lemon/nearest_neighbor_tsp.h
changeset 1184 3c00344f49c9
parent 1092 dceba191c00d
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/nearest_neighbor_tsp.h	Wed Oct 17 19:14:07 2018 +0200
     1.3 @@ -0,0 +1,238 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2013
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_NEAREST_NEIGHBOUR_TSP_H
    1.23 +#define LEMON_NEAREST_NEIGHBOUR_TSP_H
    1.24 +
    1.25 +/// \ingroup tsp
    1.26 +/// \file
    1.27 +/// \brief Nearest neighbor algorithm for symmetric TSP
    1.28 +
    1.29 +#include <deque>
    1.30 +#include <vector>
    1.31 +#include <limits>
    1.32 +#include <lemon/full_graph.h>
    1.33 +#include <lemon/maps.h>
    1.34 +
    1.35 +namespace lemon {
    1.36 +
    1.37 +  /// \ingroup tsp
    1.38 +  ///
    1.39 +  /// \brief Nearest neighbor algorithm for symmetric TSP.
    1.40 +  ///
    1.41 +  /// NearestNeighborTsp implements the nearest neighbor heuristic for solving
    1.42 +  /// symmetric \ref tsp "TSP".
    1.43 +  ///
    1.44 +  /// This is probably the simplest TSP heuristic.
    1.45 +  /// It starts with a minimum cost edge and at each step, it connects the
    1.46 +  /// nearest unvisited node to the current path.
    1.47 +  /// Finally, it connects the two end points of the path to form a tour.
    1.48 +  ///
    1.49 +  /// This method runs in O(n<sup>2</sup>) time.
    1.50 +  /// It quickly finds a relatively short tour for most TSP instances,
    1.51 +  /// but it could also yield a really bad (or even the worst) solution
    1.52 +  /// in special cases.
    1.53 +  ///
    1.54 +  /// \tparam CM Type of the cost map.
    1.55 +  template <typename CM>
    1.56 +  class NearestNeighborTsp
    1.57 +  {
    1.58 +    public:
    1.59 +
    1.60 +      /// Type of the cost map
    1.61 +      typedef CM CostMap;
    1.62 +      /// Type of the edge costs
    1.63 +      typedef typename CM::Value Cost;
    1.64 +
    1.65 +    private:
    1.66 +
    1.67 +      GRAPH_TYPEDEFS(FullGraph);
    1.68 +
    1.69 +      const FullGraph &_gr;
    1.70 +      const CostMap &_cost;
    1.71 +      Cost _sum;
    1.72 +      std::vector<Node> _path;
    1.73 +
    1.74 +    public:
    1.75 +
    1.76 +      /// \brief Constructor
    1.77 +      ///
    1.78 +      /// Constructor.
    1.79 +      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
    1.80 +      /// \param cost The cost map.
    1.81 +      NearestNeighborTsp(const FullGraph &gr, const CostMap &cost)
    1.82 +        : _gr(gr), _cost(cost) {}
    1.83 +
    1.84 +      /// \name Execution Control
    1.85 +      /// @{
    1.86 +
    1.87 +      /// \brief Runs the algorithm.
    1.88 +      ///
    1.89 +      /// This function runs the algorithm.
    1.90 +      ///
    1.91 +      /// \return The total cost of the found tour.
    1.92 +      Cost run() {
    1.93 +        _path.clear();
    1.94 +        if (_gr.nodeNum() == 0) {
    1.95 +          return _sum = 0;
    1.96 +        }
    1.97 +        else if (_gr.nodeNum() == 1) {
    1.98 +          _path.push_back(_gr(0));
    1.99 +          return _sum = 0;
   1.100 +        }
   1.101 +
   1.102 +        std::deque<Node> path_dq;
   1.103 +        Edge min_edge1 = INVALID,
   1.104 +             min_edge2 = INVALID;
   1.105 +
   1.106 +        min_edge1 = mapMin(_gr, _cost);
   1.107 +        Node n1 = _gr.u(min_edge1),
   1.108 +             n2 = _gr.v(min_edge1);
   1.109 +        path_dq.push_back(n1);
   1.110 +        path_dq.push_back(n2);
   1.111 +
   1.112 +        FullGraph::NodeMap<bool> used(_gr, false);
   1.113 +        used[n1] = true;
   1.114 +        used[n2] = true;
   1.115 +
   1.116 +        min_edge1 = INVALID;
   1.117 +        while (int(path_dq.size()) != _gr.nodeNum()) {
   1.118 +          if (min_edge1 == INVALID) {
   1.119 +            for (IncEdgeIt e(_gr, n1); e != INVALID; ++e) {
   1.120 +              if (!used[_gr.runningNode(e)] &&
   1.121 +                  (min_edge1 == INVALID || _cost[e] < _cost[min_edge1])) {
   1.122 +                min_edge1 = e;
   1.123 +              }
   1.124 +            }
   1.125 +          }
   1.126 +
   1.127 +          if (min_edge2 == INVALID) {
   1.128 +            for (IncEdgeIt e(_gr, n2); e != INVALID; ++e) {
   1.129 +              if (!used[_gr.runningNode(e)] &&
   1.130 +                  (min_edge2 == INVALID||_cost[e] < _cost[min_edge2])) {
   1.131 +                min_edge2 = e;
   1.132 +              }
   1.133 +            }
   1.134 +          }
   1.135 +
   1.136 +          if (_cost[min_edge1] < _cost[min_edge2]) {
   1.137 +            n1 = _gr.oppositeNode(n1, min_edge1);
   1.138 +            path_dq.push_front(n1);
   1.139 +
   1.140 +            used[n1] = true;
   1.141 +            min_edge1 = INVALID;
   1.142 +
   1.143 +            if (_gr.u(min_edge2) == n1 || _gr.v(min_edge2) == n1)
   1.144 +              min_edge2 = INVALID;
   1.145 +          } else {
   1.146 +            n2 = _gr.oppositeNode(n2, min_edge2);
   1.147 +            path_dq.push_back(n2);
   1.148 +
   1.149 +            used[n2] = true;
   1.150 +            min_edge2 = INVALID;
   1.151 +
   1.152 +            if (_gr.u(min_edge1) == n2 || _gr.v(min_edge1) == n2)
   1.153 +              min_edge1 = INVALID;
   1.154 +          }
   1.155 +        }
   1.156 +
   1.157 +        n1 = path_dq.back();
   1.158 +        n2 = path_dq.front();
   1.159 +        _path.push_back(n2);
   1.160 +        _sum = _cost[_gr.edge(n1, n2)];
   1.161 +        for (int i = 1; i < int(path_dq.size()); ++i) {
   1.162 +          n1 = n2;
   1.163 +          n2 = path_dq[i];
   1.164 +          _path.push_back(n2);
   1.165 +          _sum += _cost[_gr.edge(n1, n2)];
   1.166 +        }
   1.167 +
   1.168 +        return _sum;
   1.169 +      }
   1.170 +
   1.171 +      /// @}
   1.172 +
   1.173 +      /// \name Query Functions
   1.174 +      /// @{
   1.175 +
   1.176 +      /// \brief The total cost of the found tour.
   1.177 +      ///
   1.178 +      /// This function returns the total cost of the found tour.
   1.179 +      ///
   1.180 +      /// \pre run() must be called before using this function.
   1.181 +      Cost tourCost() const {
   1.182 +        return _sum;
   1.183 +      }
   1.184 +
   1.185 +      /// \brief Returns a const reference to the node sequence of the
   1.186 +      /// found tour.
   1.187 +      ///
   1.188 +      /// This function returns a const reference to a vector
   1.189 +      /// that stores the node sequence of the found tour.
   1.190 +      ///
   1.191 +      /// \pre run() must be called before using this function.
   1.192 +      const std::vector<Node>& tourNodes() const {
   1.193 +        return _path;
   1.194 +      }
   1.195 +
   1.196 +      /// \brief Gives back the node sequence of the found tour.
   1.197 +      ///
   1.198 +      /// This function copies the node sequence of the found tour into
   1.199 +      /// an STL container through the given output iterator. The
   1.200 +      /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
   1.201 +      /// For example,
   1.202 +      /// \code
   1.203 +      /// std::vector<FullGraph::Node> nodes(countNodes(graph));
   1.204 +      /// tsp.tourNodes(nodes.begin());
   1.205 +      /// \endcode
   1.206 +      /// or
   1.207 +      /// \code
   1.208 +      /// std::list<FullGraph::Node> nodes;
   1.209 +      /// tsp.tourNodes(std::back_inserter(nodes));
   1.210 +      /// \endcode
   1.211 +      ///
   1.212 +      /// \pre run() must be called before using this function.
   1.213 +      template <typename Iterator>
   1.214 +      void tourNodes(Iterator out) const {
   1.215 +        std::copy(_path.begin(), _path.end(), out);
   1.216 +      }
   1.217 +
   1.218 +      /// \brief Gives back the found tour as a path.
   1.219 +      ///
   1.220 +      /// This function copies the found tour as a list of arcs/edges into
   1.221 +      /// the given \ref lemon::concepts::Path "path structure".
   1.222 +      ///
   1.223 +      /// \pre run() must be called before using this function.
   1.224 +      template <typename Path>
   1.225 +      void tour(Path &path) const {
   1.226 +        path.clear();
   1.227 +        for (int i = 0; i < int(_path.size()) - 1; ++i) {
   1.228 +          path.addBack(_gr.arc(_path[i], _path[i+1]));
   1.229 +        }
   1.230 +        if (int(_path.size()) >= 2) {
   1.231 +          path.addBack(_gr.arc(_path.back(), _path.front()));
   1.232 +        }
   1.233 +      }
   1.234 +
   1.235 +      /// @}
   1.236 +
   1.237 +  };
   1.238 +
   1.239 +}; // namespace lemon
   1.240 +
   1.241 +#endif