lemon/nearest_neighbor_tsp.h
changeset 1033 9a51db038228
parent 1031 ae0b056593a7
child 1034 ef200e268af2
     1.1 --- a/lemon/nearest_neighbor_tsp.h	Sat Jan 08 22:49:09 2011 +0100
     1.2 +++ b/lemon/nearest_neighbor_tsp.h	Sat Jan 08 22:51:16 2011 +0100
     1.3 @@ -1,145 +1,216 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2010
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22  #ifndef LEMON_NEAREST_NEIGHBOUR_TSP_H
    1.23  #define LEMON_NEAREST_NEIGHBOUR_TSP_H
    1.24  
    1.25 +/// \ingroup tsp
    1.26 +/// \file
    1.27 +/// \brief Nearest neighbor algorithm for symmetric TSP
    1.28 +
    1.29  #include <deque>
    1.30 +#include <limits>
    1.31  #include <lemon/full_graph.h>
    1.32 -#include <lemon/path.h>
    1.33  #include <lemon/maps.h>
    1.34  
    1.35  namespace lemon {
    1.36 -  
    1.37 -  namespace nn_helper {
    1.38 -    template <class L>
    1.39 -    L dequeConvert(const std::deque<FullGraph::Node> &_path) {
    1.40 -      return L(_path.begin(), _path.end());
    1.41 -    }
    1.42  
    1.43 -    template <>
    1.44 -    std::deque<FullGraph::Node> dequeConvert(const std::deque<FullGraph::Node> &_path) {
    1.45 -      return _path;
    1.46 -    }
    1.47 -  }
    1.48 -  
    1.49 +  /// \brief Nearest neighbor algorithm for symmetric TSP.
    1.50 +  ///
    1.51 +  /// NearestNeighborTsp implements the nearest neighbor heuristic for solving
    1.52 +  /// symmetric \ref tsp "TSP".
    1.53 +  ///
    1.54 +  /// This is probably the simplest TSP heuristic.
    1.55 +  /// It starts with a minimum cost edge and at each step, it connects the
    1.56 +  /// nearest unvisited node to the current path.
    1.57 +  /// Finally, it connects the two end points of the path to form a tour.
    1.58 +  ///
    1.59 +  /// This method runs in O(n<sup>2</sup>) time.
    1.60 +  /// It quickly finds an effectively short tour for most TSP
    1.61 +  /// instances, but in special cases, it could yield a really bad
    1.62 +  /// (or even the worst) solution.
    1.63 +  ///
    1.64 +  /// \tparam CM Type of the cost map.
    1.65    template <typename CM>
    1.66 -  class NearestNeighborTsp {
    1.67 +  class NearestNeighborTsp
    1.68 +  {
    1.69 +    public:
    1.70 +
    1.71 +      /// Type of the cost map
    1.72 +      typedef CM CostMap;
    1.73 +      /// Type of the edge costs
    1.74 +      typedef typename CM::Value Cost;
    1.75 +
    1.76      private:
    1.77 +
    1.78        GRAPH_TYPEDEFS(FullGraph);
    1.79  
    1.80 +      const FullGraph &_gr;
    1.81 +      const CostMap &_cost;
    1.82 +      Cost _sum;
    1.83 +      std::deque<Node> _path;
    1.84 +
    1.85      public:
    1.86 -      typedef CM CostMap;
    1.87 -      typedef typename CM::Value Cost;
    1.88 -    
    1.89 -      NearestNeighborTsp(const FullGraph &gr, const CostMap &cost) : _gr(gr), _cost(cost) {}
    1.90  
    1.91 +      /// \brief Constructor
    1.92 +      ///
    1.93 +      /// Constructor.
    1.94 +      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
    1.95 +      /// \param cost The cost map.
    1.96 +      NearestNeighborTsp(const FullGraph &gr, const CostMap &cost)
    1.97 +        : _gr(gr), _cost(cost) {}
    1.98 +
    1.99 +      /// \name Execution Control
   1.100 +      /// @{
   1.101 +
   1.102 +      /// \brief Runs the algorithm.
   1.103 +      ///
   1.104 +      /// This function runs the algorithm.
   1.105 +      ///
   1.106 +      /// \return The total cost of the found tour.
   1.107        Cost run() {
   1.108          _path.clear();
   1.109  
   1.110 +        if (_gr.nodeNum() == 0) return _sum = 0;
   1.111 +        else if (_gr.nodeNum() == 1) {
   1.112 +          _path.push_back(_gr(0));
   1.113 +          return _sum = 0;
   1.114 +        }
   1.115 +
   1.116          Edge min_edge1 = INVALID,
   1.117               min_edge2 = INVALID;
   1.118 -        
   1.119 +
   1.120          min_edge1 = mapMin(_gr, _cost);
   1.121 -
   1.122 -        FullGraph::NodeMap<bool> used(_gr, false);
   1.123 -
   1.124 -        Node n1 = _gr.u(min_edge1), 
   1.125 +        Node n1 = _gr.u(min_edge1),
   1.126               n2 = _gr.v(min_edge1);
   1.127 -        
   1.128          _path.push_back(n1);
   1.129          _path.push_back(n2);
   1.130  
   1.131 +        FullGraph::NodeMap<bool> used(_gr, false);
   1.132          used[n1] = true;
   1.133          used[n2] = true;
   1.134  
   1.135          min_edge1 = INVALID;
   1.136 -
   1.137          while (int(_path.size()) != _gr.nodeNum()) {
   1.138            if (min_edge1 == INVALID) {
   1.139 -            for (IncEdgeIt e(_gr, n1); e!=INVALID; ++e) {
   1.140 -              if (!used[_gr.runningNode(e)]) {
   1.141 -                if (min_edge1==INVALID || _cost[min_edge1] > _cost[e])
   1.142 -                  min_edge1 = e;
   1.143 +            for (IncEdgeIt e(_gr, n1); e != INVALID; ++e) {
   1.144 +              if (!used[_gr.runningNode(e)] &&
   1.145 +                  (_cost[e] < _cost[min_edge1] || min_edge1 == INVALID)) {
   1.146 +                min_edge1 = e;
   1.147                }
   1.148              }
   1.149            }
   1.150  
   1.151            if (min_edge2 == INVALID) {
   1.152 -            for (IncEdgeIt e(_gr, n2); e!=INVALID; ++e) {
   1.153 -              if (!used[_gr.runningNode(e)]) {
   1.154 -                if (min_edge2==INVALID || _cost[min_edge2] > _cost[e])
   1.155 -                  min_edge2 = e;
   1.156 +            for (IncEdgeIt e(_gr, n2); e != INVALID; ++e) {
   1.157 +              if (!used[_gr.runningNode(e)] &&
   1.158 +                  (_cost[e] < _cost[min_edge2] || min_edge2 == INVALID)) {
   1.159 +                min_edge2 = e;
   1.160                }
   1.161              }
   1.162            }
   1.163  
   1.164 -          if ( _cost[min_edge1] < _cost[min_edge2] ) {
   1.165 -            n1 = (_gr.u(min_edge1) == n1) ? _gr.v(min_edge1) : _gr.u(min_edge1);
   1.166 +          if (_cost[min_edge1] < _cost[min_edge2]) {
   1.167 +            n1 = _gr.oppositeNode(n1, min_edge1);
   1.168              _path.push_front(n1);
   1.169  
   1.170              used[n1] = true;
   1.171              min_edge1 = INVALID;
   1.172  
   1.173 -            if (_gr.u(min_edge2)==n1 || _gr.v(min_edge2)==n1)
   1.174 +            if (_gr.u(min_edge2) == n1 || _gr.v(min_edge2) == n1)
   1.175                min_edge2 = INVALID;
   1.176            } else {
   1.177 -            n2 = (_gr.u(min_edge2) == n2) ? _gr.v(min_edge2) : _gr.u(min_edge2);
   1.178 +            n2 = _gr.oppositeNode(n2, min_edge2);
   1.179              _path.push_back(n2);
   1.180  
   1.181              used[n2] = true;
   1.182              min_edge2 = INVALID;
   1.183  
   1.184 -            if (_gr.u(min_edge1)==n2 || _gr.v(min_edge1)==n2)
   1.185 +            if (_gr.u(min_edge1) == n2 || _gr.v(min_edge1) == n2)
   1.186                min_edge1 = INVALID;
   1.187            }
   1.188          }
   1.189  
   1.190 -        _sum = _cost[ _gr.edge(_path.back(), _path.front()) ];
   1.191 -        for (unsigned int i=0; i<_path.size()-1; ++i)
   1.192 -          _sum += _cost[ _gr.edge(_path[i], _path[i+1]) ];
   1.193 +        _sum = _cost[_gr.edge(_path.back(), _path.front())];
   1.194 +        for (int i = 0; i < int(_path.size())-1; ++i) {
   1.195 +          _sum += _cost[_gr.edge(_path[i], _path[i+1])];
   1.196 +        }
   1.197  
   1.198          return _sum;
   1.199        }
   1.200  
   1.201 -      
   1.202 -      template <typename L>
   1.203 -      void tourNodes(L &container) {
   1.204 -        container(nn_helper::dequeConvert<L>(_path));
   1.205 +      /// @}
   1.206 +
   1.207 +      /// \name Query Functions
   1.208 +      /// @{
   1.209 +
   1.210 +      /// \brief The total cost of the found tour.
   1.211 +      ///
   1.212 +      /// This function returns the total cost of the found tour.
   1.213 +      ///
   1.214 +      /// \pre run() must be called before using this function.
   1.215 +      Cost tourCost() const {
   1.216 +        return _sum;
   1.217        }
   1.218 -      
   1.219 -      template <template <typename> class L>
   1.220 -      L<Node> tourNodes() {
   1.221 -        return nn_helper::dequeConvert<L<Node> >(_path);
   1.222 -      }      
   1.223  
   1.224 -      const std::deque<Node>& tourNodes() {
   1.225 +      /// \brief Returns a const reference to the node sequence of the
   1.226 +      /// found tour.
   1.227 +      ///
   1.228 +      /// This function returns a const reference to the internal structure
   1.229 +      /// that stores the node sequence of the found tour.
   1.230 +      ///
   1.231 +      /// \pre run() must be called before using this function.
   1.232 +      const std::deque<Node>& tourNodes() const {
   1.233          return _path;
   1.234        }
   1.235 -      
   1.236 -      Path<FullGraph> tour() {
   1.237 -        Path<FullGraph> p;
   1.238 -        if (_path.size()<2)
   1.239 -          return p;
   1.240 -        
   1.241 -        for (unsigned int i=0; i<_path.size()-1; ++i) {
   1.242 -          p.addBack(_gr.arc(_path[i], _path[i+1]));
   1.243 +
   1.244 +      /// \brief Gives back the node sequence of the found tour.
   1.245 +      ///
   1.246 +      /// This function copies the node sequence of the found tour into
   1.247 +      /// the given standard container.
   1.248 +      ///
   1.249 +      /// \pre run() must be called before using this function.
   1.250 +      template <typename Container>
   1.251 +      void tourNodes(Container &container) const {
   1.252 +        container.assign(_path.begin(), _path.end());
   1.253 +      }
   1.254 +
   1.255 +      /// \brief Gives back the found tour as a path.
   1.256 +      ///
   1.257 +      /// This function copies the found tour as a list of arcs/edges into
   1.258 +      /// the given \ref concept::Path "path structure".
   1.259 +      ///
   1.260 +      /// \pre run() must be called before using this function.
   1.261 +      template <typename Path>
   1.262 +      void tour(Path &path) const {
   1.263 +        path.clear();
   1.264 +        for (int i = 0; i < int(_path.size()) - 1; ++i) {
   1.265 +          path.addBack(_gr.arc(_path[i], _path[i+1]));
   1.266          }
   1.267 -        p.addBack(_gr.arc(_path.back(), _path.front()));
   1.268 -        
   1.269 -        return p;
   1.270 +        if (int(_path.size()) >= 2) {
   1.271 +          path.addBack(_gr.arc(_path.back(), _path.front()));
   1.272 +        }
   1.273        }
   1.274 -      
   1.275 -      Cost tourCost() {
   1.276 -        return _sum;
   1.277 -      }
   1.278 -      
   1.279  
   1.280 -  private:
   1.281 -    const FullGraph &_gr;
   1.282 -    const CostMap &_cost;
   1.283 -    Cost _sum;
   1.284 -    std::deque<Node> _path;
   1.285 +      /// @}
   1.286 +
   1.287    };
   1.288  
   1.289 -
   1.290  }; // namespace lemon
   1.291  
   1.292  #endif