1.1 --- a/lemon/random.h Tue Oct 28 15:37:46 2008 +0100
1.2 +++ b/lemon/random.h Tue Oct 28 14:49:18 2008 +0000
1.3 @@ -540,10 +540,6 @@
1.4 ///
1.5 /// @{
1.6
1.7 - ///\name Initialization
1.8 - ///
1.9 - /// @{
1.10 -
1.11 /// \brief Default constructor
1.12 ///
1.13 /// Constructor with constant seeding.
1.14 @@ -708,12 +704,6 @@
1.15 return real<Number>() * (b - a) + a;
1.16 }
1.17
1.18 - /// @}
1.19 -
1.20 - ///\name Uniform distributions
1.21 - ///
1.22 - /// @{
1.23 -
1.24 /// \brief Returns a random real number from the range [0, 1)
1.25 ///
1.26 /// It returns a random double from the range [0, 1).
1.27 @@ -771,8 +761,6 @@
1.28 return _random_bits::IntConversion<Number, Word>::convert(core);
1.29 }
1.30
1.31 - /// @}
1.32 -
1.33 unsigned int uinteger() {
1.34 return uinteger<unsigned int>();
1.35 }
1.36 @@ -806,19 +794,18 @@
1.37
1.38 ///\name Non-uniform distributions
1.39 ///
1.40 -
1.41 ///@{
1.42
1.43 - /// \brief Returns a random bool
1.44 + /// \brief Returns a random bool with given probability of true result.
1.45 ///
1.46 /// It returns a random bool with given probability of true result.
1.47 bool boolean(double p) {
1.48 return operator()() < p;
1.49 }
1.50
1.51 - /// Standard Gauss distribution
1.52 + /// Standard normal (Gauss) distribution
1.53
1.54 - /// Standard Gauss distribution.
1.55 + /// Standard normal (Gauss) distribution.
1.56 /// \note The Cartesian form of the Box-Muller
1.57 /// transformation is used to generate a random normal distribution.
1.58 double gauss()
1.59 @@ -831,9 +818,9 @@
1.60 } while(S>=1);
1.61 return std::sqrt(-2*std::log(S)/S)*V1;
1.62 }
1.63 - /// Gauss distribution with given mean and standard deviation
1.64 + /// Normal (Gauss) distribution with given mean and standard deviation
1.65
1.66 - /// Gauss distribution with given mean and standard deviation.
1.67 + /// Normal (Gauss) distribution with given mean and standard deviation.
1.68 /// \sa gauss()
1.69 double gauss(double mean,double std_dev)
1.70 {
1.71 @@ -864,7 +851,7 @@
1.72 /// standard deviation. The return value can direcly be passed to
1.73 /// lognormal().
1.74 std::pair<double,double> lognormalParamsFromMD(double mean,
1.75 - double std_dev)
1.76 + double std_dev)
1.77 {
1.78 double fr=std_dev/mean;
1.79 fr*=fr;
1.80 @@ -872,14 +859,14 @@
1.81 return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg));
1.82 }
1.83 /// Lognormal distribution with given mean and standard deviation
1.84 -
1.85 +
1.86 /// Lognormal distribution with given mean and standard deviation.
1.87 ///
1.88 double lognormalMD(double mean,double std_dev)
1.89 {
1.90 return lognormal(lognormalParamsFromMD(mean,std_dev));
1.91 }
1.92 -
1.93 +
1.94 /// Exponential distribution with given mean
1.95
1.96 /// This function generates an exponential distribution random number
1.97 @@ -983,7 +970,6 @@
1.98
1.99 ///\name Two dimensional distributions
1.100 ///
1.101 -
1.102 ///@{
1.103
1.104 /// Uniform distribution on the full unit circle
1.105 @@ -1000,7 +986,7 @@
1.106 } while(V1*V1+V2*V2>=1);
1.107 return dim2::Point<double>(V1,V2);
1.108 }
1.109 - /// A kind of two dimensional Gauss distribution
1.110 + /// A kind of two dimensional normal (Gauss) distribution
1.111
1.112 /// This function provides a turning symmetric two-dimensional distribution.
1.113 /// Both coordinates are of standard normal distribution, but they are not