lemon/bits/variant.h
changeset 414 05357da973ce
child 416 76287c8caa26
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/bits/variant.h	Sun Nov 30 18:57:18 2008 +0100
     1.3 @@ -0,0 +1,494 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_BITS_VARIANT_H
    1.23 +#define LEMON_BITS_VARIANT_H
    1.24 +
    1.25 +#include <lemon/assert.h>
    1.26 +
    1.27 +/// \file
    1.28 +/// \brief Variant types
    1.29 +
    1.30 +namespace lemon {
    1.31 +
    1.32 +  namespace _variant_bits {
    1.33 +  
    1.34 +    template <int left, int right>
    1.35 +    struct CTMax {
    1.36 +      static const int value = left < right ? right : left;
    1.37 +    };
    1.38 +
    1.39 +  }
    1.40 +
    1.41 +
    1.42 +  /// \brief Simple Variant type for two types
    1.43 +  ///
    1.44 +  /// Simple Variant type for two types. The Variant type is a type
    1.45 +  /// safe union. The C++ has strong limitations for using unions, by
    1.46 +  /// example we can not store type with non default constructor or
    1.47 +  /// destructor in an union. This class always knowns the current
    1.48 +  /// state of the variant and it cares for the proper construction
    1.49 +  /// and destruction.
    1.50 +  template <typename _First, typename _Second>
    1.51 +  class BiVariant {
    1.52 +  public:
    1.53 +
    1.54 +    /// \brief The \c First type.
    1.55 +    typedef _First First;
    1.56 +    /// \brief The \c Second type.
    1.57 +    typedef _Second Second;
    1.58 +
    1.59 +    /// \brief Constructor
    1.60 +    ///
    1.61 +    /// This constructor initalizes to the default value of the \c First
    1.62 +    /// type.
    1.63 +    BiVariant() {
    1.64 +      flag = true;
    1.65 +      new(reinterpret_cast<First*>(data)) First();
    1.66 +    }
    1.67 +
    1.68 +    /// \brief Constructor
    1.69 +    ///
    1.70 +    /// This constructor initalizes to the given value of the \c First
    1.71 +    /// type.
    1.72 +    BiVariant(const First& f) {
    1.73 +      flag = true;
    1.74 +      new(reinterpret_cast<First*>(data)) First(f);
    1.75 +    }
    1.76 +
    1.77 +    /// \brief Constructor
    1.78 +    ///
    1.79 +    /// This constructor initalizes to the given value of the \c
    1.80 +    /// Second type.
    1.81 +    BiVariant(const Second& s) {
    1.82 +      flag = false;
    1.83 +      new(reinterpret_cast<Second*>(data)) Second(s);
    1.84 +    }
    1.85 +
    1.86 +    /// \brief Copy constructor
    1.87 +    ///
    1.88 +    /// Copy constructor
    1.89 +    BiVariant(const BiVariant& bivariant) {
    1.90 +      flag = bivariant.flag;
    1.91 +      if (flag) {
    1.92 +        new(reinterpret_cast<First*>(data)) First(bivariant.first());      
    1.93 +      } else {
    1.94 +        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());      
    1.95 +      }
    1.96 +    }
    1.97 +
    1.98 +    /// \brief Destrcutor
    1.99 +    ///
   1.100 +    /// Destructor
   1.101 +    ~BiVariant() {
   1.102 +      destroy();
   1.103 +    }
   1.104 +
   1.105 +    /// \brief Set to the default value of the \c First type.
   1.106 +    ///
   1.107 +    /// This function sets the variant to the default value of the \c
   1.108 +    /// First type.
   1.109 +    BiVariant& setFirst() {
   1.110 +      destroy();
   1.111 +      flag = true;
   1.112 +      new(reinterpret_cast<First*>(data)) First();   
   1.113 +      return *this;
   1.114 +    }
   1.115 +
   1.116 +    /// \brief Set to the given value of the \c First type.
   1.117 +    ///
   1.118 +    /// This function sets the variant to the given value of the \c
   1.119 +    /// First type.
   1.120 +    BiVariant& setFirst(const First& f) {
   1.121 +      destroy();
   1.122 +      flag = true;
   1.123 +      new(reinterpret_cast<First*>(data)) First(f);   
   1.124 +      return *this;
   1.125 +    }
   1.126 +
   1.127 +    /// \brief Set to the default value of the \c Second type.
   1.128 +    ///
   1.129 +    /// This function sets the variant to the default value of the \c
   1.130 +    /// Second type.
   1.131 +    BiVariant& setSecond() {
   1.132 +      destroy();
   1.133 +      flag = false;
   1.134 +      new(reinterpret_cast<Second*>(data)) Second();   
   1.135 +      return *this;
   1.136 +    }
   1.137 +
   1.138 +    /// \brief Set to the given value of the \c Second type.
   1.139 +    ///
   1.140 +    /// This function sets the variant to the given value of the \c
   1.141 +    /// Second type.
   1.142 +    BiVariant& setSecond(const Second& s) {
   1.143 +      destroy();
   1.144 +      flag = false;
   1.145 +      new(reinterpret_cast<Second*>(data)) Second(s);   
   1.146 +      return *this;
   1.147 +    }
   1.148 +
   1.149 +    /// \brief Operator form of the \c setFirst()
   1.150 +    BiVariant& operator=(const First& f) {
   1.151 +      return setFirst(f);
   1.152 +    }
   1.153 +
   1.154 +    /// \brief Operator form of the \c setSecond()
   1.155 +    BiVariant& operator=(const Second& s) {
   1.156 +      return setSecond(s);
   1.157 +    }
   1.158 +
   1.159 +    /// \brief Assign operator
   1.160 +    BiVariant& operator=(const BiVariant& bivariant) {
   1.161 +      if (this == &bivariant) return *this;
   1.162 +      destroy();
   1.163 +      flag = bivariant.flag;
   1.164 +      if (flag) {
   1.165 +        new(reinterpret_cast<First*>(data)) First(bivariant.first());      
   1.166 +      } else {
   1.167 +        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());      
   1.168 +      }
   1.169 +      return *this;
   1.170 +    }
   1.171 +
   1.172 +    /// \brief Reference to the value
   1.173 +    ///
   1.174 +    /// Reference to the value of the \c First type.
   1.175 +    /// \pre The BiVariant should store value of \c First type.
   1.176 +    First& first() {
   1.177 +      LEMON_DEBUG(flag, "Variant wrong state");
   1.178 +      return *reinterpret_cast<First*>(data); 
   1.179 +    }
   1.180 +
   1.181 +    /// \brief Const reference to the value
   1.182 +    ///
   1.183 +    /// Const reference to the value of the \c First type.
   1.184 +    /// \pre The BiVariant should store value of \c First type.
   1.185 +    const First& first() const { 
   1.186 +      LEMON_DEBUG(flag, "Variant wrong state");
   1.187 +      return *reinterpret_cast<const First*>(data); 
   1.188 +    }
   1.189 +
   1.190 +    /// \brief Operator form of the \c first()
   1.191 +    operator First&() { return first(); }
   1.192 +    /// \brief Operator form of the const \c first()
   1.193 +    operator const First&() const { return first(); }
   1.194 +
   1.195 +    /// \brief Reference to the value
   1.196 +    ///
   1.197 +    /// Reference to the value of the \c Second type.
   1.198 +    /// \pre The BiVariant should store value of \c Second type.
   1.199 +    Second& second() { 
   1.200 +      LEMON_DEBUG(!flag, "Variant wrong state");
   1.201 +      return *reinterpret_cast<Second*>(data); 
   1.202 +    }
   1.203 +
   1.204 +    /// \brief Const reference to the value
   1.205 +    ///
   1.206 +    /// Const reference to the value of the \c Second type.
   1.207 +    /// \pre The BiVariant should store value of \c Second type.
   1.208 +    const Second& second() const { 
   1.209 +      LEMON_DEBUG(!flag, "Variant wrong state");
   1.210 +      return *reinterpret_cast<const Second*>(data); 
   1.211 +    }
   1.212 +
   1.213 +    /// \brief Operator form of the \c second()
   1.214 +    operator Second&() { return second(); }
   1.215 +    /// \brief Operator form of the const \c second()
   1.216 +    operator const Second&() const { return second(); }
   1.217 +
   1.218 +    /// \brief %True when the variant is in the first state
   1.219 +    ///
   1.220 +    /// %True when the variant stores value of the \c First type.
   1.221 +    bool firstState() const { return flag; }
   1.222 +
   1.223 +    /// \brief %True when the variant is in the second state
   1.224 +    ///
   1.225 +    /// %True when the variant stores value of the \c Second type.
   1.226 +    bool secondState() const { return !flag; }
   1.227 +
   1.228 +  private:
   1.229 +
   1.230 +    void destroy() {
   1.231 +      if (flag) {
   1.232 +        reinterpret_cast<First*>(data)->~First();
   1.233 +      } else {
   1.234 +        reinterpret_cast<Second*>(data)->~Second();
   1.235 +      }
   1.236 +    }
   1.237 +    
   1.238 +    char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
   1.239 +    bool flag;
   1.240 +  };
   1.241 +
   1.242 +  namespace _variant_bits {
   1.243 +    
   1.244 +    template <int _idx, typename _TypeMap>
   1.245 +    struct Memory {
   1.246 +
   1.247 +      typedef typename _TypeMap::template Map<_idx>::Type Current;
   1.248 +
   1.249 +      static void destroy(int index, char* place) {
   1.250 +        if (index == _idx) {
   1.251 +          reinterpret_cast<Current*>(place)->~Current();
   1.252 +        } else {
   1.253 +          Memory<_idx - 1, _TypeMap>::destroy(index, place);
   1.254 +        }
   1.255 +      }
   1.256 +
   1.257 +      static void copy(int index, char* to, const char* from) {
   1.258 +        if (index == _idx) {
   1.259 +          new (reinterpret_cast<Current*>(to))
   1.260 +            Current(reinterpret_cast<const Current*>(from));
   1.261 +        } else {
   1.262 +          Memory<_idx - 1, _TypeMap>::copy(index, to, from);
   1.263 +        }
   1.264 +      }
   1.265 +
   1.266 +    };
   1.267 +
   1.268 +    template <typename _TypeMap>
   1.269 +    struct Memory<-1, _TypeMap> {
   1.270 +
   1.271 +      static void destroy(int, char*) {
   1.272 +        LEMON_DEBUG(false, "Variant wrong index.");
   1.273 +      }
   1.274 +
   1.275 +      static void copy(int, char*, const char*) {
   1.276 +        LEMON_DEBUG(false, "Variant wrong index.");
   1.277 +      }
   1.278 +    };
   1.279 +
   1.280 +    template <int _idx, typename _TypeMap>
   1.281 +    struct Size {
   1.282 +      static const int value = 
   1.283 +      CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type), 
   1.284 +            Size<_idx - 1, _TypeMap>::value>::value;
   1.285 +    };
   1.286 +
   1.287 +    template <typename _TypeMap>
   1.288 +    struct Size<0, _TypeMap> {
   1.289 +      static const int value = 
   1.290 +      sizeof(typename _TypeMap::template Map<0>::Type);
   1.291 +    };
   1.292 +
   1.293 +  }
   1.294 +
   1.295 +  /// \brief Variant type
   1.296 +  ///
   1.297 +  /// Simple Variant type. The Variant type is a type safe union. The
   1.298 +  /// C++ has strong limitations for using unions, for example we
   1.299 +  /// cannot store type with non default constructor or destructor in
   1.300 +  /// a union. This class always knowns the current state of the
   1.301 +  /// variant and it cares for the proper construction and
   1.302 +  /// destruction.
   1.303 +  ///
   1.304 +  /// \param _num The number of the types which can be stored in the
   1.305 +  /// variant type.
   1.306 +  /// \param _TypeMap This class describes the types of the Variant. The
   1.307 +  /// _TypeMap::Map<index>::Type should be a valid type for each index 
   1.308 +  /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
   1.309 +  /// class to define such type mappings up to 10 types.
   1.310 +  ///
   1.311 +  /// And the usage of the class:
   1.312 +  ///\code
   1.313 +  /// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
   1.314 +  /// MyVariant var;
   1.315 +  /// var.set<0>(12);
   1.316 +  /// std::cout << var.get<0>() << std::endl;
   1.317 +  /// var.set<1>("alpha");
   1.318 +  /// std::cout << var.get<1>() << std::endl;
   1.319 +  /// var.set<2>(0.75);
   1.320 +  /// std::cout << var.get<2>() << std::endl;
   1.321 +  ///\endcode
   1.322 +  ///
   1.323 +  /// The result of course:
   1.324 +  ///\code
   1.325 +  /// 12
   1.326 +  /// alpha
   1.327 +  /// 0.75
   1.328 +  ///\endcode
   1.329 +  template <int _num, typename _TypeMap>
   1.330 +  class Variant {
   1.331 +  public:
   1.332 +
   1.333 +    static const int num = _num;
   1.334 +
   1.335 +    typedef _TypeMap TypeMap;
   1.336 +
   1.337 +    /// \brief Constructor
   1.338 +    ///
   1.339 +    /// This constructor initalizes to the default value of the \c type
   1.340 +    /// with 0 index.
   1.341 +    Variant() {
   1.342 +      flag = 0;
   1.343 +      new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data)) 
   1.344 +        typename TypeMap::template Map<0>::Type();
   1.345 +    }
   1.346 +
   1.347 +
   1.348 +    /// \brief Copy constructor
   1.349 +    ///
   1.350 +    /// Copy constructor
   1.351 +    Variant(const Variant& variant) {
   1.352 +      flag = variant.flag;
   1.353 +      _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
   1.354 +    }
   1.355 +
   1.356 +    /// \brief Assign operator
   1.357 +    ///
   1.358 +    /// Assign operator
   1.359 +    Variant& operator=(const Variant& variant) {
   1.360 +      if (this == &variant) return *this;
   1.361 +      _variant_bits::Memory<num - 1, TypeMap>::
   1.362 +        destroy(flag, data);
   1.363 +      flag = variant.flag;
   1.364 +      _variant_bits::Memory<num - 1, TypeMap>::
   1.365 +        copy(flag, data, variant.data);
   1.366 +      return *this;
   1.367 +    }
   1.368 +
   1.369 +    /// \brief Destrcutor
   1.370 +    ///
   1.371 +    /// Destructor
   1.372 +    ~Variant() {
   1.373 +      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   1.374 +    }
   1.375 +
   1.376 +    /// \brief Set to the default value of the type with \c _idx index.
   1.377 +    ///
   1.378 +    /// This function sets the variant to the default value of the
   1.379 +    /// type with \c _idx index.
   1.380 +    template <int _idx>
   1.381 +    Variant& set() {
   1.382 +      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   1.383 +      flag = _idx;
   1.384 +      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data)) 
   1.385 +        typename TypeMap::template Map<_idx>::Type();
   1.386 +      return *this;
   1.387 +    }
   1.388 +
   1.389 +    /// \brief Set to the given value of the type with \c _idx index.
   1.390 +    ///
   1.391 +    /// This function sets the variant to the given value of the type
   1.392 +    /// with \c _idx index.
   1.393 +    template <int _idx>
   1.394 +    Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
   1.395 +      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
   1.396 +      flag = _idx;
   1.397 +      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data)) 
   1.398 +        typename TypeMap::template Map<_idx>::Type(init);
   1.399 +      return *this;
   1.400 +    }
   1.401 +
   1.402 +    /// \brief Gets the current value of the type with \c _idx index.
   1.403 +    ///
   1.404 +    /// Gets the current value of the type with \c _idx index.
   1.405 +    template <int _idx>
   1.406 +    const typename TypeMap::template Map<_idx>::Type& get() const {
   1.407 +      LEMON_DEBUG(_idx == flag, "Variant wrong index");
   1.408 +      return *reinterpret_cast<const typename TypeMap::
   1.409 +        template Map<_idx>::Type*>(data); 
   1.410 +    }
   1.411 +
   1.412 +    /// \brief Gets the current value of the type with \c _idx index.
   1.413 +    ///
   1.414 +    /// Gets the current value of the type with \c _idx index.
   1.415 +    template <int _idx>
   1.416 +    typename _TypeMap::template Map<_idx>::Type& get() {
   1.417 +      LEMON_DEBUG(_idx == flag, "Variant wrong index");
   1.418 +      return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
   1.419 +        (data); 
   1.420 +    }
   1.421 +
   1.422 +    /// \brief Returns the current state of the variant.
   1.423 +    ///
   1.424 +    /// Returns the current state of the variant.
   1.425 +    int state() const {
   1.426 +      return flag;
   1.427 +    }
   1.428 +
   1.429 +  private:
   1.430 +    
   1.431 +    char data[_variant_bits::Size<num - 1, TypeMap>::value];
   1.432 +    int flag;
   1.433 +  };
   1.434 +
   1.435 +  namespace _variant_bits {
   1.436 +
   1.437 +    template <int _index, typename _List>
   1.438 +    struct Get {
   1.439 +      typedef typename Get<_index - 1, typename _List::Next>::Type Type;
   1.440 +    };
   1.441 +
   1.442 +    template <typename _List>
   1.443 +    struct Get<0, _List> {
   1.444 +      typedef typename _List::Type Type;
   1.445 +    };
   1.446 +
   1.447 +    struct List {};
   1.448 +    
   1.449 +    template <typename _Type, typename _List>
   1.450 +    struct Insert {
   1.451 +      typedef _List Next;
   1.452 +      typedef _Type Type;
   1.453 +    };
   1.454 +
   1.455 +    template <int _idx, typename _T0, typename _T1, typename _T2, 
   1.456 +              typename _T3, typename _T5, typename _T4, typename _T6,
   1.457 +              typename _T7, typename _T8, typename _T9>
   1.458 +    struct Mapper {
   1.459 +      typedef List L10;
   1.460 +      typedef Insert<_T9, L10> L9;
   1.461 +      typedef Insert<_T8, L9> L8;
   1.462 +      typedef Insert<_T7, L8> L7;
   1.463 +      typedef Insert<_T6, L7> L6;
   1.464 +      typedef Insert<_T5, L6> L5;
   1.465 +      typedef Insert<_T4, L5> L4;
   1.466 +      typedef Insert<_T3, L4> L3;
   1.467 +      typedef Insert<_T2, L3> L2;
   1.468 +      typedef Insert<_T1, L2> L1;
   1.469 +      typedef Insert<_T0, L1> L0;
   1.470 +      typedef typename Get<_idx, L0>::Type Type;
   1.471 +    };
   1.472 +    
   1.473 +  }
   1.474 +
   1.475 +  /// \brief Helper class for Variant
   1.476 +  ///
   1.477 +  /// Helper class to define type mappings for Variant. This class
   1.478 +  /// converts the template parameters to be mappable by integer.
   1.479 +  /// \see Variant
   1.480 +  template <
   1.481 +    typename _T0, 
   1.482 +    typename _T1 = void, typename _T2 = void, typename _T3 = void,
   1.483 +    typename _T5 = void, typename _T4 = void, typename _T6 = void,
   1.484 +    typename _T7 = void, typename _T8 = void, typename _T9 = void>
   1.485 +  struct VariantTypeMap {
   1.486 +    template <int _idx>
   1.487 +    struct Map {
   1.488 +      typedef typename _variant_bits::
   1.489 +      Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
   1.490 +      Type;
   1.491 +    };
   1.492 +  };
   1.493 +  
   1.494 +}
   1.495 +
   1.496 +
   1.497 +#endif