost[_reverse[j]] = 0;
   568         _scost[_reverse[j]] = 0;
   569       }      
   569       }
   570       _have_lower = false;
   570       _have_lower = false;
   571       return *this;
   571       return *this;
   572     }
   572     }
   573 
   573 
   574     /// \brief Reset all the parameters that have been given before.
   574     /// \brief Reset all the parameters that have been given before.
   599 
   599 
   600       _lower.resize(_res_arc_num);
   600       _lower.resize(_res_arc_num);
   601       _upper.resize(_res_arc_num);
   601       _upper.resize(_res_arc_num);
   602       _scost.resize(_res_arc_num);
   602       _scost.resize(_res_arc_num);
   603       _supply.resize(_res_node_num);
   603       _supply.resize(_res_node_num);
   604       
   604 
   605       _res_cap.resize(_res_arc_num);
   605       _res_cap.resize(_res_arc_num);
   606       _cost.resize(_res_arc_num);
   606       _cost.resize(_res_arc_num);
   607       _pi.resize(_res_node_num);
   607       _pi.resize(_res_node_num);
   608       _excess.resize(_res_node_num);
   608       _excess.resize(_res_node_num);
   609       _next_out.resize(_res_node_num);
   609       _next_out.resize(_res_node_num);
   647         int fi = _arc_idf[a];
   647         int fi = _arc_idf[a];
   648         int bi = _arc_idb[a];
   648         int bi = _arc_idb[a];
   649         _reverse[fi] = bi;
   649         _reverse[fi] = bi;
   650         _reverse[bi] = fi;
   650         _reverse[bi] = fi;
   651       }
   651       }
   652       
   652 
   653       // Reset parameters
   653       // Reset parameters
   654       resetParams();
   654       resetParams();
   655       return *this;
   655       return *this;
   656     }
   656     }
   657 
   657 
   756       _sum_supply = 0;
   756       _sum_supply = 0;
   757       for (int i = 0; i != _root; ++i) {
   757       for (int i = 0; i != _root; ++i) {
   758         _sum_supply += _supply[i];
   758         _sum_supply += _supply[i];
   759       }
   759       }
   760       if (_sum_supply > 0) return INFEASIBLE;
   760       if (_sum_supply > 0) return INFEASIBLE;
   761       
   761 
   762 
   762 
   763       // Initialize vectors
   763       // Initialize vectors
   764       for (int i = 0; i != _res_node_num; ++i) {
   764       for (int i = 0; i != _res_node_num; ++i) {
   765         _pi[i] = 0;
   765         _pi[i] = 0;
   766         _excess[i] = _supply[i];
   766         _excess[i] = _supply[i];
   767       }
   767       }
   768       
   768 
   769       // Remove infinite upper bounds and check negative arcs
   769       // Remove infinite upper bounds and check negative arcs
   770       const Value MAX = std::numeric_limits<Value>::max();
   770       const Value MAX = std::numeric_limits<Value>::max();
   771       int last_out;
   771       int last_out;
   772       if (_have_lower) {
   772       if (_have_lower) {
   773         for (int i = 0; i != _root; ++i) {
   773         for (int i = 0; i != _root; ++i) {
   883           _res_cap[ra] = 0;
   883           _res_cap[ra] = 0;
   884           _cost[a] = 0;
   884           _cost[a] = 0;
   885           _cost[ra] = 0;
   885           _cost[ra] = 0;
   886         }
   886         }
   887       }
   887       }
   888       
   888 
   889       return OPTIMAL;
   889       return OPTIMAL;
   890     }
   890     }
   891 
   891 
   892     // Execute the algorithm and transform the results
   892     // Execute the algorithm and transform the results
   893     void start(Method method) {
   893     void start(Method method) {
   894       // Maximum path length for partial augment
   894       // Maximum path length for partial augment
   895       const int MAX_PATH_LENGTH = 4;
   895       const int MAX_PATH_LENGTH = 4;
   896 
   896 
   897       // Initialize data structures for buckets      
   897       // Initialize data structures for buckets
   898       _max_rank = _alpha * _res_node_num;
   898       _max_rank = _alpha * _res_node_num;
   899       _buckets.resize(_max_rank);
   899       _buckets.resize(_max_rank);
   900       _bucket_next.resize(_res_node_num + 1);
   900       _bucket_next.resize(_res_node_num + 1);
   901       _bucket_prev.resize(_res_node_num + 1);
   901       _bucket_prev.resize(_res_node_num + 1);
   902       _rank.resize(_res_node_num + 1);
   902       _rank.resize(_res_node_num + 1);
   903   
   903 
   904       // Execute the algorithm
   904       // Execute the algorithm
   905       switch (method) {
   905       switch (method) {
   906         case PUSH:
   906         case PUSH:
   907           startPush();
   907           startPush();
   908           break;
   908           break;
   937         for (int j = 0; j != limit; ++j) {
   937         for (int j = 0; j != limit; ++j) {
   938           if (!_forward[j]) _res_cap[j] += _lower[j];
   938           if (!_forward[j]) _res_cap[j] += _lower[j];
   939         }
   939         }
   940       }
   940       }
   941     }
   941     }
   942     
   942 
   943     // Initialize a cost scaling phase
   943     // Initialize a cost scaling phase
   944     void initPhase() {
   944     void initPhase() {
   945       // Saturate arcs not satisfying the optimality condition
   945       // Saturate arcs not satisfying the optimality condition
   946       for (int u = 0; u != _res_node_num; ++u) {
   946       for (int u = 0; u != _res_node_num; ++u) {
   947         int last_out = _first_out[u+1];
   947         int last_out = _first_out[u+1];
   955             _res_cap[a] = 0;
   955             _res_cap[a] = 0;
   956             _res_cap[_reverse[a]] += delta;
   956             _res_cap[_reverse[a]] += delta;
   957           }
   957           }
   958         }
   958         }
   959       }
   959       }
   960       
   960 
   961       // Find active nodes (i.e. nodes with positive excess)
   961       // Find active nodes (i.e. nodes with positive excess)
   962       for (int u = 0; u != _res_node_num; ++u) {
   962       for (int u = 0; u != _res_node_num; ++u) {
   963         if (_excess[u] > 0) _active_nodes.push_back(u);
   963         if (_excess[u] > 0) _active_nodes.push_back(u);
   964       }
   964       }
   965 
   965 
   966       // Initialize the next arcs
   966       // Initialize the next arcs
   967       for (int u = 0; u != _res_node_num; ++u) {
   967       for (int u = 0; u != _res_node_num; ++u) {
   968         _next_out[u] = _first_out[u];
   968         _next_out[u] = _first_out[u];
   969       }
   969       }
   970     }
   970     }
   971     
   971 
   972     // Early termination heuristic
   972     // Early termination heuristic
   973     bool earlyTermination() {
   973     bool earlyTermination() {
   974       const double EARLY_TERM_FACTOR = 3.0;
   974       const double EARLY_TERM_FACTOR = 3.0;
   975 
   975 
   976       // Build a static residual graph
   976       // Build a static residual graph
   996     }
   996     }
   997 
   997 
   998     // Global potential update heuristic
   998     // Global potential update heuristic
   999     void globalUpdate() {
   999     void globalUpdate() {
  1000       int bucket_end = _root + 1;
  1000       int bucket_end = _root + 1;
  1001     
  1001 
  1002       // Initialize buckets
  1002       // Initialize buckets
  1003       for (int r = 0; r != _max_rank; ++r) {
  1003       for (int r = 0; r != _max_rank; ++r) {
  1004         _buckets[r] = bucket_end;
  1004         _buckets[r] = bucket_end;
  1005       }
  1005       }
  1006       Value total_excess = 0;
  1006       Value total_excess = 0;
  1022       for ( ; r != _max_rank; ++r) {
  1022       for ( ; r != _max_rank; ++r) {
  1023         while (_buckets[r] != bucket_end) {
  1023         while (_buckets[r] != bucket_end) {
  1024           // Remove the first node from the current bucket
  1024           // Remove the first node from the current bucket
  1025           int u = _buckets[r];
  1025           int u = _buckets[r];
  1026           _buckets[r] = _bucket_next[u];
  1026           _buckets[r] = _bucket_next[u];
  1027           
  1027 
  1028           // Search the incomming arcs of u
  1028           // Search the incomming arcs of u
  1029           LargeCost pi_u = _pi[u];
  1029           LargeCost pi_u = _pi[u];
  1030           int last_out = _first_out[u+1];
  1030           int last_out = _first_out[u+1];
  1031           for (int a = _first_out[u]; a != last_out; ++a) {
  1031           for (int a = _first_out[u]; a != last_out; ++a) {
  1032             int ra = _reverse[a];
  1032             int ra = _reverse[a];
  1037                 // Compute the new rank of v
  1037                 // Compute the new rank of v
  1038                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1038                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1039                 int new_rank_v = old_rank_v;
  1039                 int new_rank_v = old_rank_v;
  1040                 if (nrc < LargeCost(_max_rank))
  1040                 if (nrc < LargeCost(_max_rank))
  1041                   new_rank_v = r + 1 + int(nrc);
  1041                   new_rank_v = r + 1 + int(nrc);
  1042                   
  1042 
  1043                 // Change the rank of v
  1043                 // Change the rank of v
  1044                 if (new_rank_v < old_rank_v) {
  1044                 if (new_rank_v < old_rank_v) {
  1045                   _rank[v] = new_rank_v;
  1045                   _rank[v] = new_rank_v;
  1046                   _next_out[v] = _first_out[v];
  1046                   _next_out[v] = _first_out[v];
  1047                   
  1047 
  1048                   // Remove v from its old bucket
  1048                   // Remove v from its old bucket
  1049                   if (old_rank_v < _max_rank) {
  1049                   if (old_rank_v < _max_rank) {
  1050                     if (_buckets[old_rank_v] == v) {
  1050                     if (_buckets[old_rank_v] == v) {
  1051                       _buckets[old_rank_v] = _bucket_next[v];
  1051                       _buckets[old_rank_v] = _bucket_next[v];
  1052                     } else {
  1052                     } else {
  1053                       _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1053                       _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1054                       _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1054                       _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1055                     }
  1055                     }
  1056                   }
  1056                   }
  1057                   
  1057 
  1058                   // Insert v to its new bucket
  1058                   // Insert v to its new bucket
  1059                   _bucket_next[v] = _buckets[new_rank_v];
  1059                   _bucket_next[v] = _buckets[new_rank_v];
  1060                   _bucket_prev[_buckets[new_rank_v]] = v;
  1060                   _bucket_prev[_buckets[new_rank_v]] = v;
  1061                   _buckets[new_rank_v] = v;
  1061                   _buckets[new_rank_v] = v;
  1062                 }
  1062                 }
  1070             if (total_excess <= 0) break;
  1070             if (total_excess <= 0) break;
  1071           }
  1071           }
  1072         }
  1072         }
  1073         if (total_excess <= 0) break;
  1073         if (total_excess <= 0) break;
  1074       }
  1074       }
  1075       
  1075 
  1076       // Relabel nodes
  1076       // Relabel nodes
  1077       for (int u = 0; u != _res_node_num; ++u) {
  1077       for (int u = 0; u != _res_node_num; ++u) {
  1078         int k = std::min(_rank[u], r);
  1078         int k = std::min(_rank[u], r);
  1079         if (k > 0) {
  1079         if (k > 0) {
  1080           _pi[u] -= _epsilon * k;
  1080           _pi[u] -= _epsilon * k;
  1090       const double GLOBAL_UPDATE_FACTOR = 3.0;
  1090       const double GLOBAL_UPDATE_FACTOR = 3.0;
  1091 
  1091 
  1092       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1092       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1093         (_res_node_num + _sup_node_num * _sup_node_num));
  1093         (_res_node_num + _sup_node_num * _sup_node_num));
  1094       int next_update_limit = global_update_freq;
  1094       int next_update_limit = global_update_freq;
  1095       
  1095 
  1096       int relabel_cnt = 0;
  1096       int relabel_cnt = 0;
  1097       
  1097 
  1098       // Perform cost scaling phases
  1098       // Perform cost scaling phases
  1099       std::vector<int> path;
  1099       std::vector<int> path;
  1100       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1100       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1101                                         1 : _epsilon / _alpha )
  1101                                         1 : _epsilon / _alpha )
  1102       {
  1102       {
  1103         // Early termination heuristic
  1103         // Early termination heuristic
  1104         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1104         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1105           if (earlyTermination()) break;
  1105           if (earlyTermination()) break;
  1106         }
  1106         }
  1107         
  1107 
  1108         // Initialize current phase
  1108         // Initialize current phase
  1109         initPhase();
  1109         initPhase();
  1110         
  1110 
  1111         // Perform partial augment and relabel operations
  1111         // Perform partial augment and relabel operations
  1112         while (true) {
  1112         while (true) {
  1113           // Select an active node (FIFO selection)
  1113           // Select an active node (FIFO selection)
  1114           while (_active_nodes.size() > 0 &&
  1114           while (_active_nodes.size() > 0 &&
  1115                  _excess[_active_nodes.front()] <= 0) {
  1115                  _excess[_active_nodes.front()] <= 0) {
  1194       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1194       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1195         (_res_node_num + _sup_node_num * _sup_node_num));
  1195         (_res_node_num + _sup_node_num * _sup_node_num));
  1196       int next_update_limit = global_update_freq;
  1196       int next_update_limit = global_update_freq;
  1197 
  1197 
  1198       int relabel_cnt = 0;
  1198       int relabel_cnt = 0;
  1199       
  1199 
  1200       // Perform cost scaling phases
  1200       // Perform cost scaling phases
  1201       BoolVector hyper(_res_node_num, false);
  1201       BoolVector hyper(_res_node_num, false);
  1202       LargeCostVector hyper_cost(_res_node_num);
  1202       LargeCostVector hyper_cost(_res_node_num);
  1203       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1203       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1204                                         1 : _epsilon / _alpha )
  1204                                         1 : _epsilon / _alpha )
  1205       {
  1205       {
  1206         // Early termination heuristic
  1206         // Early termination heuristic
  1207         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1207         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1208           if (earlyTermination()) break;
  1208           if (earlyTermination()) break;
  1209         }
  1209         }
  1210         
  1210 
  1211         // Initialize current phase
  1211         // Initialize current phase
  1212         initPhase();
  1212         initPhase();
  1213 
  1213 
  1214         // Perform push and relabel operations
  1214         // Perform push and relabel operations
  1215         while (_active_nodes.size() > 0) {
  1215         while (_active_nodes.size() > 0) {
  1220         next_node:
  1220         next_node:
  1221           // Select an active node (FIFO selection)
  1221           // Select an active node (FIFO selection)
  1222           n = _active_nodes.front();
  1222           n = _active_nodes.front();
  1223           last_out = _first_out[n+1];
  1223           last_out = _first_out[n+1];
  1224           pi_n = _pi[n];
  1224           pi_n = _pi[n];
  1225           
  1225 
  1226           // Perform push operations if there are admissible arcs
  1226           // Perform push operations if there are admissible arcs
  1227           if (_excess[n] > 0) {
  1227           if (_excess[n] > 0) {
  1228             for (a = _next_out[n]; a != last_out; ++a) {
  1228             for (a = _next_out[n]; a != last_out; ++a) {
  1229               if (_res_cap[a] > 0 &&
  1229               if (_res_cap[a] > 0 &&
  1230                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1230                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1234                 // Push-look-ahead heuristic
  1234                 // Push-look-ahead heuristic
  1235                 Value ahead = -_excess[t];
  1235                 Value ahead = -_excess[t];
  1236                 int last_out_t = _first_out[t+1];
  1236                 int last_out_t = _first_out[t+1];
  1237                 LargeCost pi_t = _pi[t];
  1237                 LargeCost pi_t = _pi[t];
  1238                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1238                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1239                   if (_res_cap[ta] > 0 && 
  1239                   if (_res_cap[ta] > 0 &&
  1240                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1240                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1241                     ahead += _res_cap[ta];
  1241                     ahead += _res_cap[ta];
  1242                   if (ahead >= delta) break;
  1242                   if (ahead >= delta) break;
  1243                 }
  1243                 }
  1244                 if (ahead < 0) ahead = 0;
  1244                 if (ahead < 0) ahead = 0;
  1285             _pi[n] -= min_red_cost + _epsilon;
  1285             _pi[n] -= min_red_cost + _epsilon;
  1286             _next_out[n] = _first_out[n];
  1286             _next_out[n] = _first_out[n];
  1287             hyper[n] = false;
  1287             hyper[n] = false;
  1288             ++relabel_cnt;
  1288             ++relabel_cnt;
  1289           }
  1289           }
  1290         
  1290 
  1291           // Remove nodes that are not active nor hyper
  1291           // Remove nodes that are not active nor hyper
  1292         remove_nodes:
  1292         remove_nodes:
  1293           while ( _active_nodes.size() > 0 &&
  1293           while ( _active_nodes.size() > 0 &&
  1294                   _excess[_active_nodes.front()] <= 0 &&
  1294                   _excess[_active_nodes.front()] <= 0 &&
  1295                   !hyper[_active_nodes.front()] ) {
  1295                   !hyper[_active_nodes.front()] ) {
  1296             _active_nodes.pop_front();
  1296             _active_nodes.pop_front();
  1297           }
  1297           }
  1298           
  1298 
  1299           // Global update heuristic
  1299           // Global update heuristic
  1300           if (relabel_cnt >= next_update_limit) {
  1300           if (relabel_cnt >= next_update_limit) {
  1301             globalUpdate();
  1301             globalUpdate();
  1302             for (int u = 0; u != _res_node_num; ++u)
  1302             for (int u = 0; u != _res_node_num; ++u)
  1303               hyper[u] = false;
  1303               hyper[u] = false;