lemon/edmonds_karp.h
changeset 1184 3c00344f49c9
parent 1074 97d978243703
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/edmonds_karp.h	Wed Oct 17 19:14:07 2018 +0200
     1.3 @@ -0,0 +1,556 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2013
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_EDMONDS_KARP_H
    1.23 +#define LEMON_EDMONDS_KARP_H
    1.24 +
    1.25 +/// \file
    1.26 +/// \ingroup max_flow
    1.27 +/// \brief Implementation of the Edmonds-Karp algorithm.
    1.28 +
    1.29 +#include <lemon/tolerance.h>
    1.30 +#include <vector>
    1.31 +
    1.32 +namespace lemon {
    1.33 +
    1.34 +  /// \brief Default traits class of EdmondsKarp class.
    1.35 +  ///
    1.36 +  /// Default traits class of EdmondsKarp class.
    1.37 +  /// \param GR Digraph type.
    1.38 +  /// \param CAP Type of capacity map.
    1.39 +  template <typename GR, typename CAP>
    1.40 +  struct EdmondsKarpDefaultTraits {
    1.41 +
    1.42 +    /// \brief The digraph type the algorithm runs on.
    1.43 +    typedef GR Digraph;
    1.44 +
    1.45 +    /// \brief The type of the map that stores the arc capacities.
    1.46 +    ///
    1.47 +    /// The type of the map that stores the arc capacities.
    1.48 +    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    1.49 +    typedef CAP CapacityMap;
    1.50 +
    1.51 +    /// \brief The type of the flow values.
    1.52 +    typedef typename CapacityMap::Value Value;
    1.53 +
    1.54 +    /// \brief The type of the map that stores the flow values.
    1.55 +    ///
    1.56 +    /// The type of the map that stores the flow values.
    1.57 +    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    1.58 +#ifdef DOXYGEN
    1.59 +    typedef GR::ArcMap<Value> FlowMap;
    1.60 +#else
    1.61 +    typedef typename Digraph::template ArcMap<Value> FlowMap;
    1.62 +#endif
    1.63 +
    1.64 +    /// \brief Instantiates a FlowMap.
    1.65 +    ///
    1.66 +    /// This function instantiates a \ref FlowMap.
    1.67 +    /// \param digraph The digraph for which we would like to define
    1.68 +    /// the flow map.
    1.69 +    static FlowMap* createFlowMap(const Digraph& digraph) {
    1.70 +      return new FlowMap(digraph);
    1.71 +    }
    1.72 +
    1.73 +    /// \brief The tolerance used by the algorithm
    1.74 +    ///
    1.75 +    /// The tolerance used by the algorithm to handle inexact computation.
    1.76 +    typedef lemon::Tolerance<Value> Tolerance;
    1.77 +
    1.78 +  };
    1.79 +
    1.80 +  /// \ingroup max_flow
    1.81 +  ///
    1.82 +  /// \brief Edmonds-Karp algorithms class.
    1.83 +  ///
    1.84 +  /// This class provides an implementation of the \e Edmonds-Karp \e
    1.85 +  /// algorithm producing a \ref max_flow "flow of maximum value" in a
    1.86 +  /// digraph \cite clrs01algorithms, \cite amo93networkflows,
    1.87 +  /// \cite edmondskarp72theoretical.
    1.88 +  /// The Edmonds-Karp algorithm is slower than the Preflow
    1.89 +  /// algorithm, but it has an advantage of the step-by-step execution
    1.90 +  /// control with feasible flow solutions. The \e source node, the \e
    1.91 +  /// target node, the \e capacity of the arcs and the \e starting \e
    1.92 +  /// flow value of the arcs should be passed to the algorithm
    1.93 +  /// through the constructor.
    1.94 +  ///
    1.95 +  /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
    1.96 +  /// worst case. Always try the Preflow algorithm instead of this if
    1.97 +  /// you just want to compute the optimal flow.
    1.98 +  ///
    1.99 +  /// \tparam GR The type of the digraph the algorithm runs on.
   1.100 +  /// \tparam CAP The type of the capacity map. The default map
   1.101 +  /// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   1.102 +  /// \tparam TR The traits class that defines various types used by the
   1.103 +  /// algorithm. By default, it is \ref EdmondsKarpDefaultTraits
   1.104 +  /// "EdmondsKarpDefaultTraits<GR, CAP>".
   1.105 +  /// In most cases, this parameter should not be set directly,
   1.106 +  /// consider to use the named template parameters instead.
   1.107 +
   1.108 +#ifdef DOXYGEN
   1.109 +  template <typename GR, typename CAP, typename TR>
   1.110 +#else
   1.111 +  template <typename GR,
   1.112 +            typename CAP = typename GR::template ArcMap<int>,
   1.113 +            typename TR = EdmondsKarpDefaultTraits<GR, CAP> >
   1.114 +#endif
   1.115 +  class EdmondsKarp {
   1.116 +  public:
   1.117 +
   1.118 +    /// \brief The \ref lemon::EdmondsKarpDefaultTraits "traits class"
   1.119 +    /// of the algorithm.
   1.120 +    typedef TR Traits;
   1.121 +    /// The type of the digraph the algorithm runs on.
   1.122 +    typedef typename Traits::Digraph Digraph;
   1.123 +    /// The type of the capacity map.
   1.124 +    typedef typename Traits::CapacityMap CapacityMap;
   1.125 +    /// The type of the flow values.
   1.126 +    typedef typename Traits::Value Value;
   1.127 +
   1.128 +    /// The type of the flow map.
   1.129 +    typedef typename Traits::FlowMap FlowMap;
   1.130 +    /// The type of the tolerance.
   1.131 +    typedef typename Traits::Tolerance Tolerance;
   1.132 +
   1.133 +  private:
   1.134 +
   1.135 +    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   1.136 +    typedef typename Digraph::template NodeMap<Arc> PredMap;
   1.137 +
   1.138 +    const Digraph& _graph;
   1.139 +    const CapacityMap* _capacity;
   1.140 +
   1.141 +    Node _source, _target;
   1.142 +
   1.143 +    FlowMap* _flow;
   1.144 +    bool _local_flow;
   1.145 +
   1.146 +    PredMap* _pred;
   1.147 +    std::vector<Node> _queue;
   1.148 +
   1.149 +    Tolerance _tolerance;
   1.150 +    Value _flow_value;
   1.151 +
   1.152 +    void createStructures() {
   1.153 +      if (!_flow) {
   1.154 +        _flow = Traits::createFlowMap(_graph);
   1.155 +        _local_flow = true;
   1.156 +      }
   1.157 +      if (!_pred) {
   1.158 +        _pred = new PredMap(_graph);
   1.159 +      }
   1.160 +      _queue.resize(countNodes(_graph));
   1.161 +    }
   1.162 +
   1.163 +    void destroyStructures() {
   1.164 +      if (_local_flow) {
   1.165 +        delete _flow;
   1.166 +      }
   1.167 +      if (_pred) {
   1.168 +        delete _pred;
   1.169 +      }
   1.170 +    }
   1.171 +
   1.172 +  public:
   1.173 +
   1.174 +    typedef EdmondsKarp Create;
   1.175 +
   1.176 +    ///\name Named template parameters
   1.177 +
   1.178 +    ///@{
   1.179 +
   1.180 +    template <typename T>
   1.181 +    struct SetFlowMapTraits : public Traits {
   1.182 +      typedef T FlowMap;
   1.183 +      static FlowMap *createFlowMap(const Digraph&) {
   1.184 +        LEMON_ASSERT(false, "FlowMap is not initialized");
   1.185 +        return 0;
   1.186 +      }
   1.187 +    };
   1.188 +
   1.189 +    /// \brief \ref named-templ-param "Named parameter" for setting
   1.190 +    /// FlowMap type
   1.191 +    ///
   1.192 +    /// \ref named-templ-param "Named parameter" for setting FlowMap
   1.193 +    /// type
   1.194 +    template <typename T>
   1.195 +    struct SetFlowMap
   1.196 +      : public EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > {
   1.197 +      typedef EdmondsKarp<Digraph, CapacityMap, SetFlowMapTraits<T> > Create;
   1.198 +    };
   1.199 +
   1.200 +    /// @}
   1.201 +
   1.202 +  protected:
   1.203 +
   1.204 +    EdmondsKarp() {}
   1.205 +
   1.206 +  public:
   1.207 +
   1.208 +    /// \brief The constructor of the class.
   1.209 +    ///
   1.210 +    /// The constructor of the class.
   1.211 +    /// \param digraph The digraph the algorithm runs on.
   1.212 +    /// \param capacity The capacity of the arcs.
   1.213 +    /// \param source The source node.
   1.214 +    /// \param target The target node.
   1.215 +    EdmondsKarp(const Digraph& digraph, const CapacityMap& capacity,
   1.216 +                Node source, Node target)
   1.217 +      : _graph(digraph), _capacity(&capacity), _source(source), _target(target),
   1.218 +        _flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
   1.219 +    {
   1.220 +      LEMON_ASSERT(_source != _target,
   1.221 +                   "Flow source and target are the same nodes.");
   1.222 +    }
   1.223 +
   1.224 +    /// \brief Destructor.
   1.225 +    ///
   1.226 +    /// Destructor.
   1.227 +    ~EdmondsKarp() {
   1.228 +      destroyStructures();
   1.229 +    }
   1.230 +
   1.231 +    /// \brief Sets the capacity map.
   1.232 +    ///
   1.233 +    /// Sets the capacity map.
   1.234 +    /// \return <tt>(*this)</tt>
   1.235 +    EdmondsKarp& capacityMap(const CapacityMap& map) {
   1.236 +      _capacity = &map;
   1.237 +      return *this;
   1.238 +    }
   1.239 +
   1.240 +    /// \brief Sets the flow map.
   1.241 +    ///
   1.242 +    /// Sets the flow map.
   1.243 +    /// If you don't use this function before calling \ref run() or
   1.244 +    /// \ref init(), an instance will be allocated automatically.
   1.245 +    /// The destructor deallocates this automatically allocated map,
   1.246 +    /// of course.
   1.247 +    /// \return <tt>(*this)</tt>
   1.248 +    EdmondsKarp& flowMap(FlowMap& map) {
   1.249 +      if (_local_flow) {
   1.250 +        delete _flow;
   1.251 +        _local_flow = false;
   1.252 +      }
   1.253 +      _flow = &map;
   1.254 +      return *this;
   1.255 +    }
   1.256 +
   1.257 +    /// \brief Sets the source node.
   1.258 +    ///
   1.259 +    /// Sets the source node.
   1.260 +    /// \return <tt>(*this)</tt>
   1.261 +    EdmondsKarp& source(const Node& node) {
   1.262 +      _source = node;
   1.263 +      return *this;
   1.264 +    }
   1.265 +
   1.266 +    /// \brief Sets the target node.
   1.267 +    ///
   1.268 +    /// Sets the target node.
   1.269 +    /// \return <tt>(*this)</tt>
   1.270 +    EdmondsKarp& target(const Node& node) {
   1.271 +      _target = node;
   1.272 +      return *this;
   1.273 +    }
   1.274 +
   1.275 +    /// \brief Sets the tolerance used by algorithm.
   1.276 +    ///
   1.277 +    /// Sets the tolerance used by algorithm.
   1.278 +    /// \return <tt>(*this)</tt>
   1.279 +    EdmondsKarp& tolerance(const Tolerance& tolerance) {
   1.280 +      _tolerance = tolerance;
   1.281 +      return *this;
   1.282 +    }
   1.283 +
   1.284 +    /// \brief Returns a const reference to the tolerance.
   1.285 +    ///
   1.286 +    /// Returns a const reference to the tolerance object used by
   1.287 +    /// the algorithm.
   1.288 +    const Tolerance& tolerance() const {
   1.289 +      return _tolerance;
   1.290 +    }
   1.291 +
   1.292 +    /// \name Execution control
   1.293 +    /// The simplest way to execute the algorithm is to use \ref run().\n
   1.294 +    /// If you need better control on the initial solution or the execution,
   1.295 +    /// you have to call one of the \ref init() functions first, then
   1.296 +    /// \ref start() or multiple times the \ref augment() function.
   1.297 +
   1.298 +    ///@{
   1.299 +
   1.300 +    /// \brief Initializes the algorithm.
   1.301 +    ///
   1.302 +    /// Initializes the internal data structures and sets the initial
   1.303 +    /// flow to zero on each arc.
   1.304 +    void init() {
   1.305 +      createStructures();
   1.306 +      for (ArcIt it(_graph); it != INVALID; ++it) {
   1.307 +        _flow->set(it, 0);
   1.308 +      }
   1.309 +      _flow_value = 0;
   1.310 +    }
   1.311 +
   1.312 +    /// \brief Initializes the algorithm using the given flow map.
   1.313 +    ///
   1.314 +    /// Initializes the internal data structures and sets the initial
   1.315 +    /// flow to the given \c flowMap. The \c flowMap should
   1.316 +    /// contain a feasible flow, i.e. at each node excluding the source
   1.317 +    /// and the target, the incoming flow should be equal to the
   1.318 +    /// outgoing flow.
   1.319 +    template <typename FlowMap>
   1.320 +    void init(const FlowMap& flowMap) {
   1.321 +      createStructures();
   1.322 +      for (ArcIt e(_graph); e != INVALID; ++e) {
   1.323 +        _flow->set(e, flowMap[e]);
   1.324 +      }
   1.325 +      _flow_value = 0;
   1.326 +      for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.327 +        _flow_value += (*_flow)[jt];
   1.328 +      }
   1.329 +      for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.330 +        _flow_value -= (*_flow)[jt];
   1.331 +      }
   1.332 +    }
   1.333 +
   1.334 +    /// \brief Initializes the algorithm using the given flow map.
   1.335 +    ///
   1.336 +    /// Initializes the internal data structures and sets the initial
   1.337 +    /// flow to the given \c flowMap. The \c flowMap should
   1.338 +    /// contain a feasible flow, i.e. at each node excluding the source
   1.339 +    /// and the target, the incoming flow should be equal to the
   1.340 +    /// outgoing flow.
   1.341 +    /// \return \c false when the given \c flowMap does not contain a
   1.342 +    /// feasible flow.
   1.343 +    template <typename FlowMap>
   1.344 +    bool checkedInit(const FlowMap& flowMap) {
   1.345 +      createStructures();
   1.346 +      for (ArcIt e(_graph); e != INVALID; ++e) {
   1.347 +        _flow->set(e, flowMap[e]);
   1.348 +      }
   1.349 +      for (NodeIt it(_graph); it != INVALID; ++it) {
   1.350 +        if (it == _source || it == _target) continue;
   1.351 +        Value outFlow = 0;
   1.352 +        for (OutArcIt jt(_graph, it); jt != INVALID; ++jt) {
   1.353 +          outFlow += (*_flow)[jt];
   1.354 +        }
   1.355 +        Value inFlow = 0;
   1.356 +        for (InArcIt jt(_graph, it); jt != INVALID; ++jt) {
   1.357 +          inFlow += (*_flow)[jt];
   1.358 +        }
   1.359 +        if (_tolerance.different(outFlow, inFlow)) {
   1.360 +          return false;
   1.361 +        }
   1.362 +      }
   1.363 +      for (ArcIt it(_graph); it != INVALID; ++it) {
   1.364 +        if (_tolerance.less((*_flow)[it], 0)) return false;
   1.365 +        if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
   1.366 +      }
   1.367 +      _flow_value = 0;
   1.368 +      for (OutArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.369 +        _flow_value += (*_flow)[jt];
   1.370 +      }
   1.371 +      for (InArcIt jt(_graph, _source); jt != INVALID; ++jt) {
   1.372 +        _flow_value -= (*_flow)[jt];
   1.373 +      }
   1.374 +      return true;
   1.375 +    }
   1.376 +
   1.377 +    /// \brief Augments the solution along a shortest path.
   1.378 +    ///
   1.379 +    /// Augments the solution along a shortest path. This function searches a
   1.380 +    /// shortest path between the source and the target
   1.381 +    /// in the residual digraph by the Bfs algoritm.
   1.382 +    /// Then it increases the flow on this path with the minimal residual
   1.383 +    /// capacity on the path. If there is no such path, it gives back
   1.384 +    /// false.
   1.385 +    /// \return \c false when the augmenting did not success, i.e. the
   1.386 +    /// current flow is a feasible and optimal solution.
   1.387 +    bool augment() {
   1.388 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.389 +        _pred->set(n, INVALID);
   1.390 +      }
   1.391 +
   1.392 +      int first = 0, last = 1;
   1.393 +
   1.394 +      _queue[0] = _source;
   1.395 +      _pred->set(_source, OutArcIt(_graph, _source));
   1.396 +
   1.397 +      while (first != last && (*_pred)[_target] == INVALID) {
   1.398 +        Node n = _queue[first++];
   1.399 +
   1.400 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.401 +          Value rem = (*_capacity)[e] - (*_flow)[e];
   1.402 +          Node t = _graph.target(e);
   1.403 +          if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
   1.404 +            _pred->set(t, e);
   1.405 +            _queue[last++] = t;
   1.406 +          }
   1.407 +        }
   1.408 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.409 +          Value rem = (*_flow)[e];
   1.410 +          Node t = _graph.source(e);
   1.411 +          if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
   1.412 +            _pred->set(t, e);
   1.413 +            _queue[last++] = t;
   1.414 +          }
   1.415 +        }
   1.416 +      }
   1.417 +
   1.418 +      if ((*_pred)[_target] != INVALID) {
   1.419 +        Node n = _target;
   1.420 +        Arc e = (*_pred)[n];
   1.421 +
   1.422 +        Value prem = (*_capacity)[e] - (*_flow)[e];
   1.423 +        n = _graph.source(e);
   1.424 +        while (n != _source) {
   1.425 +          e = (*_pred)[n];
   1.426 +          if (_graph.target(e) == n) {
   1.427 +            Value rem = (*_capacity)[e] - (*_flow)[e];
   1.428 +            if (rem < prem) prem = rem;
   1.429 +            n = _graph.source(e);
   1.430 +          } else {
   1.431 +            Value rem = (*_flow)[e];
   1.432 +            if (rem < prem) prem = rem;
   1.433 +            n = _graph.target(e);
   1.434 +          }
   1.435 +        }
   1.436 +
   1.437 +        n = _target;
   1.438 +        e = (*_pred)[n];
   1.439 +
   1.440 +        _flow->set(e, (*_flow)[e] + prem);
   1.441 +        n = _graph.source(e);
   1.442 +        while (n != _source) {
   1.443 +          e = (*_pred)[n];
   1.444 +          if (_graph.target(e) == n) {
   1.445 +            _flow->set(e, (*_flow)[e] + prem);
   1.446 +            n = _graph.source(e);
   1.447 +          } else {
   1.448 +            _flow->set(e, (*_flow)[e] - prem);
   1.449 +            n = _graph.target(e);
   1.450 +          }
   1.451 +        }
   1.452 +
   1.453 +        _flow_value += prem;
   1.454 +        return true;
   1.455 +      } else {
   1.456 +        return false;
   1.457 +      }
   1.458 +    }
   1.459 +
   1.460 +    /// \brief Executes the algorithm
   1.461 +    ///
   1.462 +    /// Executes the algorithm by performing augmenting phases until the
   1.463 +    /// optimal solution is reached.
   1.464 +    /// \pre One of the \ref init() functions must be called before
   1.465 +    /// using this function.
   1.466 +    void start() {
   1.467 +      while (augment()) {}
   1.468 +    }
   1.469 +
   1.470 +    /// \brief Runs the algorithm.
   1.471 +    ///
   1.472 +    /// Runs the Edmonds-Karp algorithm.
   1.473 +    /// \note ek.run() is just a shortcut of the following code.
   1.474 +    ///\code
   1.475 +    /// ek.init();
   1.476 +    /// ek.start();
   1.477 +    ///\endcode
   1.478 +    void run() {
   1.479 +      init();
   1.480 +      start();
   1.481 +    }
   1.482 +
   1.483 +    /// @}
   1.484 +
   1.485 +    /// \name Query Functions
   1.486 +    /// The result of the Edmonds-Karp algorithm can be obtained using these
   1.487 +    /// functions.\n
   1.488 +    /// Either \ref run() or \ref start() should be called before using them.
   1.489 +
   1.490 +    ///@{
   1.491 +
   1.492 +    /// \brief Returns the value of the maximum flow.
   1.493 +    ///
   1.494 +    /// Returns the value of the maximum flow found by the algorithm.
   1.495 +    ///
   1.496 +    /// \pre Either \ref run() or \ref init() must be called before
   1.497 +    /// using this function.
   1.498 +    Value flowValue() const {
   1.499 +      return _flow_value;
   1.500 +    }
   1.501 +
   1.502 +    /// \brief Returns the flow value on the given arc.
   1.503 +    ///
   1.504 +    /// Returns the flow value on the given arc.
   1.505 +    ///
   1.506 +    /// \pre Either \ref run() or \ref init() must be called before
   1.507 +    /// using this function.
   1.508 +    Value flow(const Arc& arc) const {
   1.509 +      return (*_flow)[arc];
   1.510 +    }
   1.511 +
   1.512 +    /// \brief Returns a const reference to the flow map.
   1.513 +    ///
   1.514 +    /// Returns a const reference to the arc map storing the found flow.
   1.515 +    ///
   1.516 +    /// \pre Either \ref run() or \ref init() must be called before
   1.517 +    /// using this function.
   1.518 +    const FlowMap& flowMap() const {
   1.519 +      return *_flow;
   1.520 +    }
   1.521 +
   1.522 +    /// \brief Returns \c true when the node is on the source side of the
   1.523 +    /// minimum cut.
   1.524 +    ///
   1.525 +    /// Returns true when the node is on the source side of the found
   1.526 +    /// minimum cut.
   1.527 +    ///
   1.528 +    /// \pre Either \ref run() or \ref init() must be called before
   1.529 +    /// using this function.
   1.530 +    bool minCut(const Node& node) const {
   1.531 +      return ((*_pred)[node] != INVALID) || node == _source;
   1.532 +    }
   1.533 +
   1.534 +    /// \brief Gives back a minimum value cut.
   1.535 +    ///
   1.536 +    /// Sets \c cutMap to the characteristic vector of a minimum value
   1.537 +    /// cut. \c cutMap should be a \ref concepts::WriteMap "writable"
   1.538 +    /// node map with \c bool (or convertible) value type.
   1.539 +    ///
   1.540 +    /// \note This function calls \ref minCut() for each node, so it runs in
   1.541 +    /// O(n) time.
   1.542 +    ///
   1.543 +    /// \pre Either \ref run() or \ref init() must be called before
   1.544 +    /// using this function.
   1.545 +    template <typename CutMap>
   1.546 +    void minCutMap(CutMap& cutMap) const {
   1.547 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.548 +        cutMap.set(n, (*_pred)[n] != INVALID);
   1.549 +      }
   1.550 +      cutMap.set(_source, true);
   1.551 +    }
   1.552 +
   1.553 +    /// @}
   1.554 +
   1.555 +  };
   1.556 +
   1.557 +}
   1.558 +
   1.559 +#endif