lemon/min_mean_cycle.h
changeset 764 1fac515a59c1
parent 763 93cd93e82f9b
child 765 3b544a9c92db
     1.1 --- a/lemon/min_mean_cycle.h	Fri Aug 07 14:52:40 2009 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,568 +0,0 @@
     1.4 -/* -*- C++ -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library
     1.7 - *
     1.8 - * Copyright (C) 2003-2008
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_MIN_MEAN_CYCLE_H
    1.23 -#define LEMON_MIN_MEAN_CYCLE_H
    1.24 -
    1.25 -/// \ingroup shortest_path
    1.26 -///
    1.27 -/// \file
    1.28 -/// \brief Howard's algorithm for finding a minimum mean cycle.
    1.29 -
    1.30 -#include <vector>
    1.31 -#include <limits>
    1.32 -#include <lemon/core.h>
    1.33 -#include <lemon/path.h>
    1.34 -#include <lemon/tolerance.h>
    1.35 -#include <lemon/connectivity.h>
    1.36 -
    1.37 -namespace lemon {
    1.38 -
    1.39 -  /// \brief Default traits class of MinMeanCycle class.
    1.40 -  ///
    1.41 -  /// Default traits class of MinMeanCycle class.
    1.42 -  /// \tparam GR The type of the digraph.
    1.43 -  /// \tparam LEN The type of the length map.
    1.44 -  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    1.45 -#ifdef DOXYGEN
    1.46 -  template <typename GR, typename LEN>
    1.47 -#else
    1.48 -  template <typename GR, typename LEN,
    1.49 -    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
    1.50 -#endif
    1.51 -  struct MinMeanCycleDefaultTraits
    1.52 -  {
    1.53 -    /// The type of the digraph
    1.54 -    typedef GR Digraph;
    1.55 -    /// The type of the length map
    1.56 -    typedef LEN LengthMap;
    1.57 -    /// The type of the arc lengths
    1.58 -    typedef typename LengthMap::Value Value;
    1.59 -
    1.60 -    /// \brief The large value type used for internal computations
    1.61 -    ///
    1.62 -    /// The large value type used for internal computations.
    1.63 -    /// It is \c long \c long if the \c Value type is integer,
    1.64 -    /// otherwise it is \c double.
    1.65 -    /// \c Value must be convertible to \c LargeValue.
    1.66 -    typedef double LargeValue;
    1.67 -
    1.68 -    /// The tolerance type used for internal computations
    1.69 -    typedef lemon::Tolerance<LargeValue> Tolerance;
    1.70 -
    1.71 -    /// \brief The path type of the found cycles
    1.72 -    ///
    1.73 -    /// The path type of the found cycles.
    1.74 -    /// It must conform to the \ref lemon::concepts::Path "Path" concept
    1.75 -    /// and it must have an \c addBack() function.
    1.76 -    typedef lemon::Path<Digraph> Path;
    1.77 -  };
    1.78 -
    1.79 -  // Default traits class for integer value types
    1.80 -  template <typename GR, typename LEN>
    1.81 -  struct MinMeanCycleDefaultTraits<GR, LEN, true>
    1.82 -  {
    1.83 -    typedef GR Digraph;
    1.84 -    typedef LEN LengthMap;
    1.85 -    typedef typename LengthMap::Value Value;
    1.86 -#ifdef LEMON_HAVE_LONG_LONG
    1.87 -    typedef long long LargeValue;
    1.88 -#else
    1.89 -    typedef long LargeValue;
    1.90 -#endif
    1.91 -    typedef lemon::Tolerance<LargeValue> Tolerance;
    1.92 -    typedef lemon::Path<Digraph> Path;
    1.93 -  };
    1.94 -
    1.95 -
    1.96 -  /// \addtogroup shortest_path
    1.97 -  /// @{
    1.98 -
    1.99 -  /// \brief Implementation of Howard's algorithm for finding a minimum
   1.100 -  /// mean cycle.
   1.101 -  ///
   1.102 -  /// \ref MinMeanCycle implements Howard's algorithm for finding a
   1.103 -  /// directed cycle of minimum mean length (cost) in a digraph.
   1.104 -  ///
   1.105 -  /// \tparam GR The type of the digraph the algorithm runs on.
   1.106 -  /// \tparam LEN The type of the length map. The default
   1.107 -  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   1.108 -#ifdef DOXYGEN
   1.109 -  template <typename GR, typename LEN, typename TR>
   1.110 -#else
   1.111 -  template < typename GR,
   1.112 -             typename LEN = typename GR::template ArcMap<int>,
   1.113 -             typename TR = MinMeanCycleDefaultTraits<GR, LEN> >
   1.114 -#endif
   1.115 -  class MinMeanCycle
   1.116 -  {
   1.117 -  public:
   1.118 -  
   1.119 -    /// The type of the digraph
   1.120 -    typedef typename TR::Digraph Digraph;
   1.121 -    /// The type of the length map
   1.122 -    typedef typename TR::LengthMap LengthMap;
   1.123 -    /// The type of the arc lengths
   1.124 -    typedef typename TR::Value Value;
   1.125 -
   1.126 -    /// \brief The large value type
   1.127 -    ///
   1.128 -    /// The large value type used for internal computations.
   1.129 -    /// Using the \ref MinMeanCycleDefaultTraits "default traits class",
   1.130 -    /// it is \c long \c long if the \c Value type is integer,
   1.131 -    /// otherwise it is \c double.
   1.132 -    typedef typename TR::LargeValue LargeValue;
   1.133 -
   1.134 -    /// The tolerance type
   1.135 -    typedef typename TR::Tolerance Tolerance;
   1.136 -
   1.137 -    /// \brief The path type of the found cycles
   1.138 -    ///
   1.139 -    /// The path type of the found cycles.
   1.140 -    /// Using the \ref MinMeanCycleDefaultTraits "default traits class",
   1.141 -    /// it is \ref lemon::Path "Path<Digraph>".
   1.142 -    typedef typename TR::Path Path;
   1.143 -
   1.144 -    /// The \ref MinMeanCycleDefaultTraits "traits class" of the algorithm
   1.145 -    typedef TR Traits;
   1.146 -
   1.147 -  private:
   1.148 -
   1.149 -    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   1.150 -  
   1.151 -    // The digraph the algorithm runs on
   1.152 -    const Digraph &_gr;
   1.153 -    // The length of the arcs
   1.154 -    const LengthMap &_length;
   1.155 -
   1.156 -    // Data for the found cycles
   1.157 -    bool _curr_found, _best_found;
   1.158 -    LargeValue _curr_length, _best_length;
   1.159 -    int _curr_size, _best_size;
   1.160 -    Node _curr_node, _best_node;
   1.161 -
   1.162 -    Path *_cycle_path;
   1.163 -    bool _local_path;
   1.164 -
   1.165 -    // Internal data used by the algorithm
   1.166 -    typename Digraph::template NodeMap<Arc> _policy;
   1.167 -    typename Digraph::template NodeMap<bool> _reached;
   1.168 -    typename Digraph::template NodeMap<int> _level;
   1.169 -    typename Digraph::template NodeMap<LargeValue> _dist;
   1.170 -
   1.171 -    // Data for storing the strongly connected components
   1.172 -    int _comp_num;
   1.173 -    typename Digraph::template NodeMap<int> _comp;
   1.174 -    std::vector<std::vector<Node> > _comp_nodes;
   1.175 -    std::vector<Node>* _nodes;
   1.176 -    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
   1.177 -    
   1.178 -    // Queue used for BFS search
   1.179 -    std::vector<Node> _queue;
   1.180 -    int _qfront, _qback;
   1.181 -
   1.182 -    Tolerance _tolerance;
   1.183 -  
   1.184 -  public:
   1.185 -  
   1.186 -    /// \name Named Template Parameters
   1.187 -    /// @{
   1.188 -
   1.189 -    template <typename T>
   1.190 -    struct SetLargeValueTraits : public Traits {
   1.191 -      typedef T LargeValue;
   1.192 -      typedef lemon::Tolerance<T> Tolerance;
   1.193 -    };
   1.194 -
   1.195 -    /// \brief \ref named-templ-param "Named parameter" for setting
   1.196 -    /// \c LargeValue type.
   1.197 -    ///
   1.198 -    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
   1.199 -    /// type. It is used for internal computations in the algorithm.
   1.200 -    template <typename T>
   1.201 -    struct SetLargeValue
   1.202 -      : public MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > {
   1.203 -      typedef MinMeanCycle<GR, LEN, SetLargeValueTraits<T> > Create;
   1.204 -    };
   1.205 -
   1.206 -    template <typename T>
   1.207 -    struct SetPathTraits : public Traits {
   1.208 -      typedef T Path;
   1.209 -    };
   1.210 -
   1.211 -    /// \brief \ref named-templ-param "Named parameter" for setting
   1.212 -    /// \c %Path type.
   1.213 -    ///
   1.214 -    /// \ref named-templ-param "Named parameter" for setting the \c %Path
   1.215 -    /// type of the found cycles.
   1.216 -    /// It must conform to the \ref lemon::concepts::Path "Path" concept
   1.217 -    /// and it must have an \c addBack() function.
   1.218 -    template <typename T>
   1.219 -    struct SetPath
   1.220 -      : public MinMeanCycle<GR, LEN, SetPathTraits<T> > {
   1.221 -      typedef MinMeanCycle<GR, LEN, SetPathTraits<T> > Create;
   1.222 -    };
   1.223 -    
   1.224 -    /// @}
   1.225 -
   1.226 -  public:
   1.227 -
   1.228 -    /// \brief Constructor.
   1.229 -    ///
   1.230 -    /// The constructor of the class.
   1.231 -    ///
   1.232 -    /// \param digraph The digraph the algorithm runs on.
   1.233 -    /// \param length The lengths (costs) of the arcs.
   1.234 -    MinMeanCycle( const Digraph &digraph,
   1.235 -                  const LengthMap &length ) :
   1.236 -      _gr(digraph), _length(length), _cycle_path(NULL), _local_path(false),
   1.237 -      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
   1.238 -      _comp(digraph), _in_arcs(digraph)
   1.239 -    {}
   1.240 -
   1.241 -    /// Destructor.
   1.242 -    ~MinMeanCycle() {
   1.243 -      if (_local_path) delete _cycle_path;
   1.244 -    }
   1.245 -
   1.246 -    /// \brief Set the path structure for storing the found cycle.
   1.247 -    ///
   1.248 -    /// This function sets an external path structure for storing the
   1.249 -    /// found cycle.
   1.250 -    ///
   1.251 -    /// If you don't call this function before calling \ref run() or
   1.252 -    /// \ref findMinMean(), it will allocate a local \ref Path "path"
   1.253 -    /// structure. The destuctor deallocates this automatically
   1.254 -    /// allocated object, of course.
   1.255 -    ///
   1.256 -    /// \note The algorithm calls only the \ref lemon::Path::addBack()
   1.257 -    /// "addBack()" function of the given path structure.
   1.258 -    ///
   1.259 -    /// \return <tt>(*this)</tt>
   1.260 -    MinMeanCycle& cycle(Path &path) {
   1.261 -      if (_local_path) {
   1.262 -        delete _cycle_path;
   1.263 -        _local_path = false;
   1.264 -      }
   1.265 -      _cycle_path = &path;
   1.266 -      return *this;
   1.267 -    }
   1.268 -
   1.269 -    /// \name Execution control
   1.270 -    /// The simplest way to execute the algorithm is to call the \ref run()
   1.271 -    /// function.\n
   1.272 -    /// If you only need the minimum mean length, you may call
   1.273 -    /// \ref findMinMean().
   1.274 -
   1.275 -    /// @{
   1.276 -
   1.277 -    /// \brief Run the algorithm.
   1.278 -    ///
   1.279 -    /// This function runs the algorithm.
   1.280 -    /// It can be called more than once (e.g. if the underlying digraph
   1.281 -    /// and/or the arc lengths have been modified).
   1.282 -    ///
   1.283 -    /// \return \c true if a directed cycle exists in the digraph.
   1.284 -    ///
   1.285 -    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   1.286 -    /// \code
   1.287 -    ///   return mmc.findMinMean() && mmc.findCycle();
   1.288 -    /// \endcode
   1.289 -    bool run() {
   1.290 -      return findMinMean() && findCycle();
   1.291 -    }
   1.292 -
   1.293 -    /// \brief Find the minimum cycle mean.
   1.294 -    ///
   1.295 -    /// This function finds the minimum mean length of the directed
   1.296 -    /// cycles in the digraph.
   1.297 -    ///
   1.298 -    /// \return \c true if a directed cycle exists in the digraph.
   1.299 -    bool findMinMean() {
   1.300 -      // Initialize and find strongly connected components
   1.301 -      init();
   1.302 -      findComponents();
   1.303 -      
   1.304 -      // Find the minimum cycle mean in the components
   1.305 -      for (int comp = 0; comp < _comp_num; ++comp) {
   1.306 -        // Find the minimum mean cycle in the current component
   1.307 -        if (!buildPolicyGraph(comp)) continue;
   1.308 -        while (true) {
   1.309 -          findPolicyCycle();
   1.310 -          if (!computeNodeDistances()) break;
   1.311 -        }
   1.312 -        // Update the best cycle (global minimum mean cycle)
   1.313 -        if ( !_best_found || (_curr_found &&
   1.314 -             _curr_length * _best_size < _best_length * _curr_size) ) {
   1.315 -          _best_found = true;
   1.316 -          _best_length = _curr_length;
   1.317 -          _best_size = _curr_size;
   1.318 -          _best_node = _curr_node;
   1.319 -        }
   1.320 -      }
   1.321 -      return _best_found;
   1.322 -    }
   1.323 -
   1.324 -    /// \brief Find a minimum mean directed cycle.
   1.325 -    ///
   1.326 -    /// This function finds a directed cycle of minimum mean length
   1.327 -    /// in the digraph using the data computed by findMinMean().
   1.328 -    ///
   1.329 -    /// \return \c true if a directed cycle exists in the digraph.
   1.330 -    ///
   1.331 -    /// \pre \ref findMinMean() must be called before using this function.
   1.332 -    bool findCycle() {
   1.333 -      if (!_best_found) return false;
   1.334 -      _cycle_path->addBack(_policy[_best_node]);
   1.335 -      for ( Node v = _best_node;
   1.336 -            (v = _gr.target(_policy[v])) != _best_node; ) {
   1.337 -        _cycle_path->addBack(_policy[v]);
   1.338 -      }
   1.339 -      return true;
   1.340 -    }
   1.341 -
   1.342 -    /// @}
   1.343 -
   1.344 -    /// \name Query Functions
   1.345 -    /// The results of the algorithm can be obtained using these
   1.346 -    /// functions.\n
   1.347 -    /// The algorithm should be executed before using them.
   1.348 -
   1.349 -    /// @{
   1.350 -
   1.351 -    /// \brief Return the total length of the found cycle.
   1.352 -    ///
   1.353 -    /// This function returns the total length of the found cycle.
   1.354 -    ///
   1.355 -    /// \pre \ref run() or \ref findMinMean() must be called before
   1.356 -    /// using this function.
   1.357 -    LargeValue cycleLength() const {
   1.358 -      return _best_length;
   1.359 -    }
   1.360 -
   1.361 -    /// \brief Return the number of arcs on the found cycle.
   1.362 -    ///
   1.363 -    /// This function returns the number of arcs on the found cycle.
   1.364 -    ///
   1.365 -    /// \pre \ref run() or \ref findMinMean() must be called before
   1.366 -    /// using this function.
   1.367 -    int cycleArcNum() const {
   1.368 -      return _best_size;
   1.369 -    }
   1.370 -
   1.371 -    /// \brief Return the mean length of the found cycle.
   1.372 -    ///
   1.373 -    /// This function returns the mean length of the found cycle.
   1.374 -    ///
   1.375 -    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   1.376 -    /// following code.
   1.377 -    /// \code
   1.378 -    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
   1.379 -    /// \endcode
   1.380 -    ///
   1.381 -    /// \pre \ref run() or \ref findMinMean() must be called before
   1.382 -    /// using this function.
   1.383 -    double cycleMean() const {
   1.384 -      return static_cast<double>(_best_length) / _best_size;
   1.385 -    }
   1.386 -
   1.387 -    /// \brief Return the found cycle.
   1.388 -    ///
   1.389 -    /// This function returns a const reference to the path structure
   1.390 -    /// storing the found cycle.
   1.391 -    ///
   1.392 -    /// \pre \ref run() or \ref findCycle() must be called before using
   1.393 -    /// this function.
   1.394 -    const Path& cycle() const {
   1.395 -      return *_cycle_path;
   1.396 -    }
   1.397 -
   1.398 -    ///@}
   1.399 -
   1.400 -  private:
   1.401 -
   1.402 -    // Initialize
   1.403 -    void init() {
   1.404 -      if (!_cycle_path) {
   1.405 -        _local_path = true;
   1.406 -        _cycle_path = new Path;
   1.407 -      }
   1.408 -      _queue.resize(countNodes(_gr));
   1.409 -      _best_found = false;
   1.410 -      _best_length = 0;
   1.411 -      _best_size = 1;
   1.412 -      _cycle_path->clear();
   1.413 -    }
   1.414 -    
   1.415 -    // Find strongly connected components and initialize _comp_nodes
   1.416 -    // and _in_arcs
   1.417 -    void findComponents() {
   1.418 -      _comp_num = stronglyConnectedComponents(_gr, _comp);
   1.419 -      _comp_nodes.resize(_comp_num);
   1.420 -      if (_comp_num == 1) {
   1.421 -        _comp_nodes[0].clear();
   1.422 -        for (NodeIt n(_gr); n != INVALID; ++n) {
   1.423 -          _comp_nodes[0].push_back(n);
   1.424 -          _in_arcs[n].clear();
   1.425 -          for (InArcIt a(_gr, n); a != INVALID; ++a) {
   1.426 -            _in_arcs[n].push_back(a);
   1.427 -          }
   1.428 -        }
   1.429 -      } else {
   1.430 -        for (int i = 0; i < _comp_num; ++i)
   1.431 -          _comp_nodes[i].clear();
   1.432 -        for (NodeIt n(_gr); n != INVALID; ++n) {
   1.433 -          int k = _comp[n];
   1.434 -          _comp_nodes[k].push_back(n);
   1.435 -          _in_arcs[n].clear();
   1.436 -          for (InArcIt a(_gr, n); a != INVALID; ++a) {
   1.437 -            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
   1.438 -          }
   1.439 -        }
   1.440 -      }
   1.441 -    }
   1.442 -
   1.443 -    // Build the policy graph in the given strongly connected component
   1.444 -    // (the out-degree of every node is 1)
   1.445 -    bool buildPolicyGraph(int comp) {
   1.446 -      _nodes = &(_comp_nodes[comp]);
   1.447 -      if (_nodes->size() < 1 ||
   1.448 -          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
   1.449 -        return false;
   1.450 -      }
   1.451 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.452 -        _dist[(*_nodes)[i]] = std::numeric_limits<LargeValue>::max();
   1.453 -      }
   1.454 -      Node u, v;
   1.455 -      Arc e;
   1.456 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.457 -        v = (*_nodes)[i];
   1.458 -        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   1.459 -          e = _in_arcs[v][j];
   1.460 -          u = _gr.source(e);
   1.461 -          if (_length[e] < _dist[u]) {
   1.462 -            _dist[u] = _length[e];
   1.463 -            _policy[u] = e;
   1.464 -          }
   1.465 -        }
   1.466 -      }
   1.467 -      return true;
   1.468 -    }
   1.469 -
   1.470 -    // Find the minimum mean cycle in the policy graph
   1.471 -    void findPolicyCycle() {
   1.472 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.473 -        _level[(*_nodes)[i]] = -1;
   1.474 -      }
   1.475 -      LargeValue clength;
   1.476 -      int csize;
   1.477 -      Node u, v;
   1.478 -      _curr_found = false;
   1.479 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.480 -        u = (*_nodes)[i];
   1.481 -        if (_level[u] >= 0) continue;
   1.482 -        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
   1.483 -          _level[u] = i;
   1.484 -        }
   1.485 -        if (_level[u] == i) {
   1.486 -          // A cycle is found
   1.487 -          clength = _length[_policy[u]];
   1.488 -          csize = 1;
   1.489 -          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
   1.490 -            clength += _length[_policy[v]];
   1.491 -            ++csize;
   1.492 -          }
   1.493 -          if ( !_curr_found ||
   1.494 -               (clength * _curr_size < _curr_length * csize) ) {
   1.495 -            _curr_found = true;
   1.496 -            _curr_length = clength;
   1.497 -            _curr_size = csize;
   1.498 -            _curr_node = u;
   1.499 -          }
   1.500 -        }
   1.501 -      }
   1.502 -    }
   1.503 -
   1.504 -    // Contract the policy graph and compute node distances
   1.505 -    bool computeNodeDistances() {
   1.506 -      // Find the component of the main cycle and compute node distances
   1.507 -      // using reverse BFS
   1.508 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.509 -        _reached[(*_nodes)[i]] = false;
   1.510 -      }
   1.511 -      _qfront = _qback = 0;
   1.512 -      _queue[0] = _curr_node;
   1.513 -      _reached[_curr_node] = true;
   1.514 -      _dist[_curr_node] = 0;
   1.515 -      Node u, v;
   1.516 -      Arc e;
   1.517 -      while (_qfront <= _qback) {
   1.518 -        v = _queue[_qfront++];
   1.519 -        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   1.520 -          e = _in_arcs[v][j];
   1.521 -          u = _gr.source(e);
   1.522 -          if (_policy[u] == e && !_reached[u]) {
   1.523 -            _reached[u] = true;
   1.524 -            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   1.525 -            _queue[++_qback] = u;
   1.526 -          }
   1.527 -        }
   1.528 -      }
   1.529 -
   1.530 -      // Connect all other nodes to this component and compute node
   1.531 -      // distances using reverse BFS
   1.532 -      _qfront = 0;
   1.533 -      while (_qback < int(_nodes->size())-1) {
   1.534 -        v = _queue[_qfront++];
   1.535 -        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   1.536 -          e = _in_arcs[v][j];
   1.537 -          u = _gr.source(e);
   1.538 -          if (!_reached[u]) {
   1.539 -            _reached[u] = true;
   1.540 -            _policy[u] = e;
   1.541 -            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
   1.542 -            _queue[++_qback] = u;
   1.543 -          }
   1.544 -        }
   1.545 -      }
   1.546 -
   1.547 -      // Improve node distances
   1.548 -      bool improved = false;
   1.549 -      for (int i = 0; i < int(_nodes->size()); ++i) {
   1.550 -        v = (*_nodes)[i];
   1.551 -        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
   1.552 -          e = _in_arcs[v][j];
   1.553 -          u = _gr.source(e);
   1.554 -          LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
   1.555 -          if (_tolerance.less(delta, _dist[u])) {
   1.556 -            _dist[u] = delta;
   1.557 -            _policy[u] = e;
   1.558 -            improved = true;
   1.559 -          }
   1.560 -        }
   1.561 -      }
   1.562 -      return improved;
   1.563 -    }
   1.564 -
   1.565 -  }; //class MinMeanCycle
   1.566 -
   1.567 -  ///@}
   1.568 -
   1.569 -} //namespace lemon
   1.570 -
   1.571 -#endif //LEMON_MIN_MEAN_CYCLE_H